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A class of threshold autoregressive conditional
heteroscedastic models

Xingfa Zhang, Heung Wong
∗
, Yuan Li and Wai-Cheung Ip

This paper generalizes Ling’s (2007) double AR(p) model
by considering a threshold effect in the mean equation. Pro-
vided the threshold is known, consistency and asymptotic
normality of the quasi maximum likelihood estimators for
the model are proved under weak conditions. Based on the
Lagrange Multiplier principle, a threshold effect test is stud-
ied and its asymptotic null distribution is shown to be a
functional of a zero-mean Gaussian process. Approximate
methods are given to compute the upper percentage points
and simulation results show that they perform well. From
the empirical studies, we know that the original model can
be improved when the threshold effect is considered.
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1. INTRODUCTION

In a recent paper, Ling (2007) considered the double
AR(p) or DAR(p) model, which has the form

yt =θ1yt−1 + · · ·+ θpyt−p + εt,

εt =et
√
ht, et ∼ i.i.d(0, 1),

ht =ω + a1y
2
t−1 + · · ·+ apy

2
t−p,(1)

where ω, ai > 0, t ∈ N ≡ {−p, . . . , 0, 1, 2, . . .}, ys is in-
dependent of {et} for t > s. Let Ft be the σ-field gen-
erated by {et, . . . , e1, y0, . . . , y−p}, t ∈ N , then we have
var(yt|Ft−1) = ω + a1y

2
t−1 + · · · + apy

2
t−p. As mentioned

in the paper, model (1) is a special case of ARMA-ARCH
models in Weiss (1986), but it differs from Engle’s (1982)
ARCH model if θi �= 0. The difference lies in the specifica-
tions of the conditional variance: Engle’s (1982) conditional
variance is driven by the unobserved errors while model (1)’s
depends on the past observations. Such a specification of the
conditional variance brings both novelty and difficulty. The
novel results acquired by Ling (2004, 2007) were that the
quasi maximum likelihood estimators can be still consistent
and asymptotically normal when Ey2t = ∞, which usually
does not hold any more for the classical AR(p) model with
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i.i.d errors. Difficulty lies in finding the conditions under
which the series generated from the model is stationary and
geometrically ergodic. Though Ling (2007) has obtained a
sufficient and necessary condition on stationarity and ergod-
icity for model (1) when et ∼ i.i.d. N(0, 1), it is still an open
problem for general cases.

When p = 1, model (1) becomes the DAR(1) model whose
theoretical results and practical application have been well
discussed by Ling (2004), Ling and Li (2008) for both sta-
tionary and nonstationary cases. When the DAR(1) model
was applied to the US 3-month treasure bill rate series in
Ling (2004), it was found that the model is superior to the
usual AR(1) and seems to be able to get a more reliable sta-
tistical inference compared to the usual AR(1)-GARCH(1,
1) model. Nevertheless, since financial data usually present
some asymmetric effect or nonlinear relationship, it is help-
ful to take these factors into account. A well-known tool to
deal with this is the threshold autoregressive model because
of its ability to capture some important characteristics such
as jumps and limit cycles (Tong and Lim, 1980; Tong, 1990;
Li and Lam, 1995). Consequently, it is worthwhile to con-
sider a generalized DAR(p) model, which is piecewise linear
in the mean function.

In this paper we consider the following threshold autore-
gressive conditional heteroscedastic (TARCH) model:

yt = θ0 +

p∑
i=1

θiyt−i + I(yt−d ≤ r)(φ0 +

p∑
i=1

φiyt−i)

+ εt, εt = et
√
ht, et ∼ i.i.d(0, 1),

ht = ω + a1y
2
t−1 + · · ·+ amy2t−m,(2)

where ω, ai > 0, t ∈ N ≡ {−m, . . . , 0, 1, 2, . . .}, ys is in-
dependent of {et} for t > s; I(.) is the indicator func-
tion and r is the threshold parameter. For simplicity, the
nonnegative integers p, d,m are assumed known and sat-
isfy 0 ≤ p ≤ m, 1 ≤ d ≤ m. The threshold parameter r
is assumed to have a known bounded numerical range R̃,
usually a finite interval. When θ0 = φ0 = φi = 0, p = m,
model (2) is reduced to Ling’s (2007) DAR(p) model. Model
(2) also bears resemblance to Li and Lam’s (1995) TARCH
model. The difference is that: the former belongs to Weiss’
ARCH-type models while the latter is an Engle’s ARCH-
type model. Moreover, we relax the distribution of the pro-
cess {εt} to the more general cases instead of the original
normal distribution.
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The paper is arranged as follows. In Section 2, we discuss
the quasi maximum likelihood estimator (QMLE), thresh-
old effect test and some associated asymptotic properties.
Simulations and empirical studies are shown in Section 3.
We conclude the paper in Section 4 and all proofs are put
in the Appendix.

2. ESTIMATION AND THRESHOLD
EFFECT TEST

2.1 Parametric estimation

We assume the threshold parameter r in model (2) is
known. In practice, as that has been done in the subsequent
Section 3.2, we can adopt the idea of Li and Lam (1995)
to estimate r. Let ψ = (θτ , φτ , aτ )τ , θ = (θ0, . . . , θp)

τ , φ =
(φ0, . . . , φp)

τ , a = (ω, a1, . . . , am)τ and ψ ∈ Ψ, which is a
bounded parameter space for model (2). All through this ar-
ticle, the superscript τ denotes the transpose of a vector or a
matrix. Suppose that the true parameter ψ0 = (θτ0 , φ

τ
0 , a

τ
0)

τ

is an interior point of Ψ. Without loss of generality, we
consider Ψ as a neighborhood of ψ0. We need to esti-
mate ψ based on the observations {yt}Tt=1 and initial values
y0, . . . , y1−m.

Consider the following quasi conditional log-likelihood
(apart from a constant term)

LT (ψ) =

T∑
t=1

lt(ψ) =

T∑
t=1

[
−1

2
log ht −

1

2

ε2t
ht

]
,(3)

and we have

∂lt
∂ψ

= −1

2

(
1− ε2t

ht

)
1

ht

∂ht

∂ψ
− εt

ht

∂εt
∂ψ

,(4)

∂2lt
∂ψ∂ψτ

=
1

2h2
t

(
1− ε2t

ht

)
∂ht

∂ψ

∂ht

∂ψτ
+

εt
h2
t

∂ht

∂ψ

∂εt
∂ψτ

(5)

− ε2t
2h3

t

∂ht

∂ψ

∂ht

∂ψτ
− 1

ht

∂εt
∂ψ

∂εt
∂ψτ

+
εt
h2
t

∂εt
∂ψ

∂ht

∂ψτ
,

where

∂εt
∂θ

= −(1, yt−1, . . . , yt−p)
τ ,

∂εt
∂φ

= −I(yt−d ≤ r)(1, yt−1, . . . , yt−p)
τ ,

∂ht

∂φ
=

∂ht

∂θ
= 0,

∂εt
∂a

= 0,
∂ht

∂a
= (1, y2t−1, . . . , y

2
t−m)τ .(6)

For convenience of notations, we put ht = ht(ψ), εt =
εt(ψ), h0t = ht(ψ0), ε0t = εt(ψ0), ς = Ee4t − 1, Y1t =
(1, yt−1, . . . , yt−p)

τ , Y2t = (1, y2t−1, . . . , y
2
t−m)τ , then the fol-

lowing theorem holds under Assumptions 1–2 in the Ap-
pendix.

Theorem 2.1. For model (2) with known threshold and the
considered quasi log-likelihood function LT (ψ) given by (3),

under the Assumptions 1–2 in the Appendix, there exists a
fixed open neighborhood U(ψ0) ⊂ Ψ such that with proba-
bility one, as T → ∞, LT (ψ) has a unique maximum point

ψ̂T in U . Furthermore,
√
T (ψ̂T −ψ0)

L−→ N(0,Ω−1
I ΩSΩ

−1
I ),

where ΩS ,ΩI are respectively given as

E

⎛
⎜⎝

4
h0t

Y1tY
τ
1t

4I(yt−d≤r)
h0t

Y1tY
τ
1t 0

4I(yt−d≤r)
h0t

Y1tY
τ
1t

4I(yt−d≤r)
h0t

Y1tY
τ
1t 0

0 0 ς
h2
0t
Y2tY

τ
2t

⎞
⎟⎠

and

E

⎛
⎜⎝

2
h0t

Y1tY
τ
1t

2I(yt−d≤r)
h0t

Y1tY
τ
1t 0

2I(yt−d≤r)
h0t

Y1tY
τ
1t

2I(yt−d≤r)
h0t

Y1tY
τ
1t 0

0 0 1
h2
0t
Y2tY

τ
2t

⎞
⎟⎠ .

Remark 1. Through the proof in the Appendix, it is known
that Ey2t < ∞ is not required to guarantee the validity of the
theorem, which is consistent with Ling (2007). The matrices
ΩI , ΩS can be calculated by the relevant sample means after
the parameters are estimated.

2.2 Threshold effect test

In this section, we consider the test for the threshold ef-
fect, i.e., to test

H0 : φ0 = φ1 = · · · = φp = 0.

Such a test is nonstandard because the threshold parameter
r is absent under H0. From (5) and (6), we have

E{∂2LT /(∂φ∂a
τ )} = E{∂2LT /(∂θ∂a

τ )} = 0.

Following Davies (1977, 1987), the LM test statistic for our
null hypothesis is

S = sup
r∈R̃

ητr (Cr − Lτ
rC

−1Lr)
−1ηr,(7)

where

ηr = T− 1
2
∂LT (ψ)

∂φ
|θ̂T ,âT ,φ=0,

C = − 1

T
E

(
∂2LT (ψ)

∂θ∂θτ

)
|θ̂T ,âT ,φ=0,

Cr = − 1

T
E

(
∂2LT (ψ)

∂φ∂φτ

)
|θ̂T ,âT ,φ=0,

Lr = − 1

T
E

(
∂2LT (ψ)

∂θ∂φτ

)
|θ̂T ,âT ,φ=0.

Here θ̂T , âT are the QMLE under the null hypothesis, and
the above estimators are consistent in terms of Theorem 3.1
in Ling (2007). Under the framework of the Lagrange Mul-
tiplier test (Silvey, 1959), the above quantities ηr, C, Cr, Lr

are asymptotically convergent to the ones that are evaluated
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at the true values for θ and a. With an abuse of notation, in
the rest of this article, ηr, C, Cr, Lr stand for the quantities
evaluated at the true value of θ and a under H0. Then we
can state the following theorem:

Theorem 2.2. Suppose Assumptions 1–3 in the Appendix
hold, then the asymptotic distribution of {ηr} is identical to
that of a (p+1)-dimensional Gaussian process {ξr} indexed
by the threshold parameter r ∈ R. For r, s ∈ R, we have

ξr ∼ Np+1(0, Cr − Lτ
rC

−1Lr),

cov(ξr, ξs) = Cmin(r,s) − Lτ
rC

−1Ls.

Also, the asymptotic null distribution of the LM test statis-
tic S in (7) is given by the distribution of supr∈R̃ ξτr (Cr −
Lτ
rC

−1Lr)
−1ξr.

Remark 2. Theorem 2.2 is similar to Wong and Li’s (1997)
Theorem, but concerns different situations. Moreover, our
Assumptions 1–3 are weaker in contrast with theirs (e.g.,
Eε4t < ∞ is a little stronger than Ee4t < ∞). The proof is a
generalization of Chan (1990), Wong and Li (1997), which
is given in the Appendix.

In practice, it is necessary to estimate the upper per-
centage points of the asymptotic null distribution for S. For
model (2), note that Cr = Lr, Cr and C − Cr are positive
definite. Then there exist an invertible matrix Q and a diag-
onal matrix D = diag{λ1(r), . . . , λp+1(r)} such that QCQτ

is an identity matrix and QCrQ
τ = D, with all {λi(r)} be-

ing strictly between 0 and 1. Let Qξr = (B1r, . . . , Bp+1,r)
τ .

Then Bir’s are independent Gaussian processes with mean
zero and

cov(Bir, Bis) = λi{min(r, s)} − λi(r)λi(s).

As a result,

ξτr (Cr − Lτ
rC

−1Lr)
−1ξr

=

{
B2

1r

λ1(r)− λ2
1(r)

+ · · ·+
B2

p+1,r

λp+1(r)− λ2
p+1(r)

}
.

When p = 0, we need to compute

pr

{
sup

β1≤λ1(r)≤β2

B2
1r

λ1(r)− λ2
1(r)

> z2

}
, (0 < β1 < β2 < 1)

(8)

for a given z, where β1 = min{λ1(r)} and β2 = max{λ1(r)}
for r ∈ R̃. For general p > 0 cases, we want to evaluate

pr

{
sup
r∈R̃

[
B2

1r

λ1(r)− λ2
1(r)

+ · · ·+
B2

p+1,r

λp+1(r)− λ2
p+1(r)

]
> y

}
.

(9)

Based on Chan and Tong (1990), Chan (1991), by using
techniques similar to Wong and Li (1997), we have that the
probability in (8) can be approximated by

(
2

π

) 1
2

exp

(
−z2

2

)(
γz − γ

z
+

1

z

)
,

γ =
1

2
log

{
β2(1− β1)

β1(1− β2)

}
,(10)

and the probability in (9) can be approximated by

1− exp

{
−2χ2

p+1(y)

(
y

p+ 1
− 1

) p+1∑
i=1

∫
R̃

dti
dr

dr

}
,(11)

where χ2
p+1(.) means the probability density function of the

χ2-distribution with (p + 1) degree of freedom and ti =
1
2 log{λi(r)/(1− λi(r))}.

It remains to find the matrix Q or the λi(r)’s. Note that

C,C − Cr are positive definite matrices. Let C− 1
2 be the

inverse of the matrix C
1
2 that satisfies C

1
2C

1
2 = C, then

C− 1
2 (C−Cr)C

− 1
2 is also positive definite. Denote the eigen-

values of C− 1
2 (C−Cr)C

− 1
2 by (δ1(r), . . . , δp+1(r))

τ and ac-
cordingly there exists an orthogonal matrix Q1 satisfying
Qτ

1C
− 1

2 (C−Cr)C
− 1

2Q1 = diag{δ1(r), . . . , δp+1(r)}, namely,

I −Qτ
1C

− 1
2CrC

− 1
2Q1 = diag{δ1(r), . . . , δp+1(r)}.

Here, I means an identity matrix. Define Q = Qτ
1C

− 1
2 , then

we have

QCQτ = I,QCrQ
τ = diag{1− δ1(r), . . . , 1− δp+1(r)}.

By definition, it is known that {1− δi(r)}’s are exactly the

eigenvalues of C− 1
2CrC

− 1
2 . Hence, for evaluating the prob-

abilities in (8–9), we firstly need to estimate the eigenvalues

of the matrix C− 1
2CrC

− 1
2 .

3. SIMULATIONS AND EMPIRICAL
STUDIES

3.1 Simulations

This section examines the performance of the proposed
LM test in finite samples through Monte Carlo simulations.
We give examples for d = 1, p ≤ m ≤ 2 as the following:

M1 : yt = 0.1 + et
√
ht, ht = 0.2 + 0.16y2t−1 + 0.09y2t−2;

M2 : yt = 0.36yt−1 + et
√

ht, ht = 0.3 + 0.49y2t−1;

M3 : yt = 0.3yt−1 + 0.1yt−2 + et
√

ht,

ht = 0.5 + 0.1y2t−1 + 0.1y2t−2;

M4 : yt = 0.1 + 0.3yt−1 + et
√

ht, ht = 0.5 + 0.32y2t−1;
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Table 1. Results of the simulation experiments for assessing the empirical sizes and power with and without intercept

Model p m d Sample size Empirical sizes and power
10.0% 5.0% 2.5% 1.0%

M1 0 2 1 T = 100 5.9 3.1 1.4 0.3
T = 300 5.4 2.7 1.3 0.5
T = 500 6.0 3.1 1.8 0.7

M2† 1 1 1 T = 100 6.7 3.2 1.3 0.8
T = 300 9.8 5.1 2.2 0.7
T = 500 9.9 5.0 2.3 1.2

M3† 2 2 1 T = 100 13.8 8.1 6.5 4.6
T = 300 10.7 5.1 3.1 2.1
T = 500 12.9 6.3 2.8 0.9

M4 1 1 1 T = 100 17.9 14.6 11.7 10.3
T = 300 7.1 4.3 3.0 2.0
T = 500 7.2 3.7 1.7 1.0

M5 0 2 1 T = 100 51.2 37.5 27.2 16.9
T = 300 97.5 94.8 90.8 85.3
T = 500 100.0 99.8 99.8 99.1

M6 1 1 1 T = 100 89.8 83.3 77.2 67.5
T = 300 89.3 82.2 75.4 64.5
T = 500 90.3 83.9 76.9 66.8

M7† 1 1 1 T = 100 17.1 9.6 5.2 2.4
T = 300 49.7 37.8 28.0 15.3
T = 500 71.1 61.4 50.2 37.8

M8† 2 2 1 T = 100 30.1 21.9 17.5 14.9
T = 300 59.6 38.3 27.1 16.7
T = 500 58.36 46.2 35.9 24.5

Note: †testing with no intercept; number of replications=1000.

M5 : yt = 0.6− 0.4I(yt−1 ≤ 0) + et
√
ht,

ht = 0.3 + 0.15y2t−1 + 0.1y2t−2;

M6 : yt = 0.1 + 0.1yt−1 − I(yt−1 ≤ 0)(0.2 + 0.2yt−1)

+ et
√

ht, ht = 0.05 + 0.36y2t−1;

M7 : yt = 0.4yt−1 − 0.3yt−1I(yt−1 ≤ 0) + et
√

ht,

ht = 0.25 + 0.4y2t−1;

M8 : yt = 0.1yt−1 + 0.1yt−2 + (0.2yt−1 − 0.15yt−2)

× I(yt−1 ≤ 0) + et
√

ht, ht

= 0.5 + 0.16y2t−1 + 0.1y2t−2;

where et ∼ i.i.d. N(0, 1). M1–M4 are used to check the
empirical size and M5–M8 are adopted to demonstrate the
power of the test. We conducted 1000 replications with sam-
ple sizes T=100, 300 and 500 for each of the above examples.
Following Wong and Li (1997), we chose R̃, the numerical
range for the threshold, to be the intervals between the 10th
percentile and 90th percentile of yt. The empirical sizes or
power at the nominal upper 10%, 5%, 2.5% and 1% points
are listed in Table 1.

Table 1 shows that both sizes and powers behave well.
Empirical sizes in each case get closer to the nominal level
(especially at the nominal levels of 2.5% and 1%) and the
test gets more powerful with increasing sample size n.

3.2 Empirical studies

Ling (2004) applied the DAR(1) model to the US 3-month
treasury bill rate series from July 1972 to August 2001 and
found that the model fitted the data well, compared to the
common AR(1) model. For comparison, we also consider the
same set of data except for a longer period from January
1951 to October 2008 (totally 694 observations).

We take xt to be the logarithms of the observed series
and yt = xt−xt−1. Based on Ling (2004), it is reasonable to
apply the model (2) with p = m = d = 1 and θ0 = φ0 = 0
to the considered data, which has the form

yt = θyt−1 + φyt−1I(yt−1 ≤ r) + et

√
ω + a1y2t−1,

et ∼ i.i.d(0, 1).(12)

Before fitting the data by model (12), we first test whether
φ = 0 is significant. With the numerical range R̃ being the
interval between the 10th percentile and 90th percentile of
yt, the p value for the considered test is 0.0194, which shows
that it is reasonable to introduce the threshold part. To
estimate the threshold parameter r, we adopt the idea of
Li and Lam (1995). Denote the potential candidates for r
by R = {r1, r2, . . . , rL}, the estimation of r is performed by
considering

max
r∈R

LT (ψ̂T (r)),
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where ψ̂T (r) is the maximizer of the quasi log-likelihood
given by (3) with the threshold parameter r being fixed.

For comparison, we use {yt}6401 to estimate model (12)
and leave {yt}693641 for forecasting. TakeR as a series of evenly
spaced points in R̃ with the step length being 0.001. Then
we get r̂ = −0.0422, based on which, the model is as follows:

yt = 0.3149
(0.0058)

yt−1 + 0.2188
(0.0147)

yt−1I(yt−1 ≤ −0.0422)

+ et
√
ht,

ht = 0.0022
(0.0000)

+ 0.7656
(0.0404)

y2t−1, et ∼ i.i.d(0, 1).(13)

The values in parentheses are the corresponding standard
deviations which were calculated based on Theorem 2.1. We
also estimate the DAR(1) model based on Ling (2004):

yt = 0.4009
(0.0035)

yt−1 + et
√
ht,

ht = 0.0021
(0.0000)

+ 0.7740
(0.0403)

y2t−1, et ∼ i.i.d(0, 1).(14)

Moreover, we have the estimations:
For (13),

E(log |0.3149 + et
√
0.7656|) = −0.8957 < 0,

E(log |0.3149− et
√
0.7656|) = −0.9483 < 0.

For (14),

E(log |0.4009 + et
√
0.7740|) = −0.8236 < 0,

E(log |0.4009− et
√
0.7740|) = −0.8381 < 0.

Note that (12) and DAR(1) model can be rewritten respec-
tively as

yt = θyt−1 + et
√
a1|yt−1|+ φyt−1I(yt−1 ≤ r)

+ et

(
ω√

ω + a1y2t−1 +
√
a1|yt−1|

)
,

yt = θyt−1 + et
√
a1|yt−1|+ et

(
ω√

ω + a1y2t−1 +
√
a1|yt−1|

)
.

Both φyt−1I(yt−1 ≤ r) and ω/(
√
ω + a1y2t−1 +

√
a1|yt−1|)

are o(|yt−1|) as yt−1 goes to infinity. We know from Ex-
ample 4.1 in Cline and Pu (2004) that the estimated pa-
rameters for the above models satisfy the geometric ergod-
icity conditions. The statistic Q(M) in Li and Mak (1994)
with M = 3, 6, 12 are used for checking the adequacy of the
model (13) and their values are Q(3) = 0.8764 < χ2

3,0.95 =
7.815, Q(6) = 5.5123 < χ2

6,0.95 = 12.592, Q(12) = 16.8462 <
χ2
12,0.95 = 21.026, which suggests that model (13) is ad-

equate for the considered data at a 5% significance level.
The value of the log-likelihood for model (13) is 1436 and
that for model (14) is 1434.4.

Table 2. Percentiles of difference series between upper and
lower bounds

Difference Percentiles
series 10% 25% 50% 75% 90%

{uat − lat} 0.1873 0.1978 0.2418 0.3487 0.6746
{ubt − lbt} 0.1875 0.1981 0.2425 0.3502 0.6781

Now we apply model (13–14) for one step ahead forecast
for {yt}693642. We have

for (13), RMSE =

√√√√ 1

52

693∑
t=642

(yt − ŷt)2 = 0.1253.

for (14), RMSE =

√√√√ 1

52

693∑
t=642

(yt − ŷt)2 = 0.1281.

We also computed the one-step ahead forecast intervals with
95% confidence level for each case. Denote uat, ubt as the
upper bounds series, which are calculated respectively ac-
cording to (13) and (14). Similarly lat and lbt denote the
corresponded lower bounds. We list the percentiles of the dif-
ference series between upper and lower bounds in Table 2. It
can be seen from the table that model (13) generates slightly
narrower confidence intervals. In terms of the log-likelihood
values, the RMSEs and the distance between the estimated
bounds, we know that model (13) is superior to model (14).

It makes sense to consider Li and Lam’s (1995) TARCH
model with order p1 = p2 = 1, d = 1 for the data. The
model is

yt = θyt−1 + φyt−1I(yt−1 ≤ r) + εt, εt = et
√

ht,

ht = ω + a1ε
2
t−1, et ∼ i.i.d. N(0, 1).(15)

Before fitting the data by model (15), we apply the method
in the special case (A) of Wong and Li (1997) to test
whether φ is significantly different from zero. The p value
for the considered test is computed as 0.5591 by choosing
R̃ as the interval between the 10th percentile and 90th
percentile of yt, which suggests φ = 0 in (15). Then we have

yt = θyt−1 + εt, εt = et

√
ω + a1ε2t−1, et ∼ i.i.d. N(0, 1).

Based on observations {yt}6401 , we obtain

yt = 0.2603
(0.0259)

yt−1 + εt, εt = et
√

ht,

ht = 0.0022
(0.0001)

+ 0.8567
(0.0704)

ε2t−1, et ∼ i.i.d. N(0, 1).(16)

In terms of (16), we construct one step ahead of the forecast
for {yt}693642 and it can be found that the root mean squared
error is 0.1330 which is larger than that of model (13)
and (14) respectively. Thus model (13) seems to be more
reasonable than (16) for the considered data.
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4. CONCLUSIONS

This paper considers a class of the threshold ARCH
model by adding a threshold effect in the mean equation
of the DAR(p) model proposed by Ling (2007). The asymp-
totic theory for the QMLE of the considered model is proved.
A LM test is proposed for testing the threshold effect and
approximate methods are given to tabulate the upper per-
centage points of the asymptotical null distribution. From
the simulation results, we found the approximation meth-
ods perform well and via the empirical studies, we know
our model has improvement over existing models when we
introduce a threshold effect for the considered data.
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APPENDIX

A.1 Assumptions and lemma

We make the following assumptions for model (2).

Assumption 1. The series {yt} generated from model (2)
is strictly stationary and geometrically ergodic for the con-
sidered parameter space Ψ.

Assumption 2. The i.i.d (0, 1) process {et} satisfies Ee4t <
∞, and is absolutely continuous with a continuous symmet-
ric probability density function which is positive everwhere.

Assumption 3. The process {yt} is ρ-mixing with an ex-
ponential decreasing rate, i.e., there exists a μ between 0
and 1 such that ρ(m) = O(μm),m ∈ N , where ρ(m) =
sup |corr(f, g)|, the supremum being over all square inte-
grable f and g which are measurable with respect to {yt, t ≤
0} and {yt, t ≥ m}, respectively.

Remark 3. For judging the geometrical ergodicity re-
quired in Assumption 1, we can make use of Cline and Pu
(2004)(e.g., Corollary 2.2, Theorem 3.5 and Example 4.1);
Part of the conditions in the Assumptions 2–3 have also
been adopted by Chan (1990) to weaken the condition of
normality.

Lemma. Denote LT (ψ) as a function of the observations
y1, . . . , yT and the parameter ψ ∈ Ψ ⊆ Rk. Suppose ψ0 is an
interior point of Ψ. Assume LT (.) : R

k → R is three times
continuously differentiable in ψ and that

A1 As T → ∞,
√
T∂LT (ψ0)/∂ψ

L−→ N(0,ΩS),ΩS > 0.

A2 As T → ∞, ∂2LT (ψ0)/∂ψ∂ψ
τ p−→ ΩI > 0.

A3 maxi,j,k=1,...,p+2 supψ∈N(ψ0) |∂3LT (ψ)/∂ψi∂ψj∂ψk| ≤
cT .

Here N(ψ0) is a neighborhood of ψ0 and 0 ≤ cT
p−→

c, 0 < c < ∞. Then there exists a fixed open neighborhood

U(ψ0) ⊆ N(ψ0) such that

B1 As T → ∞, with probability one that there exists a

minimum point ψ̂T of LT (ψ) in U(ψ0) and LT (ψ) is

convex in U(ψ0). Moreover, ψ̂T is unique and solves

∂LT (ψ̂T )/∂ψ = 0.

B2 As T → ∞, ψ̂T − ψ0
p−→ 0,

√
T (ψ̂T − ψ0)

L−→
N(0,Ω−1

I ΩSΩ
−1
I ).

Proof. See Lemma 1 in Jensen and Rahbek (2004).

A.2 Proof of Theorem 2.1

Let

L∗
T (ψ) =

1

T

T∑
t=1

[
log ht +

ε2t
ht

]
=

1

T

T∑
t=1

l∗t (ψ),(17)

and it can be shown:

∂l∗t
∂ψ

=

(
1− ε2t

ht

)
1

ht

∂ht

∂ψ
+

2εt
ht

∂εt
∂ψ

,(18)

∂2l∗t
∂ψ∂ψτ

=
1

h2
t

(
ε2t
ht

− 1

)
∂ht

∂ψ

∂ht

∂ψτ

− 2εt
h2
t

∂ht

∂ψ

∂εt
∂ψτ

+
ε2t
h3
t

∂ht

∂ψ

∂ht

∂ψτ

+
2

ht

∂εt
∂ψ

∂εt
∂ψτ

− 2εt
h2
t

∂εt
∂ψ

∂ht

∂ψτ
,(19)

and

∂3l∗t
∂ψi∂ψj∂ψk

=

[
2

(
1− 3ε2t

ht

)
1

h3
t

∂ht

∂ψi

∂ht

∂ψj

∂ht

∂ψk

]

+

[(
4εt
h3
t

∂ht

∂ψi

∂ht

∂ψj

∂εt
∂ψk

+
4εt
h3
t

∂ht

∂ψi

∂εt
∂ψj

∂ht

∂ψk

+
4εt
h3
t

∂εt
∂ψi

∂ht

∂ψj

∂ht

∂ψk

)]
−

[(
2

h2
t

∂ht

∂ψi

∂εt
∂ψj

∂εt
∂ψk

+
2

h2
t

∂εt
∂ψi

∂εt
∂ψj

∂ht

∂ψk
+

2

h2
t

∂εt
∂ψi

∂ht

∂ψj

∂εt
∂ψk

)]
�
= l1t + l2t − l3t.(20)

Here, lit, i = 1, 2, 3 mean the corresponding quantities ex-

pressed in the above three square brackets. To prove Theo-

rem 2.1, we just need to verify A1–A3 described in the above

lemma.
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Recall ht = ht(ψ), εt = εt(ψ), h0t = ht(ψ0), ε0t = εt(ψ0),
ς = Ee4t − 1. From the above (17–18), we know

√
T
∂L∗

T (ψ0)

∂ψ

=
1√
T

T∑
t=1

[(
1− ε20t

h0t

)
1

h0t

∂ht

∂ψ
+

2ε0t
h0t

∂εt
∂ψ

]

�
=

1√
T

T∑
t=1

St.

Consider any non-zero vector c = (c1, . . . , cq)
τ , q = 2p+m+

3, we have

√
Tcτ

∂L∗
T (ψ0)

∂ψ
=

T∑
t=1

(
1√
T
cτSt

)
�
=

T∑
t=1

Wt.

Given the information set up to time t − 1, Ft−1 =
σ(et−1, . . . , e1, y0, . . . , y−m+1), then we know {Wt} is a mar-
tingale difference with respect to the information set and
E(W 2

t |Ft−1) = cτ 1
T E(StS

τ
t |Ft−1)c. It is not difficult to get

E(StS
τ
t |Ft−1) =

ς

h2
0t

∂ht

∂ψ

∂ht

∂ψτ
+

4

h0t

∂εt
∂ψ

∂εt
∂ψτ

�
= ΩS,t.(21)

Consequently, we have

T∑
t=1

E(W 2
t |Ft−1) = cτ

(
1

T

T∑
t=1

ΩS,t

)
c

p→ cτΩSc,

where

(22) ΩS = E(ΩS,t) = E(
ς

h2
0t

∂ht

∂ψ

∂ht

∂ψτ
+

4

h0t

∂εt
∂ψ

∂εt
∂ψτ

).

Furthermore, given any δ > 0, we have

T∑
t=1

E
[
W 2

t I(|Wt| ≥ δ)
]

=
1

T

T∑
t=1

E
[
cτStS

τ
t cI(|cτStS

τ
t c| ≥ δ2T )

]
= E

[
cτS1S

τ
1 cI(|cτS1S

τ
1 c| ≥ δ2T )

]
−→ 0.

The above limit can be explained by the fact that EΩS,t <
∞. By the martingale central limit theorem, see, for exam-
ple, Theorem 35.12 in Billingsley (1995), we proved that∑T

t=1 Wt
L→ N(0, cτΩSc), which means

√
T
∂L∗

T (ψ0)

∂ψ

L−→ N(0,ΩS),(23)

namely condition A1 is satisfied.

Applying the double expectation formula we can get

E

(
∂2l∗t (ψ0)

∂ψ∂ψτ

)
= E

(
1

h2
0t

∂ht

∂ψ

∂ht

∂ψτ
+

2

h0t

∂εt
∂ψ

∂εt
∂ψτ

)
�
= ΩI ,

(24)

∂2L∗
t (ψ0)

∂ψ∂ψτ
=

1

T

T∑
t=1

∂2l∗t (ψ0)

∂ψ∂ψτ

p−→ ΩI ,

which means A2 holds.
For each ψ ∈ Ψ, from (6) and (20) it is not difficult to

show there exist finite positive constants C1, C2, C3 satisfy-

ing |l1t| ≤ C1(1+
ε2t
ht
), |l2t| ≤ C2(1+

ε2t
ht
), |l3t| ≤ C3. Similar to

the proof of (ii) in Ling’s (2007) lemma B.2, we can further
show that there are two constants C4, C5 depending only

on the parametric space Ψ such that 1 + supψ∈Ψ
ε2t (ψ)
ht(ψ) ≤

C4e
2
t + C5. Put wt = (C1 + C2)(C4e

2
t + C5) + C3. Then we

know wt is a stationary, nonnegative series and satisfies

max
i,j,k=1,...,p+2

sup
ψ∈N(ψ0)

∣∣∣∣ ∂3L∗
T (ψ)

∂ψi∂ψj∂ψk

∣∣∣∣ ≤ 1

T

T∑
t=1

wt
p−→ Ewt < ∞.

Hence A3 is satisfied. In conjunction with (22) and (24), we
establish Theorem 2.1.

A.3 Proof of Theorem 2.2

Define

η∞ = T− 1
2
∂LT (ψ)

∂θ
=

1√
T

T∑
t=1

[
− εt
ht

∂εt
∂θ

]
,

and let ur = (ητ∞, ητr )
τ , c∗ = (cτ1 , c

τ
2). Here, c∗ is any

nonzero constant vector and c1 = (c10, . . . , c1p)
τ , c2 =

(c20, . . . , c2p)
τ . Consider

c∗τur = cτ1η∞ + cτ2ηr

=
T∑

t=1

1√
T

[
− εt
ht

(cτ1
∂εt
∂θ

+ cτ2
∂εt
∂φ

)

]
=

T∑
t=1

Ut,

then we know {Ut} is a martingale difference with respect
to Ft−1. Using analogous discussion to (23), we can show

ur
L→ N

{
0,

(
C Lr

Lτ
r Cr

)}
.

Hence, on condition that η∞ = 0, we have

ηr
L→ N

{
0,

(
Cr − Lτ

rC
−1Lr

)}
.

For r �= s, let ur,s = (ητ∞, ητr , η
τ
s )

τ , then it can be similarly
obtained that

ur,s
L→ N

⎧⎨
⎩0,

⎛
⎝C Lr Ls

Lτ
r Cr Cmin(r,s)

Lτ
s Cτ

min(r,s) Cs

⎞
⎠
⎫⎬
⎭ ,
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and conditionally, (ηr, ηs)
′
converges in distribution to

N

{
0,

(
Cr Cmin(r,s)

Cτ
min(r,s) Cs

)
−

(
Lτ
r

Lτ
s

)
C−1

(
Lr Ls

)}
.

Hence, (ηr, ηs) asymptotically follows a joint normal distri-
bution with the covariance being Cmin(r,s) − Lτ

rC
−1Ls.

Let b > 0, Dk(−∞,∞)(Dk[−b, b]) denote the function
spaces with each element f : R([−b, b]) −→ Rk be-
ing right continuous and having left-hand limit. Equip
Dk(−∞,∞)(Dk[−b, b]) with the topology of uniform conver-
gence over compact sets. Let Ck(−∞,∞) be the subspace of
Dk(−∞,∞) consisting of functions continuous everywhere.
More details on these spaces can be found in Pollard (1984).
Now, {ηr,−∞ < r < ∞} lives on Dq+1(−∞,∞).

Subsequently, we show that ηr converges weakly to {ξr}
in Dp+1(−∞,∞) and each realization of {ξr} belongs to
Cp+1(−∞,∞) almost surely. It suffices to verify the tight-
ness of {ηr,−b ≤ r ≤ b} componentwise. Without loss of
generality, consider the last component of {ηr,−b ≤ r ≤ b}.
It is tight if and only if

gT (r) =
1√
T

T∑
t=1

[
εt
ht

yt−pI(yt−d ≤ r)

]

is tight.
Let −b ≤ s ≤ r ≤ b be two arbitrary numbers, Mi,Ki

(i=1, 2) be constants independent of T . Then

gT (r)− gT (s) =
1√
T

T∑
t=1

[
εt
ht

yt−pI(s < yt−d ≤ r)

]
.

For i = 1, . . . , p, δ = 1, 2, 3, 4, note d, p ≤ m, y2t−i/ht = O(1),
then we have

E

{∣∣∣∣ εtht
yt−iI(s < yt−d ≤ r)

∣∣∣∣
δ
}

≤ E

{
(1 +

y4t−i

h2
t

)I(s < yt−d ≤ r)E

(
(1 +

ε4t
h2
t

)|Ft−1

)}
≤ M1E {I(s < yt−d ≤ r)} ≤ M2(r − s).(25)

Let ζt =
1√
T

εt
ht
yt−pI(s < yt−d ≤ r). Applying the Assump-

tion 3 and Lemma 3.6 in Peligrad (1982), we have

E|gT (r)− gT (s)|4 ≤ K1(T
1
4 ||ζt||4 + T

1
2 ||ζt||2)4

≤ K2[(r − s)/T + (r − s)2].(26)

Here ||.||δ means the usual Lδ norm. The second line in the
above inequalities follows from (25). For [−b, b], consider a
partition {−b = r0 < r1 < · · · < rL = b} with u > 0, rj =
rj−1 + u, 0 ≤ j ≤ L− 1 and rL − rL−1 ≤ u. Define

κt,i =
1√
T

|εtyt−p|
ht

I(ri−1 < yt−d ≤ ri),

then, ∀i, for ri−1 ≤ r ≤ ri, we have

|gT (r)− gT (s)| ≤
T∑

t=1

κt,i.(27)

Based on (25), it is not difficult to show

sup
i

T∑
t=1

κt,i = uOp(
√
T ).(28)

In terms of (26–28), by applying the similar discussion used
in the proof of Theorem 22.1 in Billingsley (1968), we can
show the tightness of {gT (r),−b ≤ r ≤ b}.
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