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Threshold variable selection via a L1 penalty
approach∗

Qian Jiang and Yingcun Xia
†

Selecting the threshold variable is a key step in building
a general threshold autoregressive (TAR) model. Based on
a general smooth threshold autoregressive (STAR) model,
we propose to select the threshold variable by the recently
developed L1-penalizing approach. Moreover, by penalizing
the direction of the coefficient vector instead of the coeffi-
cients themselves, the threshold variable is more accurately
selected. Oracle properties of the estimator are obtained.
Its advantage is shown with both numerical and real data
analysis.
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1. INTRODUCTION

Tong’s threshold autoregressive (TAR) model (see, e.g.,
Tong and Lim, 1980) is one of the most popular models in
the analysis of time series in biology, finance, economy and
many other areas. It assumes different AR models in dif-
ferent regions of the state space divided according to some
threshold variable yt−d, d ≥ 1. A typical two-regime thresh-
old autoregressive (TAR) model is

yt = a0 +

p∑
j=1

ajyt−j +

(
b0 +

p∑
j=1

bjyt−j

)
Ir(yt−d) + εt,

where Ir is an indicator function such that

Ir(x) =

{
1 if x > r
0 if x ≤ r.

In Chan and Tong (1986, esp., P187), a more data driven
model, smooth threshold autoregressive (STAR) model of
the form

yt = a0 +

p∑
j=1

ajyt−j +

(
b0 +

p∑
j=1

bjyt−j

)
F
(yt−d − r

c

)
+ εt
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was proposed, where F (.) is any sufficiently smooth function
with a rapidly decaying tail. However, the most commonly
discussed TAR or STAR models use one lagged value yt−d

as the threshold variable and most existing studies focus on
either model specification or parameter estimation with the
delay parameter d chosen by hypothesis testing. See, e.g.,
the van Dijk, Teräsvirta and Franses (2002) for a review.
It is obvious that the selection of the threshold variable is
essential in building a TAR model.

In this paper, we study the following STAR(p, q) model

yt =

(
a0 +

p∑
j=1

ajyt−j

)
(1)

+

(
b0 +

p∑
j=1

bjyt−j

)
Φ

(
θ0 +

q∑
j=1

θjyt−j

)
+ εt,

where we set F equal to the standard Gaussian distribution
for simplicity of discussion although this is not essential.
{εt} is assumed to be a white noise with finite variance σ2,
and be independent of the past observations {ys, s < t}. The
threshold variable zt = θ0+

∑q
j=1 θjyt−j is a linear function

of lagged endogenous variables.
One advantage of the proposed model is in the selection

of threshold variable. For example, if θk are all zeros except
for k = j, then the selected threshold variable is yt−j . We
have the following result about the stationarity of the model,
for which the proof can be found in the Appendix.

Lemma 1.1. If

sup
0≤u≤1

p∑
j=1

|aj + bju| < 1,(2)

there exists a strictly stationary solution {yt} from the
model (1).

We propose to use the recently developed L1 regulariza-
tion approaches which tend to produce a parsimonious num-
ber of nonzero coefficients for zt, thus leading to a simple
way of selecting the significant/threshold variables without
testing the 2q−1 subsets of {yt−1, yt−2, . . . , yt−q}. The lasso
penalty can perform model selection as well as estimation.
However, its variable selection may be inconsistent (see, e.g.,
[12]). Fan and Li (2001) proposes the SCAD penalty which
is shown to have oracle properties. But the concavity of the
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penalty function may result in a local minima problem. In
this paper, we adopt the adaptive lasso penalty proposed in
the paper of Zou [12], which is convex and leads to a vari-
able selection estimator with the oracle properties. More-
over, we propose a direction adaptive lasso method. By pe-
nalizing the direction of the coefficient vector instead of the
coefficients themselves, the threshold variable is more accu-
rately selected, especially when the sample size is not large
enough. Note that the norm of the coefficient vector implies
the threshold shape, which should not be penalized. Our pe-
nalization on the direction can achieve this goal while the
direct penalization on the coefficient cannot. Both numerical
and real data analysis are provided to illustrate its advan-
tage. The oracle properties of the resulting estimators are
also obtained.

The rest of the article is organized as follows. In Sec-
tion 2 we derive the consistency and asymptotic normality
of the conditional LS estimator. In Section 3 we propose to
use the adaptive lasso method to select the threshold vari-
able and estimate the unknown parameters simultaneously.
As in the regression case, the adaptive lasso estimator has
the oracle properties. In Section 4, we propose the direc-
tion adaptive lasso method and show its oracle properties.
Section 5 is devoted to simulation and real data analysis.
The study compares the LS estimator, adaptive lasso esti-
mator and the proposed direction adaptive lasso estimator
in two data generating processes and one real data set: the
Canadian Lynx Data.

2. THE CONDITIONAL LEAST SQUARES
ESTIMATOR

Let a = (a0, a1, . . . , ap)
�, b = (b0, b1, . . . , bp)

�, θ =
(θ0, θ1, . . . , θq)

�, we rewrite model (1) as

yt = x�
t a+ (x�

t b)Φ(s
�
t θ) + εt,(3)

where

x�
t = (1, yt−1, . . . , yt−p), s

�
t = (1, yt−1, . . . , yt−q),

for t = m + 1, . . . , T and m = max(p, q). The unknown pa-
rameters η = (a�, b�, θ�)� = (η1, . . . , ηL)

� (L = 2p+q+3)
is assumed to be in an open set Θ of R⊗(2p+q+3). Denote
θ = (θ0, ϑ

�)� = (θ0, θ1, . . . , θq)
� with ϑ = (θ1, . . . , θq)

� ∈
R

q and the true value ϑ0 = (θ10, . . . , θq0)
�. Denote the true

value of η by η0 = (a�
0 , b

�
0 ,θ

�
0 )

�. For ease of exposition, we
use the boldfaced letter to denote a vector if there exists
the same notation for a scalar. For example, a0 denotes the
true value of the vector a = (a0, a1, . . . , ap)

� and θ0 denotes
the true value of vector θ = (θ0, θ1, . . . , θq)

�. Let K be the
index set of those j ∈ I ≡ {1, . . . , q} with θj0 �= 0 and κ be
the number of components of K and denote K̄ = I\K.

For each t, we refer to the lagged variables of yt in the
set {yt−j , j ∈ K} as the significant threshold variables and
define the transition variable zt as

zt = s�t θ = θ0 + θ1yt−1 + · · ·+ θqyt−q.(4)

Denote by Ft = σ(y1, . . . , yt) (t ≥ 1) the σ−field generated
by ys, 1 ≤ s ≤ t and by F0 the trivial σ−field. Define

lt = (1, l̃�t )
�, l̃t = (yt−1, . . . , yt−m)�(5)

and

g(η, l̃t) = g(η,Ft−1) ≡ Eη(yt|Ft−1)

= x�
t a+ (x�

t b)Φ(s
�
t θ), t ≥ 1.

Given a set of observations {y1, . . . , yT }, the conditional
least squares (LS) estimator minimizes the objective func-
tion

QT (η) =

T∑
t=m+1

(yt − Eη(yt|Ft−1))
2(6)

=

T∑
t=m+1

{
yt − x�

t a− (x�
t b)Φ(s

�
t θ)

}2
,

with respect to η. Let ηLS
T denote the least squares estima-

tor.

Theorem 2.1. If {yt} is a stationary ergodic sequence of
integrable variables and l̃0 has a positive density function
almost everywhere, then as T → ∞,

ηLS
T → η0, a.s.(7)

and

T 1/2(ηLS
T − η0) ⇒ N(0, σ2U−1),(8)

where

U ≡ Eη0

(
∂g(l̃t, η0)

∂η
· ∂g(l̃t, η0)

∂η�

)
(9)

= Eη0

(
∂g(l̃0, η0)

∂η
· ∂g(l̃0, η0)

∂η�

)

is positive definite.

Remark 2.2. Using the Fisher information matrix I(η),

I(η) = Eη

{
∂ log f

∂η
· ∂ log f

∂η�

}
(10)

=
1

σ2
Eη

{
∂g(l̃t, η)

∂η
· ∂g(l̃t, η)

∂η�

}
,

where f = (
√
2πσ)−1 exp{− ε2t

2σ2 }, the result of the theorem
2.1 can be written as

T 1/2(ηLS
T − η0) ⇒ N(0, I−1(η0)).(11)
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3. THE ADAPTIVE LASSO ESTIMATOR

In this section, we shrink the unnecessary coefficients of
the transition variable zt to 0 and select the true threshold
variables by the adaptive lasso approach proposed by Zou
[12]. We use ηADL

T to denote the adaptive lasso estimator of
η which minimizes

QADL
T (η) = QT (η) + λT

q∑
j=1

ŵj |θj |,(12)

where the weight ŵj is the reciprocal of an increasing func-
tion of the corresponding LS estimate of θj , i.e., ŵj =
1/|θLS

j |γ , λT > 0, γ > 0 are two nonnegative tuning pa-
rameters.

Let KADL
T = {j : θADL

j �= 0, 1 ≤ j ≤ q}, where θADL
j

is the adaptive lasso estimate of θj . Recall that K = {1 ≤
j ≤ q : θj0 �= 0} and κ = |K|. That is, the correct model
has κ significant threshold variables. For any vector/matrix
A, denote by A(K) a sub-vector/sub-matrix of A formed by
the elements at K’th rows (and K’th columns) of A. For
example, if A = (aij)1≤i,j≤5 and K = {1, 3}, then A(K) =
(aij)i,j=1,3.

Theorem 3.1. Suppose that λT√
T

→ 0, and λTT
γ−1
2 → ∞.

Then the adaptive lasso estimates ηADL
T satisfy the following

oracle properties:

1. Consistency in variable selection:

lim
T→∞

P (KADL
T = K) = 1.

2. Asymptotic normality:
√
T (ηADL

T,(K) − η0,(K)) ⇒ N2p+κ+3

(
0, I−1(η0,(K))

)
.

The second part of Theorem 3.1 implies that the final
estimator can achieve the efficiency of the estimator when
the true threshold variables are known and estimated with
irrelevant variables being removed. Thus, as in the literature
estimator ηADL

T has the so-called oracle property.

4. THE DIRECTION ADAPTIVE LASSO
ESTIMATOR

As c → +∞, the function Φ(c(x− r)) approaches to the
indicator function

Ir(x) =

{
1 if x > r,
0 if x ≤ r,

which is the threshold principle of the classical two-regime
TAR model. However, in the STAR(p, q) model (1), when
the length of the vector ϑ = (θ1, . . . , θq)

� is large, pe-

nalizing θ̃j ≡ θj/‖ϑ‖ instead of θj seems more desirable
(j = 1, 2, . . . , q) than penalizing the coefficient vector since
the latter also penalizes the length of the coefficients, which
plays the role of c.

We call the estimator by adaptively penalizing the direc-
tion of coefficient vector the direction adaptive lasso estima-
tor and denote it as ηDAL

T , which minimizes

QT (η) + λT

q∑
j=1

w̃j |θ̃j | = QT (η) +
λT

l(ϑ)

q∑
j=1

w̃j |θj |,(13)

where l(ϑ) =
√
θ21 + · · ·+ θ2q , the new weight w̃j is the re-

ciprocal of an increasing function of the corresponding LS
estimate of θ̃j , i.e.,

w̃j = 1/|θ̃LS
j |γ =

lγ(θLS
T )

|θLS
j |γ ,

and λT > 0, γ > 0 are two nonnegative tuning parameters.
The oracle properties of ηADL

T are provided by the fol-
lowing theorem.

Lemma 4.1. As T → ∞, ϑ̃LS
T , the LS estimator of ϑ̃ sat-

isfies

ϑ̃LS
T → ϑ̃0, a.s.

and

T 1/2(ϑ̃LS
T − ϑ̃0) ⇒ N(0, Σ̃),

where ϑ̃0 = ϑ0/l(ϑ0) and

Σ̃ = (ϑ�
0 ϑ0)

−1(Iq − ϑ̃0ϑ̃
�
0 )I

−1(ϑ0)(Iq − ϑ̃0ϑ̃
�
0 )

is a non-negative definite matrix with rank q−1. Here, Iq is
the q × q identity matrix, I−1(ϑ0) is submatrix composed of
the last q rows and the last q columns of the inverse matrix
of I(η0) defined in (10).

Denote KDAL
T = {j : θ̃DAL

j �= 0, 1 ≤ j ≤ q}, where θ̃DAL
j

is the adaptive lasso estimate of θ̃j .

Theorem 4.2. Suppose that λT√
T

→ 0, and λTT
γ−1
2 → ∞.

Then the direction adaptive lasso estimates ηDAL
T satisfy the

following oracle properties:

1. Consistency in variable selection:

lim
T→∞

P (KDAL
T = K) = 1.

2. Asymptotic normality:

√
T (ηDAL

T,(K) − η0,(K)) ⇒ N2p+κ+3

(
0, I−1(η0,(K))

)
.

Under the same condition as the adaptive lasso method,
Theorem 4.2 indicates that the proposed direction adaptive
lasso also selects the correct subset of threshold variables
consistently. From the asymptotic normality, the method
can estimate the non-zero parameters efficiently as if we
knew in advance which variables were uninformative and
were removed.
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5. COMPUTATIONAL ISSUES

For the adaptive lasso and direction adaptive lasso esti-
mator, we apply the local quadratic approximation (LQA)
proposed in Fan and Li (2001) to our implementation. Sup-
pose we have an initial value θ0 = (θ00, θ01, . . . , θ0q)

� that is
close to the optimization solution, except for a constant, we
can equivalently get the adaptive lasso estimator through
minimizing

QT (η) +
λT

2
θ�Σθ,

and get the direction adaptive lasso estimator through min-
imizing

QT (η) +
λT

2l(θ)
θ�Σθ,

where Σ ≡ Σ(θ0) = diag(v) with θ0 being the value of the
last step, and for the adaptive lasso,

v = (0, w1/|θ01|, . . . , wq/|θ0q|)�, wi = 1/|θLS
i |γ ,

for the direction adaptive lasso,

v = (0, w̃1/|θ01|, . . . , w̃q/|θ0q|)�, w̃i = 1/|θ̃LS
i |γ .

Remark 5.1. Under the assumption that θ0 �= 0, the tran-
sition variable

zt = θ0 + θ1yt−1 + · · ·+ θqyt−q(14)

can also be equivalently written as

zt =
1 + τ1yt−1 + · · ·+ τqyt−q

c
(15)

with

c = 1/θ0, τj = θj/θ0, j = 1, . . . , q.

In the numerical experiments, we use this form to evaluate
the estimation accuracy.

Specifically, when we evaluate the MSE of the estimate
of θ̂ = (θ̂0, θ̂1, . . . , θ̂q)

�, we use (τ̂ , ĉ) = (τ̂1, . . . , τ̂q, ĉ)
instead. That is, we evaluate the deviation of (τ̂ , ĉ)
from the true value (τ0, c0) with τ0 = (τ10, . . . , τq0) =
(θ10/θ00, . . . , θq0/θ00) and c0 = 1/θ00.

M -folder cross validation (CV) and Bayesian information
criterion (BIC) are used to select the tuning parameter ρ =
(λ, γ) and γ ∈ {0.5, 1, 2} which is consistent with the choice
of γ in Zou [12]. For the BIC, the criterion is

BICρ = log(RSSρ) + df(ρ)× log(T −m)

T
,

where

RSSρ = T−1
T∑

t=m+1

{
yt − x�

t a− (x�
t b)Φ(s

�
t θ)

}2

and df(τ) = 2p+ 3 + q̂ with q̂ being the number of nonzero
coefficients identified by the estimate. For the M -folder CV,
denote the full data set by T, and denote the cross-validation
training and test set by T − T ν and T ν , ν = 1, . . . ,M, re-
spectively. For each ρ and ν, we find the estimate using the
training set and find a ρ that minimizes

CV (ρ) =
M∑
ν=1

∑
yk∈T ν

(yk − ŷk)
2,

where ŷ is the corresponding fitted value.

6. NUMERICAL EXPERIMENTS

Our aim of numerical experiments is to show the perfor-
mance of using the L1-penalization to select the threshold
variables. Moreover, the finite sample performance of the
LS estimator, adaptive lasso estimator and the proposed
direction adaptive lasso estimator are also compared. We
summarize the results in the following aspects. (1) Estima-
tion accuracy. Mean squared error (MSE) is examined. For
r = 1, . . . , R, let

MSEr =

p∑
i=0

(âri − ai0)
2 +

p∑
i=0

(b̂ri − bi0)
2

+

q∑
i=1

(τ̂ ri − τi0)
2 + (ĉr − c0)

2.

and MSE=
∑R

r=1 MSEr/R. The standard deviation MSEr

over the R simulation replications is also measured. (2) The
average number of correctly selected 0 coefficients of the
threshold variable.

We use the following three setups for tuning parameter
selection.

Setup 1 Two folder CV.
λ take a set of values with exponentially increasing
gaps, say, λ = ndb, db = lb+ (N − 1)d, with lb > 0, d =
ub−lb
N−1 , ub < 0.5, where the integer N is the number of
choices of λ, and lb and ub are chosen such that (λ, γ)
satisfies

λ√
n
→ 0,

λ√
n
· nγ/2 → ∞.

as n → ∞.
Setup 2 Five folder CV and λ = 0.5i, i = 1, 2, . . . , 20.
Setup 3 BIC and λ = 0.5i, i = 1, 2, . . . , 20.

Example 6.1. In the simulation, the following two STAR
models

Model 1: p = 2, q = 2, the true threshold variable set is
{yt−2} ⊆ {yt−1, yt−2}. The model is

yt = (8− 0.4yt−1 + 0.5yt−2)

+ (−10 + 0.3yt−1 − 0.4yt−2)Φ(−5 + 6yt−2) + εt.
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Table 1.1. Estimation results for Model 1 under Setup 1

n Method MSE S.d. Avg. no. of 0 coeff.

50 LS 5.0885 230.7513 0
AL 1.3200 46.6351 0.56
DAL 0.6407 27.2812 0.76

100 LS 1.1944 58.5926 0
AL 0.1322 1.3404 0.58
DAL 0.2261 5.9606 0.66

200 LS 0.0446 0.4138 0
AL 0.0353 0.2849 0.74
DAL 0.0401 0.3846 0.84

500 LS 0.0113 0.0962 0
AL 0.0108 0.0946 0.76
DAL 0.0111 0.0964 0.78

Table 1.2. Estimation results for Model 1 under Setup 2

n Method MSE S.d. Avg. no. of 0 coeff.

50 LS 4.2117 224.9379 0
AL 1.1895 35.3070 0.58
DAL 0.4380 8.1961 0.72

100 LS 45.8695 2908.6 0
AL 0.2163 6.7845 0.62
DAL 0.1372 2.5903 0.70

200 LS 0.0499 0.8037 0
AL 0.0398 0.3985 0.60
DAL 0.0427 0.5044 0.64

Model 2: p = 2, q = 4, the true threshold variable set is
{yt−1, yt−3} ⊆ {yt−1, yt−2, yt−3, yt−4}. The model is

yt = (2 + 0.5yt−1 − 0.4yt−2) + (−1.5− 0.4yt−1

+ 0.2yt−2)Φ(−10 + 5yt−1 + 3yt−3) + εt,

where εt is simulated from N(0, 1). In the second model
setup, we let the order q = 4 which is bigger than the largest
lag of the true threshold variables.

A total of 50 simulation replications are conducted for
each model setup. For every simulated data, we find the LS,
adaptive lasso and the direction adaptive lasso estimates.
The calculation results are summarized in Tables 1 and 2.
We can see from Tables 1.1, 1.2, 2.1 and 2.2 that the DAL
method can indeed improve the estimation efficiency over
the direct adaptive Lasso method. The DAL method is also
more powerful in eliminating the unimportant variables.

Example 6.2 (The Canadian Lynx data). To further illus-
trate the performance of the proposed method in selecting
the threshold variable set, we examine one popular studied
real data set. Following Tong (1990), we transform the data
by taking base-10 logarithm to the original data, and de-
noted the transformed time series by yt. Now assume that
the time series follows the STAR(p,q) model. Applying dif-
ferent estimation methods to the data, we have the results
listed in Table 3.

Both biological facts and previous statistical data anal-
ysis suggest that the significant threshold variable can be
yt−2 or yt−3 or both. (See, e.g., Tong [9] section 7.2, Fan and
Yao [4]). Both the adaptive Lasso and the direction adaptive
Lasso tend to lend support to the above suggestion.

APPENDIX A. PROOFS

Proof of Lemma 1.1. For x = (x1, . . . , xm)�, m =
max(p, q), denote Φ(x) = Φ(θ0 +

∑q
j=1 θjxj) thus 0 ≤

Φ(x) ≤ 1 and we have

|g(η, x)| =
∣∣∣∣∣
(
a0 +

p∑
j=1

ajxj

)
+

(
b0Φ(x) +

p∑
j=1

bjΦ(x)xj

)∣∣∣∣∣
=

∣∣∣∣∣(a0 + b0Φ(x)) +

p∑
j=1

(aj + bjΦ(x))xj

∣∣∣∣∣
≤ |a0 + b0Φ(x)|+

∣∣∣∣∣
p∑

j=1

(aj + bjΦ(x))xj

∣∣∣∣∣
≤

p∑
j=1

|aj + bjΦ(x)||xj |+ C

≤
p∑

j=1

|aj + bjΦ(x)|max{|x1|, . . . , |xp|}+ C

When

sup
0≤u≤1

p∑
j=1

|aj + bju| < 1,

the model is geometrically ergodic by the Theorem 3.2 of An
and Huang (1996). Hence, there exists a stationary distribu-
tion F such that the time series yt given by (1) and initiated
at l̃0 = (y−1, . . . , y−m+1)

� ∼ F is strictly stationary.

Proof of Theorem 2.1. The proof that U is positive definite
is the same as the proof given by Chan and Tong (1986) in
its Appendix II, we thus omit it here.

To show the consistency and asymptotic normality, we
follow from the standard method proposed in Klimko and
Nelson [8].

First, note that ηLS
T is actually obtained by solving the

equations

∂QT (η)

∂ηj
= 0, j = 1, 2, . . . , L,(16)

and if we denote the difference ut(η) by

ut(η) = yt − g(η,Ft−1),

then {ut(η0)} is a sequence of martingale differences.
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Table 2.1. Estimation results for Model 2 under Setup 1

Estimation accuracy Model complexity

n Method MSE S.d. θ̂2 = 0 θ̂4 = 0 θ̂2 = 0

Avg. 0 no. and θ̂4 �= 0 and θ̂2 �= 0 and θ̂4 = 0

50 LS 0.1136 1.0532 0 – – –
AL 0.5348 14.2598 0.88 0.30 0.14 0.22
DAL 0.1828 4.9394 1.44 0.14 0.14 0.58

100 LS 0.0677 0.7656 0.02 0.02 0 0
AL 0.2207 5.3545 0.92 0.28 0.16 0.24
DAL 0.0710 0.9065 1.3 0.08 0.10 0.56

200 LS 0.0274 0.2856 0 – – –
AL 0.0882 1.6219 1.32 0.26 0.10 0.48
DAL 0.0302 0.3619 1.68 0.10 0.06 0.76

500 LS 0.0098 0.0795 0.02 0 0.02 0
AL 0.0124 0.1393 1.50 0.14 0.08 0.64
DAL 0.0103 0.1007 1.82 0.04 0.10 0.84

Table 2.2. Estimation results for Model 2 under Setup 3

Estimation accuracy Model complexity

n Method MSE S.d. θ̂2 = 0 θ̂4 = 0 θ̂2 = 0

Avg. 0 no. and θ̂4 �= 0 and θ̂2 �= 0 and θ̂4 = 0

50 LS 0.1531 2.6703 0.02 0 0.02 0
AL 9.2426 596.30 1.28 0.22 0.18 0.44
DAL 0.1932 3.2533 1.62 0.16 0.06 0.70

100 LS 0.0678 0.7654 0 – – –
AL 0.0801 1.0342 1.28 0.12 0.24 0.46
DAL 0.0683 0.8363 1.72 0.06 0.10 0.78

200 LS 0.0293 0.3022 0 – – –
AL 0.0302 0.3418 1.52 0.16 0.12 0.62
DAL 0.0299 0.3301 1.82 0.12 0.02 0.84

Table 3. Results for Example 6.2 under Setup 1

p q Method threshold variable(s) p q Method threshold variable(s)

2 2 AL yt−2 3 2 AL yt−2

DAL yt−2 DAL yt−2

3 AL yt−1, yt−2, yt−3 3 AL yt−2

DAL yt−1, yt−3 DAL yt−2

4 AL yt−2, yt−4 4 AL yt−1, yt−2, yt−3

DAL yt−2 DAL yt−3

5 AL yt−2, yt−4 5 AL yt−2, yt−3, yt−4

DAL yt−2 DAL yt−2

4 2 AL yt−2 5 2 AL yt−2

DAL yt−2 DAL yt−2

3 AL yt−3 3 AL yt−2

DAL yt−3 DAL yt−2

4 AL yt−3 4 AL yt−3

DAL yt−3 DAL yt−3

5 AL yt−3 5 AL yt−3

DAL yt−3 DAL yt−3
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Now, we expand T−1/2∂QT (η)/∂η in a Taylor series at
η0 and suppose that ηLS

T satisfies (16), we have

0 = T− 1
2
∂QT (η

LS
T )

∂η

(17)

= T− 1
2
∂QT (η0)

∂η
+ T−1(UT +DT (η

∗)) · T 1
2 (ηLS

T − η0),

where

UT ≡ ∂2QT (η0)

∂η∂η�
,

DT (η
∗) ≡ ∂2QT (η

∗)

∂η∂η�
− UT(18)

=
∂2QT (η

∗)

∂η∂η�
− ∂2QT (η0)

∂η∂η�
,

and η∗ being an appropriate intermediate point between η0
and ηLS

T .
We claim that

(2T )−1UT → U, a.s.(19)

In fact, denote (UT )ij as the (i, j)-th element of the matrix
UT , we have

1

2
(UT )ij =

(
T∑

t=m+1

∂g(l̃t, η0)

∂ηi
· ∂g(l̃t, η0)

∂ηj

)

−
(

T∑
t=m+1

∂2g(l̃t, η0)

∂ηi∂ηj
ut(η0)

)
.

By the strong law of large numbers for martingales, we get

1

T

T∑
t=m+1

∂2g(l̃t, η0)

∂ηi∂ηj
ut(η0) → 0, a.s.,(20)

and by the ergodic theorem we have

1

T

T∑
t=m+1

∂g(l̃t, η0)

∂ηi
· ∂g(l̃t, η0)

∂ηj
→ Uij a.s.,

thus

1

2T
(UT )ij → Uij , a.s.

Similar to (20), we have

1

T

∂QT (η0)

∂η
= − 2

T

T∑
t=m+1

∂g(l̃t, η0)

∂η
ut(η0) → 0, a.s.

Next, we show that for any δ > 0 such that ‖η∗−η0‖ ≤ δ,

lim
T→∞

sup
δ→0

|DT (η
∗)ij |

Tδ
< ∞, 1 ≤ i, j ≤ L, a.s.(21)

In fact,

|DT (η
∗)ij |

=

∣∣∣∣∂2QT (η
∗)

∂ηi∂ηj
− ∂2QT (η0)

∂ηi∂ηj

∣∣∣∣
≤

∣∣∣∣∣
T∑

t=m+1

{
∂g(l̃t, η

∗)

∂ηi
· ∂g(l̃t, η

∗)

∂ηj
− ∂g(l̃t, η0)

∂ηi
· ∂g(l̃t, η0)

∂ηj

}∣∣∣∣∣
+

∣∣∣∣∣
T∑

t=m+1

{
∂2g(l̃t, η0)

∂ηi∂ηj
ut(η0)−

∂2g(l̃t, η
∗)

∂ηi∂ηj
ut(η

∗)

}∣∣∣∣∣.
And from the Taylor expansion,

ut(η
∗) = ut(η0) +

∂g(l̃t, η0)

∂η�
(η0 − η∗)(1 + op(1)),

∂g(l̃t, η
∗)

∂ηi
=

∂g(l̃t, η0)

∂ηi
+

∂g2(l̃t, η0)

∂ηi∂η�
(η∗ − η0)(1 + op(1)),

and

∂2g(l̃t, η
∗)

∂ηi∂ηj
=

∂2g(l̃t, η0)

∂ηi∂ηj
+

∂3g(l̃t, η0)

∂ηi∂ηj∂η�
(η∗ − η0)(1 + op(1)).

Note that

∂g(l̃t, η0)

∂η
=

(
xt, xtΦt, (x

�
t b)ϕtst

)�
,

where Φt ≡ Φ(s�t θ), ϕt ≡ ϕ(s�t θ) with ϕ(·) being the stan-
dard normal pdf are both continuous for all η ∈ Θ. Since
{yt} is a stationary ergodic sequence of integrable variables,
ut(η0) is a sequence of martingale differences, by the mar-
tingale convergence theorem, it is easy to see that (21) is
satisfied.

The conditions of theorem 2.1 of [8] are thereby satisfied.
We get the strong consistency (7) from (19), (20) and (21)
by the theorem 2.1 of [8].

Next, we prove the asymptotic normality (8): T 1/2(ηLS
T −

η0) ⇒ N(0, σ2U−1).
In view of (17), (19) and the proved consistency result,

we only need to show that

1

2
T− 1

2
∂QT (η0)

∂η
⇒ N(0, σ2U).(22)

In fact, using the Cramer-Wold method, to show (22), it
suffices to prove ∀ h = (h1, . . . , hL)

� ∈ R
L,

1

2
T− 1

2h� ∂QT (η0)

∂η
⇒ N(0, v),(23)

where v = σ2Eη0(
∑L

k=1 hk
∂g(l̃t,η0)

∂ηk
)2. Note that ∂QT (η0)/

∂η = −2
∑T

t=m+1 ut(η0)∂g(l̃t, η0)/∂η, let

f1(l̃t, h, η) ≡ −
L∑

k=1

hk
∂g(l̃t, η)

∂ηk
,
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it follows that

1

2
T− 1

2h� ∂QT (η0)

∂η
= T− 1

2

T∑
t=m+1

f1(l̃t, h, η0)ut(η0).(24)

Define

Yt =
f1(l̃t, h, η0)ut(η0)

σ
√

Eη0(f
2
1 (l̃t, h, η0))

=
f1(l̃t, h, η0)ut(η0)√

v
,

V 2
T =

T∑
t=m+1

E(Y 2
t |Ft−1), σ2

T = EV 2
T ,

we claim that

(1) V 2
T /σ

2
T → 1 in probability. This is shown by

V 2
T =

T∑
t=m+1

E(Y 2
t |Ft−1) =

(
T∑

t=m+1

f2
1

)
/Ef2

1 , σ2
T = T−m

and the ergodic theorem.

(2) Lindeberg condition: for any ε > 0,

1

σ2
T

T∑
t=m+1

E(Y 2
t I(|Yt| ≥ εσT )) → 0

is satisfied. This is shown by noting that

YT,t ≡
Yt

σT
=

Yt√
T −m

=
f1(l̃t, h, η0)ut(η0)

√
T −mσ

√
E(f2

1 (l̃t, h, η0))
≤ C√

T −m
→ 0

as T → ∞ where C > 0 is some finite constant. By the
martingale CLT, we have

T∑
t=m+1

Yt/
√
T ⇒ N(0, 1)(25)

and (22) is proved.

We therefore complete the proof of consistency and
asymptotic normality of ηLS

T .

Remark A.1. The result (19) can be written as

(2T )−1

(
∂2QT (η0)

∂η∂η�

)
→ σ2I(η0), a.s.(26)

and the result (22) can be written as

1

2
T− 1

2
∂QT (η0)

∂η
⇒ N(0, σ4I(η0)).(27)

Proof of Theorem 3.1. The proof is an application of the
same method used to show the oracle properties of the adap-
tive lasso estimator in Zou [12] to our case.

Step 1. We first show the asymptotic normality.
Let η = η0 + u/

√
T , u = (u1, . . . , uL)

�, L = 2p + 3 + q,
and

ΨT (u) = QT (η0 + u/
√
T ) + λT

q∑
j=1

ŵj

∣∣∣θj0 + u2p+3+j√
T

∣∣∣.
Suppose ûT = argminu ΨT (u), then

ηADL
T = η0 + ûT /

√
T or ûT =

√
T (ηADL

T − η0)

since

ηADL
T = argminQT (η) + λT

q∑
j=1

ŵj |θj |.

Denote VT (u) ≡ ΨT (u)−ΨT (0), we have

VT (u) = {QT (η0 + u/
√
T )−QT (η0)}(28)

+

{
λT

q∑
j=1

ŵj

(∣∣∣∣θj0 + u2p+3+j√
T

∣∣∣∣− |θj0|
)}

≡ HT (u) + PT (u),

where the loss function term

HT (u) = QT (η0 + u/
√
T )−QT (η0)

and the penalty term

PT (u) = λT

q∑
j=1

ŵj

(∣∣∣∣θj0 + u2p+3+j√
T

∣∣∣∣− |θj0|
)
.

Note that

QT (η0 + u/
√
T )−QT (η0)

=
1√
T
u� ∂QT (η0)

∂η
+

1

2T
u� ∂2QT (η0)

∂η∂η�
u(1 + op(1)).

From the results (26) and (27), we know that as T → ∞,

1√
T

∂QT (η0)

∂η
⇒ W ∼ N(0, 4σ4I(η0))

and

1

2T

∂2QT (η0)

∂η∂η�
→ σ2I(η0) a.s.

Thus the loss function term

HT (u) ⇒ u�W + σ2u�I(η0)u.

Now we consider the limiting behavior of the penalty
term.
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If j ∈ K, i.e., θj0 �= 0, from the result of the theorem 2.1,

ŵj = 1/|θLS
j |γ → |θj0|−γ , a.s.

and

√
T

(∣∣∣∣θj0 + u2p+3+j√
T

∣∣∣∣− |θj0|
)

→ u2p+3+jsgn(θj0).

Since λT /
√
T → 0, we have

λT√
T
ŵj

√
T

(∣∣∣∣θj0 + u2p+3+j√
T

∣∣∣∣− |θj0|
)

→ 0.

If j ∈ K̄, i.e., θj0 = 0, then
√
T
(
|θj0 + u2p+3+j√

T
| − |θj0|

)
=

|u2p+3+j |. Since
√
TθLS

j = Op(1) and λTT
(γ−1)/2 → ∞, we

have

λT√
T
ŵj = λTT

γ−1
2 |

√
TθLS

j |−γ → ∞.

Therefore, by Slutsky’s theorem, we have VT (u) ⇒ V (u)
for every u, where

V (u) =

⎧⎨
⎩

(u(K))
�W(K) + σ2(u(K))

�I(η0,(K))u(K),
if u2p+3+j = 0, ∀j ∈ K̄

∞, otherwise,

where u(K) and W(K) are the j-th (j ∈ {2p+3+k : k ∈ K̄})
elements deleted from u and W respectively.

Note that VT (u) is convex, and the unique minimum of
V (u) is

umin =

(
− 1

2σ2 I
−1(η0,(K))W0,(K)

0

)
,

where 0 denotes that the other corresponding components
u2p+3+j , j ∈ K̄ are all 0 in the vector u.

Following the epi-convergence property of Geyer [6],
which is also used in Zou [12], we have

ûT,(K) ⇒ − 1

2σ2
I−1(η0,(K))W(K)

and the other components → 0, i.p..

Finally, recall that W(K) ∼ N(0, 4σ4I(η0,(K))), we get

√
T (ηADL

T,(K) − η0,(K)) ⇒ N
(
0, I−1(η0,(K))

)
.(29)

Step 2. Now we prove the consistency.

If j ∈ K, then θADL
j → θj0 i.p., thus P (j ∈ KADL

T ) → 1.

Thus we only need to show that ∀j ∈ K̄, P (j ∈ KADL
T ) → 0.

By the KKT optimality conditions,

1√
T

∂QT (η
ADL
T )

∂θj
+

λT√
T
ŵjsgn(θ

ADL
j ) = 0.

Note that∣∣∣∣ λT√
T
ŵjsgn(θ

ADL
j )

∣∣∣∣ = λT√
T
T γ/2|

√
TθLS

j |−γ → ∞, i.p.,

whereas

1√
T

∂QT (η
ADL
T )

∂θj

=
1√
T

∂QT (η0)

∂θj
+

1

T

∂2QT (η0)

∂θ2j

√
T (θADL

j − θj0)(1 + op(1))

⇒ some normal distribution

by (29) and Slutsky’s theorem. Thus, for j ∈ K̄,

P (j ∈ KADL
T ) ≤ P

(∣∣∣∣ 1√
T

∂QT (η
ADL
T )

∂θj

∣∣∣∣ = λT√
T
ŵj

)
→ 0.

This completes the proof.

Proof of Lemma 4.1. Recall that ϑ = (θ1, . . . , θq)
�, denote

g(ϑ) = (ϑ�ϑ)−1/2 =
1√

θ21 + · · ·+ θ2q

,(30)

then

ϑ̃ =
ϑ

l(θ)
=

ϑ

(ϑ�ϑ)1/2
≡ ϑg(ϑ).

From the asymptotic result of ϑLS
T , we have

g(ϑLS
T ) → g(ϑ0).

Thus

ϑ̃LS
T = ϑLS

T g(ϑLS
T ) → ϑ̃0 = ϑ0g(ϑ0) a.s.

Next we will show the asymptotic normality. From (11),
we know that

√
T (θLS

T − θ0) ⇒ N(0, I−1(θ0)),

where I−1(ϑ0) is submatrix composed of the last q rows and
the last q columns of the inverse matrix of I(η0) defined in
(10). Thus,

√
T (ϑ̃LS

T − ϑ̃0)

=
√
T (ϑLS

T g(ϑLS
T )− ϑ0g(ϑ0))

=
√
T
(
ϑLS
T g(ϑLS

T )− ϑ0g(ϑ
LS
T ) + ϑ0g(ϑ

LS
T )− ϑ0g(ϑ0)

)
=

√
T (ϑLS

T − ϑ0)g(ϑ
LS
T ) + ϑ0

√
T (g(ϑLS

T )− g(ϑ0))

⇒ some normal distribution

by the Slutsky theorem and the continuous mapping theo-
rem.

It is easy to see that the mean of the asymptotic normal
distribution is 0. We now provide the asymptotic covariance
matrix Σ̃ and show that its rank is q − 1.
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Note that ∂g(ϑ)/∂ϑ = −(ϑ�ϑ)−3/2ϑ and ϑLS
T − ϑ0 =

Op(T
−1/2), we have

ϑ0

√
T (g(ϑLS

T )− g(ϑ0))

= ϑ0

√
T
∂g(ϑ0)

∂ϑ� (ϑLS
T − ϑ0) +Op(T

−1/2)

= −ϑ0ϑ
�
0

√
T (ϑLS

T − ϑ0)(ϑ
�
0 ϑ0)

−3/2 +Op(T
−1/2).

Denote ZT,1 =
√
T (ϑLS

T − ϑ0)g(ϑ
LS
T ) and ZT,2 =

−ϑ0ϑ
�
0

√
T (ϑLS

T − ϑ0)(ϑ
�
0 ϑ0)

−3/2, we next calculate the co-
variance matrix of ZT,1 + ZT,2.

Var(ZT,1 + ZT,2)

= E(ZT,1 + ZT,2)(ZT,1 + ZT,2)
�

= E
(√

T (ϑLS
T − ϑ0)

√
T (ϑLS

T − ϑ0)
�g2(ϑLS

T )
)

− E
(√

T (ϑLS
T − ϑ0)

√
T (ϑLS

T − ϑ0)
�ϑ0ϑ

�
0

× (ϑ�
0 ϑ0)

−3/2g(ϑLS
T )

)
− E

(
ϑ0ϑ

�
0

√
T (ϑLS

T − ϑ0)
√
T (ϑLS

T − ϑ0)
�

× (ϑ�
0 ϑ0)

−3/2g(ϑLS
T )

)
+ E

(
ϑ0ϑ

�
0

√
T (ϑLS

T − ϑ0)
√
T (ϑLS

T − ϑ0)
�ϑ0ϑ

�
0

× (ϑ�
0 ϑ0)

−3
)
.

Since as T → ∞,
√
T (ϑLS

T − ϑ0) ⇒ N(0, I−1(ϑ0)) and
g(ϑLS

T ) → g(ϑ0), a.s., we thus get the limiting covariance
matrix

Σ̃ = I−1(ϑ0)(ϑ
�
0 ϑ0)

−1 − I−1(ϑ0)ϑ0ϑ
�
0 (ϑ

�
0 ϑ0)

−2

− ϑ0ϑ
�
0 I

−1(ϑ0)(ϑ
�
0 ϑ0)

−2+ϑ0ϑ
�
0 I

−1(ϑ0)ϑ0ϑ
�
0 (ϑ

�
0 ϑ0)

−3.

Recall that ϑ̃0 = ϑ0(ϑ
�
0 ϑ0)

−1/2, we have

Σ̃ ={I−1(ϑ0)(ϑ
�
0 ϑ0)

−1 − I−1(ϑ0)ϑ̃0ϑ̃
�
0 (ϑ

�
0 ϑ0)

−1}
−

{
ϑ̃0ϑ̃

�
0 I

−1(ϑ0)(ϑ
�
0 ϑ0)

−1

− ϑ̃0ϑ̃
�
0 I

−1(ϑ0)ϑ̃0ϑ̃
�
0 (ϑ

�
0 ϑ0)

−1}
= (ϑ�

0 ϑ0)
−1I−1(ϑ0)(Iq − ϑ̃0ϑ̃

�
0 )

− (ϑ�
0 ϑ0)

−1ϑ̃0ϑ̃
�
0 I

−1(ϑ0)(Iq − ϑ̃0ϑ̃
�
0 )

= (ϑ�
0 ϑ0)

−1(Iq − ϑ̃0ϑ̃
�
0 )I

−1(ϑ0)(Iq − ϑ̃0ϑ̃
�
0 ).

Notice that the q × q matrix Iq − ϑ̃0ϑ̃
�
0 is an idempotent

matrix due to the relationship ϑ̃�
0 ϑ̃0 = 1. That is, (Iq −

ϑ̃0ϑ̃
�
0 )

2 = Iq − ϑ̃0ϑ̃
�
0 given ϑ̃�

0 ϑ̃0 = 1. We thus have

rank(Iq − ϑ̃0ϑ̃
�
0 ) = q − 1.

Denote A = Iq − ϑ̃0ϑ̃
�
0 = A�, B = I−

1
2 (ϑ0) and C = AB

then

Σ̃ = (Iq − ϑ̃0ϑ̃
�
0 )I

−1(ϑ0)(Iq − ϑ̃0ϑ̃
�
0 ) = CC�.

From the Sylvester’s inequality, we get

rank(Σ̃) = rank(CC�) = rank(C)

= rank(AB) ≤ min{rank(A), rank(B)} = q − 1

rank(Σ̃) = rank(AB) ≥ rank(A) + rank(B)− q = q − 1.

Therefore, we show that the rank of the matrix Σ̃ is q−1.

Proof of Theorem 4.2. The proof is very similar to that of
theorem 3.1 and the only difference concerns the treatment
of the penalty term.

Let η = η0 + u/
√
T , u = (u1, . . . , uL)

�, L = 2p + 3 + q,
and

ΨT (u)

= QT

(
η0 + u/

√
T
)

+ λT

q∑
j=1

w̃j

∣∣∣∣
(
θj0 +

u2p+3+j√
T

)
g

(
ϑ0 +

u2p+4:2p+3+q√
T

)∣∣∣∣,
where g(ϑ) is defined in (30) and the q-dimensional
sub-vector u2p+4:2p+3+q is composed of the components
u2p+4, u2p+5, . . . , u2p+3+q of the vector u. We denote
u2p+4:2p+3+q as ũ.

It follows that the penalty term

PT (u) = λT

q∑
j=1

w̃j

(∣∣∣∣θj0+u2p+3+j√
T

∣∣∣∣g
(
ϑ0+

ũ√
T

)
−|θj0|g(ϑ0)

)
.

Since g′(ϑ) = −(ϑ�ϑ)−3/2 = −(g(ϑ))3, from the Taylor
expansion of g, we have

g

(
ϑ0 +

ũ√
T

)
= g(ϑ0)− (g(ϑ0))

3 ũ
�ϑ0√
T

(1 + op(1)).

If j ∈ K, i.e., θ̃j0 �= 0, from the result of the lemma 4.1,

w̃j = 1/|θ̃LS
j |γ → |θ̃j0|−γ , a.s.

and

√
T

(∣∣∣∣θj0 + u2p+3+j√
T

∣∣∣∣g
(
ϑ0 +

ũ√
T

)
− |θj0|g(ϑ0)

)

=
√
T

(∣∣∣∣θj0 + u2p+3+j√
T

∣∣∣∣− |θj0|
)
g(ϑ0)

−
∣∣∣∣θj0 + u2p+3+j√

T

∣∣∣∣(g(ϑ0))
3ũ�ϑ0(1 + op(1))

→ u2p+3+jsgn(θj0)g(ϑ0)− |θj0|(g(ϑ0))
3ũ�ϑ0

= g(ϑ0)(u2p+3+jsgn(θ̃j0)− |θ̃j0|ũ�ϑ̃0).
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Since λT /
√
T → 0, we have

λT√
T
w̃j

√
T

(∣∣∣∣θj0+ u2p+3+j√
T

∣∣∣∣g
(
ϑ0+

ũ√
T

)
−|θj0|g(ϑ0)

)
→ 0.

If j ∈ K̄, i.e., θ̃j0 = 0, then

√
T

(∣∣∣∣θj0 + u2p+3+j√
T

∣∣∣∣g
(
ϑ0 +

ũ√
T

)
− |θj0|g(ϑ0)

)

= |u2p+3+j |g
(
ϑ0 +

ũ√
T

)
→ |u2p+3+j |g(ϑ0).

When θ̃j0 = 0, we have
√
T θ̃LS

j =
√
T (θ̃LS

j − θ̃j0) = Op(1)
from the asymptotical normality result of lemma 4.1. It fol-
lows that

λT√
T
w̃j = λTT

γ−1
2 |

√
T θ̃LS

j |−γ → ∞

since λTT
(γ−1)/2 → ∞.

Therefore, using the same notations as in the proof of
theorem 3.1 and by Slutsky’s theorem, we have VT (u) ⇒
V (u) for every u, where

V (u) =

⎧⎨
⎩

(u(K))
�W(K) + σ2(u(K))

�I(η0,(K))u(K),
if u2p+3+j = 0, ∀j ∈ K̄

∞, otherwise,

and get the same asymptotic normality result.

As for the variable selection consistency, we only need to
show that

∀j ∈ K̄, P (j ∈ KDAL
T ) → 0.

Recall that the objective function of the direction adap-
tive lasso estimator is

QT (η) + λT

q∑
i=1

w̃i|θ̃i| = QT (η) + λT g(ϑ)

q∑
i=1

w̃i|θi|.

For j ∈ K̄, consider the event j ∈ KDAL
T . By the KKT

optimality conditions, we have

0 =
1√
T

∂QT (η
DAL
T )

∂θj
− λT√

T
(g(ϑDAL

T ))3θDAL
j

q∑
i=1

w̃i|θDAL
i |

(31)

+
λT√
T
w̃jg(ϑ

DAL
T )sgn(θ̃DAL

j )

=
1√
T

∂QT (η
DAL
T )

∂θj
− λT√

T
g(ϑDAL

T )θ̃DAL
j

q∑
i=1

w̃i|θ̃DAL
i |

+
λT√
T
w̃jg(ϑ

DAL
T )sgn(θ̃DAL

j )

=

{
1√
T

∂QT (η
DAL
T )

∂θj

− λT√
T
g(ϑDAL

T )θ̃DAL
j

∑
i∈K

w̃i|θ̃DAL
i |

}

+

{
λT√
T
w̃jg(ϑ

DAL
T )sgn(θ̃DAL

j )

− λT√
T
g(ϑDAL

T )θ̃DAL
j

∑
i∈K̄

w̃i|θ̃DAL
i |

}

≡ ST1 + ST2

We first claim that the term

ST1 =
1√
T

∂QT (η
DAL
T )

∂θj

− λT√
T
g(ϑDAL

T )θ̃DAL
j

∑
i∈K

w̃i|θ̃DAL
i |

⇒ some normal distribution(32)

In fact,

1√
T

∂QT (η
DAL
T )

∂θj
⇒ some normal distribution

and

λT√
T
g(ϑDAL

T )θ̃DAL
j

∑
i∈K

w̃i|θ̃DAL
i | → 0

as for i ∈ K, w̃i → |θi0|−γ , θ̃DAL
j →p 0, θ̃DAL

i →p θ̃i0 and

λT /
√
T → 0. By Slutsky’s theorem, we get (32).

We next show that ST2 →p ∞. Note that

ST2 =
λT√
T
w̃jg(ϑ

DAL
T )sgn(θ̃DAL

j )

− λT√
T
g(ϑDAL

T )θ̃DAL
j

∑
i∈K̄

w̃i|θ̃DAL
i |

= λTT
γ−1
2 g(ϑDAL

T )

{
1

|
√
T θ̃LS

j |γ
sgn(θ̃DAL

j )

− θ̃DAL
j

∑
i∈K̄

1

|
√
T θ̃LS

i |γ
|θ̃DAL

i |
}

→p ∞

since λTT
γ−1
2 → ∞ and ∀j ∈ K̄,

√
T θ̃LS

j = Op(1).

Therefore, for j ∈ K̄,

P (j ∈ KDAL
T ) ≤ P (|ST1| = |ST2|) → 0.

This completes the proof.
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