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Remarks suggested by the paper

MURRAY ROSENBLATT

This note remarks on H. Tong’s 1980 paper and associ-
ated aspects of chaotic systems.
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1. INTRODUCTION

In his paper “Threshold models in time series analysis
— 30 years on”, Howell Tong discussed the background of
his 1980 paper on threshold autoregressions, their applica-
tion and the extensive research the 1980 paper led to in the
following 30 years. In this brief note, I will mention some
remarks of W. B. Wu that can be applied to get some in-
sight into some of these models [9]. But the bulk of the few
remarks I make will focus on the motivation and develop-
ment of what Tong referred to as chaos and what is now
sometimes called “chaos theory”.

2. FIRST ORDER SCHEME

Assume that the €; are independent, identically dis-
tributed random variables. Consider the recursive scheme

(1)

with R a measurable function. First order threshold autore-
gressive schemes are a particular special case. Let
R(z,¢) — R(7/, ¢
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If there are o > 0 and zy such that

(2)

one can show that there is a unique stationary distribu-
tion for (1). Further, under these conditions one can show
that the corresponding stationary process is geometrically
ergodic.

It is also of interest to consider the recursive scheme when
the driving process ¢, is, say, a stationary Markov process.
One would expect possible results to also depend on the
character of the Markov process.

It is also worthwhile mentioning that when the conditions
(2) are satisfied, the stationary solution of (1) has a one-
sided (or causal) representation

E(log L¢) < 0 and L, + |R(xo, €)| € L®,

Ln = g(€n7 €n—1,- - )
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in terms of the iid random variables ¢;.

3. CHAOS

It was quite a surprise when the phenomenon of chaos
was increasingly found to arise in the analysis of a variety
of dynamical deterministic systems of an applied character.
We can think of it either in the discrete

(3)

or continuous context

(4)

with f a continuous function on the state space, or f; a con-
tinuous function of ¢ and the state space variable (perhaps
arising as a solution of a differential system of equations).

Classically if one wishes only to have a small global per-
turbation of a solution

(5)

it is believed one can accomplish this by a sufficiently small
displacement

(6)

However, it was already clear for over 100 years since the
time of Poincaré (see the discussion in the book of J. Moser
[4]) in the attempt to resolve questions relating to the sta-
bility of orbits that this would not generally be the case.
And that asymptotic behavior with a limiting fixed point or
a periodic orbit might not be the case. So here we have the
3-body problem or the n-body problem concerned with the
stability of planetary orbits.

One found that there were simple dynamical systems for
which there was incredible sensitivity to initial conditions
such that orbits initially close diverged at an exponential
rate and appeared to have chaotic trajectories. In fact a
critical question was often that of distinguishing between
data of a random character and that generated possibly by
a deterministic chaotic system. A simple example of such a
chaotic dynamical system is given by the logistic map

(7)

with the constant a greater than or equal to 4. A measure
of the rate of divergence of trajectories is given by the Lya-
punov exponent of the system.

Ty = f(xn—l)

ry = fi(z0), t >0,

|ff(l'0)—ft($6)| <57 5>07 tZO,

|zo — z5| < () > 0.

Ty = axp_1(1 —2p_1)
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E. Lorenz considered the Rayleigh-Benard convection in
which a layer of uniform depth is kept at a constant temper-
ature difference, lower temperature at the upper level and
higher temperature at the lower level. A Fourier expansion
was made of the solution with the first three terms of the
expansion kept. This led him to the following system of dif-
ferential equations for the three terms (see [2])

T =—ox+ oy,
(8)

Y=—xz+rT—Y,

Z=1xY — pZ.

The dotted variables are derivatives with respect to t while
o, T, p are constants. With an appropriate choice of the con-
stants o, 7, p, Lorenz was led to what appeared to be a
chaotic system from the trajectories he computed. This sug-
gested that there are limits to time ranges for which one
could carry out effective weather prediction, perhaps two
weeks.

4. ATTRACTORS

Results on dynamical systems often show asymptotic be-
havior in the appropriate phase space in which the orbits
converge densely, on an attractor set as time progresses (see
Ruelle [5]). The simplest cases are those in which the attrac-
tor is a single point or a periodic attractor. However, the
attractor set may have a much more complicated structure
in which case it is often referred to as a “strange attractor”.
The attractor in the case of the Lorenz set of equations as a
chaotic system is one of the earliest shown to be a strange
attractor. Smale [6] considered some economic models as dy-
namical systems. May [3] has considered chaotic models and
their utility in a biological and ecological context. Ruelle [5]
proposes a dynamical system approach to the problem of
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turbulence. In the approach of Kolmogorov to a theory of
turbulence, there is a concept of transfer of kinetic energy
from low wave number to high wave number. In [1], an at-
tempt at a rigorous argument confirming the approach of
Kolmogorov is sketched.
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