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Threshold models in time series analysis —
30 years on

Howell Tong

Re-visiting the past can lead to new discoveries.

– Confucius (551 B.C.–479 B.C.)

This paper is a selective review of the development of
the threshold model in time series analysis over the past
30 years or so. First, the review re-visits the motivation of
the model. Next, it describes the various expressions of the
model, highlighting the underlying principle and the main
probabilistic and statistical properties. Finally, after listing
some of the recent offsprings of the threshold model, the
review finishes with some on-going research in the context
of threshold volatility.
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1. INTRODUCTION

On the 19th March 1980, the paper entitled Threshold
Autoregression, Limit Cycles and Cyclical Data was read to
the Royal Statistical Society at a meeting organized by the
Research Section of the Society and chaired by Professor
Peter Whittle. It presented the first comprehensive account
of the research that I had been conducting on nonlinear
time series analysis till that date, sometimes assisted by my
research students on the numerical simulation. Before this
paper, I had already presented rudiments of the approach
based on piecewise linearization, with references given in the
above paper.

In the Confucian spirit, let me start by recalling some of
the background of the approach. To avoid repetition of Tong
(2007a), I shall now reduce reminiscences but increase tech-
nical details. Nevertheless, I shall try to maintain a relaxed
style. To keep the paper within reasonable length, some of
the topics will have to be treated sparingly or not at all.

Cycles have been among the key objects of attention since
the beginning of time series analysis. Of course, models for
periodic oscillation have a much longer history in science.
School physics has taught many that possibly the simplest

model that can generate periodic oscillations is Simple Har-
monic Motion (SHM):

d2x(t)

dt2
= −ω2x(t),

where ω is a real constant. This is an elementary linear
differential equation. It admits the solution

x(t) = A cos(ωt) +B sin(ωt),

where the arbitrary constants A and B are fixed by the ini-
tial condition, e.g. x(t) and dx(t)/dt at t = 0. However, not
so well-known is the fact that this highly idealized model is
not practically useful, because different periodic oscillations
result from different initial values. Thus, SHM does not pro-
duce a period that is robust against small disturbances to
the initial value. Further, SHM assumes the absence of fric-
tion. In the presence of the latter, SHM is usually modified
by including a linear function of the velocity. In that case,
a stable solution is a damped sinusoid and will tend to a
constant, the steady state, as t tends to infinity. Evidence
suggests that the British statistician, George Udny Yule,
was well acquainted with the above physics and mathemat-
ics in his search for a statistical model for the sunspot cycles,
although he worked in discrete time. Therefore to generate
sustained (quasi-)periodic oscillations, he introduced in Yule
(1927) random disturbances (now more commonly called the
innovations) leading to the celebrated linear autoregressive
model, or the AR model for short. The associated physical
set-up has been affectionately referred to as Yule’s (heavy)
pendulum bombarded by some pea-shooters. Curiously, I
have not been able to locate the pea-shooters in Yule (1927);
the earliest reference that I can trace is Jeffreys (1940).

As I have said elsewhere (Tong, 1990, p. 20–21), it was
perhaps not surprising that Yule chose a linear model be-
cause it was unlikely that he could be aware of nonlinear os-
cillations. After all, the theory of non-linear oscillations was
still at its early stages of development around his time. In
fact, it was only in 1925 that A. A. Andronov, the prominent
Russian oscillation theorist, recognized the role of Poincaré’s
geometric notion of limit cycle. This important notion re-
lates to the existence of sustained periodic oscillations in-
dependent of initial conditions. To exhibit a simple example
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of existence, let me first recall the simplest first order linear
differential equation:

dx(t)

dt
+ αx(t) = k,(1)

where α and k are positive real constants. Trivially, the solu-
tion is x(t) = Ce−αt+ k/α, which tends to k/α, a constant,
as t tends to ∞. Similarly, the same equation with k = 0 has
the solution x(t) = Ce−αt, which tends to zero as t tends
to ∞. Thus, each of the above stable equations admits the
steady state solution of a constant, which is a general prop-
erty of all stable linear differential equations. (The constant
is called a limit point, which represents a state of static
equilibrium.) Let me next consider a nonlinear differential
equation of the following piecewise linear form(

d

dt
+ α

)
x(t) =

{
0 if x(t) ≥ h,
k if x(t) < h.

(2)

Here, k, h and α are positive real constants with h > k/α.
By integrating the differential equation piece by piece, it
is not difficult to show that the solution of the piecewise
linear differential equation will quickly converge to a peri-
odic function of a curved saw-tooth shape with maximum
value h + (k/α), which decays to the minimum value h,
exponentially fast with rate α, over a period of duration
− 1

α ln(1− k
αh ) and independent of the initial value x(0). In

other words, the steady state is a limit cycle. Note that the
steady state for the dynamics inside each regime (i.e. above
or below h) is a limit point; yet by dividing the state space
into two regimes, each regime being governed by different
simple linear dynamics, a new steady state of a fundamen-
tally different character can be created. This is the magic of
nonlinearity! For further exposition of piecewise linear dif-
ferential equations, see Andronov and Khaikin (1937). The
essential point is that a limit cycle can be generated by a
dynamical system only if there is a balance between energy
absorption and energy dissipation. Specifically, the supply
of energy k in the lower regime balances the exponential
energy dissipation in the upper regime; this balance of en-
ergy results in a steady periodic oscillation after some initial
transients. The system is then in a state of dynamic equilib-
rium.

The latter part of the last century witnessed the rapid
development of an even more exotic form of stable oscil-
lation called chaos. Chaos manifests itself in a time series
that is almost undistinguishable from a stochastic process.
The apparent randomness is caused by sensitivity of the dy-
namical system to initial conditions. Of course, limit cycles
and chaos also exist in nonlinear difference equations; piece-
wise linear difference equations are especially important as
pseudo-random number generators, which are actually chaos
generators. However, the analysis as well as the topology is
more complicated. See, e.g., Tong (1990) and Chan and Tong
(2001).

Figure 1. Estimated spectral density function via AR
modelling.

2. LIMITATIONS OF LINEAR TIME SERIES
MODELS: EXAMPLES

Example 2.1 (Seiche Record at Island Bay, Wellington,
New Zealand). Whittle (1954) analyzed the seiche time se-
ries of 660 observations at 15 second intervals of the water
level in a rock channel at Island Bay on the Wellington coast
in his native country, New Zealand.

In Fig. 1, I have reproduced the spectral density func-
tion estimate obtained by Akaike (private communication)
using a linear AR(k) model with k determined by AIC.
(Whittle’s original estimate is a smoothed periodogram us-
ing the Bartlett window.) Whittle noted a significant arith-
metical relationship among the periods of the prominent
peaks: 25 = 1× 11 + 14; 36 = 2× 11 + 14; 48 ≈ 3× 11 + 14.
Such a relationship is beyond the scope of linear models.
In fact, he pointed out that this relationship is due to non-
linearity and cited none other than Andronov and Chaikin
(1937). He went on to give some detailed analysis based on
a piecewise linear differential equation, of which (2) is the
simplest special case. As far as I know, Whittle (1954) was
the earliest recognition of the importance of the threshold
idea in time series modelling.

Example 2.2 (Jokulsa River System, Iceland). Tong et al.
(1985) studied the Jokulsa river system, consisting of three
time series in 1972: river-flow, precipitation and tempera-
ture. Figure 2 gives a nonparametric regression of river-flow
on temperature. It shows clearly the effect of the melting of
glaciers in the catchment area of Jukulsa River on the lat-
ter’s flow. The nonlinearity is a result of the phase change
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Figure 2. Nonparametric regression of Jokulsa river-flow on
temperature.

from ice to water. The inadequacy of linear models is self-
evident in this case.

Example 2.3 (MacKenzie River Lynx Data). In the early
1950s, the Australian statistician, Pat Moran, spent many
of his working hours at the library of the Department of
Zoology, Oxford, which became his office. As a result, he
became interested in ecology and met the Oxford ecologist,
Charles Elton. In particular, he was interested in the famous
10-year lynx cycle, which was and still is of immense interest
to the ecologists. In Moran (1953a), among the many avail-
able annual records of lynx trappings, he chose the longest
one, namely the 1821–1934 record of the MacKenzie River
district in Canada. He remarked on the asymmetry of the
lynx cycle. The asymmetry can be seen very clearly if the
vertical scale is appropriately chosen as in Fig. 3.

He fitted the following linear AR model to the data:

Xt = 1.4101Xt−1 − 0.7734Xt−2 + εt,

where Xt = log10(Number of lynx trapped in year t) −
2.9036. In his diagnostic checking, he noticed the ‘curious
feature’ that the sum of squares of the residuals correspond-
ing toXt values above zero is 1.781 while that corresponding
to Xt values below zero is 4.007. He considered the differ-
ence significant. It seems to me that this was one of the

Figure 4. Histogram of logarithmically transformed lynx data.

earliest observations of conditional heteroscedasticity in real
time series analysis. In fact, he remarked that lynx dynam-
ics ‘would have to be represented by nonlinear equations.’
(Moran, 1953b, p. 292). I have presented several significant
signatures of non-normality and nonlinearity of the lynx dy-
namics in Tong (1990). For example, a clear signature of
non-normality is the bi-modality of the marginal distribu-
tion (Fig. 4) of the data, which is present even after the
logarithmic transformation.

In fact, the table below shows that the test for multi-
modality due to Chan and Tong (2004), which extends
Silverman’s test to dependent data, lends support to bi-
modality.

No. of modes 1 2 3 4

P-values 0.03 0.45 0.72 0.67

The shortcomings highlighted in the above examples and
elsewhere (e.g. Tong, 1990) pressed home the case for non-
linear time series modelling with irresistible force in the late
1970s and early 1980s. The force has remained to the present
time.

3. THE THRESHOLD MODEL

There are many different but equivalent ways to express
a threshold model, each having its advantages, depending
on the context and purpose. Let me start with a general
form of a threshold autoregressive model or a TAR model

Figure 3. Annual trappings of lynx in the MacKenzie River district on log10 scale.
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for short:

Xt = a
(Jt)
0 +

p∑
i=1

a
(Jt)
i Xt−i + b(Jt)εt,(3)

where εts are iid (0, σ2) and {Jt} is an (indicator) time se-
ries taking values in {1, 2, . . . , J}. The indicator time series
acts as the switching mechanism. Note that the TAR model
can be easily extended to a threshold autoregressive mov-
ing average model (TARMA model for short) by replacing

b(Jt)εt by
∑q

j=0 b
(Jt)
j εt−j . Further extension to include some

exogenous time series is obvious and may be assigned the
acronym TARMAX.

The basic idea of a threshold model is piecewise lineariza-
tion through the introduction of the indicator time series,
{Jt}. I have called this idea the Threshold Principle for easy
reference. Numerous special cases are immediate and I shall
describe some of them later. First, I should, however, stress
that a special case is just that and should not be confused
with the general case. It is unfortunate that perhaps because
of its popularity, the self-exciting threshold autoregressive
model (to be described later) has sometimes been presented
as if it constitutes the entire family of TAR models, which
it does not.

To simplify the description, I shall usually exhibit only
the simplest/low order cases, namely p = 1 or p = 2, noting
that the case with higher p can be described similarly. I
shall also minimize the use of super-scripts. Clearly, the
time series {Jt} could be either observable or hidden. In
fact, it could also be a mixture of the two. Let me start
with the case with observable Jt.

(O1) SETAR model: Suppose that J = 2. Let Jt = 1 if
Xt−d ≤ r and Jt = 2 if Xt−d > r for some real threshold r
and some positive integer d, called the delay parameter. The
acronym stands for self-exciting TAR model. This SETAR
model can also be expressed in the following equivalent form:

Xt =

{
α+ βXt−1 + εt if Xt−d ≤ r;
γ + δXt−1 + φεt if Xt−d > r,

(4)

where α, β, γ, δ, and φ are real constants.

(O2) TARX model: This is a special case of the TARMAX
model, without the moving average component. Let Jt
be a measurable function of one or more exogenous and
observable time series. Previously, Tong and Lim (1980)
coined the acronym TARSO to stand for a TAR system
(open loop); they were thinking in terms of control systems.

In the following models, {Jt} is independent of {Xt} and
not observed.

(H1) EAR model: Let {Jt} be a sequence of independent
and identically distributed random variables such that Jt =

1 with probability 1 − α, Jt = 2 with probability α, and

(0 < α < 1). Consider the TAR model with a
(Jt)
0 ≡ 0 and

b(Jt) ≡ 1,

Xt = a
(Jt)
1 Xt−1 + a

(Jt)
2 Xt−2 + εt,(5)

where 0 ≤ a
(1)
1 < 1, a

(2)
1 = 0, a

(1)
2 = 0 and 0 ≤ a

(2)
2 < 1. This

special case of the TAR model is an example of the EAR
model proposed and first studied by Lawrance and Lewis
(1980), who were interested in identifying appropriate
distributions for εt so that Xt has a (negative) exponential
(marginal) distribution. The acronym stands for exponen-
tial AR. The connection between the EAR model and the
TAR model was first noted by Tong (1983, p. 63) and later
exploited by Chan (1986, Ch. 4; 1988) to extend the EAR
model to higher orders.

(H2) Markov Chain Driven TAR model or Hidden Markov
Switching model: Let {Jt} be a finite state Markov chain.
This model was first proposed by Tong and Lim (1980, p.
285 line -12). It includes (H1) as a special case. Tyssedal and
Tjøstheim (1988) was probably the first paper that studied
this model in some depth, including an application to stock
prices. Later Hamilton (1989) introduced the model, which
he called the Markov switching model, to the economet-
ric community. He did not refer to Tyssedal and Tjøstheim
(1988) but referred to the Markov chain driven TAR model
of Tong (1983, p. 62). However, he overlooked the fact that
the Markov chain for the above {Jt} was, as in a general
TAR model, allowed to be hidden and was hidden. In fact,
the overlooking could have been avoided if he had noticed
Tong (1983, p. 63) or Chan (1986, 1988), to which I have
referred in (H1), or Tong (1983, 276–277), to which I shall
refer in model (P1).

The case with {Jt} partially hidden has been explored
only partially.

(P1) Suppose that J = 2 and Jt is a measurable function of
Xt−d and Ut, where {Ut} is a hidden (strict) white noise pro-
cess, independent of {Xt} and has distribution Fu, so that
for some delay d, Prob[Jt = 2|xs, s < t] = Fu(xt−d), and
Prob[Jt = 1|xs, s < t] = 1− Fu(xt−d). Also, conditional on
{Xt}, {Jt} is a sequence of independent random variables. I
formerly called a model of this form a fuzzy extension of the
SETAR model in Tong (1983, p. 276–277). I shall return to
a closely related extension in the next paragraph. I think it
is worthwhile to explore other measurable functions for Jt,
in which, e.g., the hidden {Ut} can be more general than a
white noise process. The resulting models can be perhaps
better called partially-hidden switching models; the switch-
ing can be Markovian or non-Markovian. The stochastic unit
root model of Gourieroux and Robert (2006), the TD-SAR
model of Wu and Chen (2007) and the ACR model of Bec,
Rahbek and Shephard (2008) are examples of recent devel-
opment in this direction.
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Model (4) can also be written in the equivalent form

Xt = (α+ βXt−1 + εt)I(Xt−d ≤ r)(6)

+ (γ + δXt−1 + φεt)(1− I(Xt−d ≤ r)),

where I(A) is an indicator function such that I(A) = 1 if
A occurs and I(A) = 0 otherwise. In some applications, it
might be more appropriate to replace the ‘hard threshold-
ing’ due to I by some ‘soft thresholding’. One way to effect
the latter is to replace the step function I(Xt−d ≤ r) by
a sufficiently smooth function (Chan and Tong, 1986a, esp.
p. 187), e.g. a continuous cumulative distribution function,
say F ({Xt−d − r}/σ); the latter includes the former as a
limiting case upon taking σ to zero. Chan and Tong (1986a)
were the first to propose and develop these soft thresholding
models under the name of smooth threshold autoregressive
(STAR) models. They have given quite a comprehensive ac-
count of the probabilistic structure and statistical inference
of these models. The STAR models have attracted many fol-
lowings in econometrics, e.g., Franses and van Dijk (2000).
Note that econometricians have changed the label ‘thresh-
old’ to ‘transition’.

Clearly, the right-hand side of (6), with εt suppressed,
is discontinuous. By judiciously constraining the parame-
ters, Chan and Tsay (1998) have studied a continuous SE-
TAR model of a form first mentioned in Tong (1983, p. 276).
More recently, Xia and Tong (2010) have considered, among
other nonlinear state-space models, an innovation free SE-
TAR model, which is observed with observation error:

Xt = (α+ βXt−1)I(Xt−d ≤ r)(7)

+ (γ + δXt−1)(1− I(Xt−d ≤ r)),

and Yt = Xt + εt, where {εt} is a white noise process inde-
pendent of the unobservable {Xt}.

Although my review is mostly concerned with discrete-
time time series analysis, I think it appropriate to make a
few remarks on the continuous-time case. Of course, a natu-
ral setting for the continuous-time case is the stochastic dif-
ferential equation (SDE). There is much literature on SDEs
and I shall leave the topic to the experts, except to mention
Tong and Yeung (1991) and Brockwell and Williams (1997),
who studied TAR models in continuous time, being primar-
ily motivated by the analysis of unequally spaced time series
data. Recent interests in high frequency data analysis add
to the importance of the SDEs.

4. SOME PROBABILISTIC PROPERTIES

4.1 Ergodicity

The first question for any time series models is the exis-
tence of stationary distributions. The case of linear ARMA
models is now well understood. For nonlinear time series
models, the situation is much more complicated and the
results are incomplete to-date. Of course, it is clear that

threshold MA models are strictly stationary. For nonlinear
AR models, some general results are available by treating
them as Markov chains with states in a Euclidean space.
A powerful tool is the drift criterion initiated by Foster
(1953) in queueing theory and later more fully developed
by Tweedie (1975) and Nummelin (1978, 1984). The basic
idea is to first introduce the so-called small sets, which play
the role of discrete states, then study their irreducibility
and finally check if there is a drift towards the ‘centre’ of
the state space. For more details of the drift criterion with
special reference to nonlinear time series, see e.g. Tjøstheim
(1990), and Tong (1990, esp. Appendix 1 by K. S. Chan).

A key notion in the drift criterion approach is the so-
called g-function, the specific choice of which is not always
obvious. However, by interpreting it as a ‘generalized’ en-
ergy function, Chan and Tong (1985) has established a link
between the stability of a deterministic system and the er-
godicity of a stochastic system. Essentially, they have shown
how the existence of a Lyapunov function for the former can
be exploited to provide the g-function to effect the drift cri-
terion for the latter. The deterministic system is obtained
by reducing the variance of the innovation of the nonlin-
ear AR model to zero. They call the resulting deterministic
system the ‘skeleton’ of the nonlinear AR model. (There
is an interesting connection between the skeleton and the
Kolmogorov construction in the chaos literature. A deter-
ministic dynamical system typically admits more than one
invariant measure. To obtain the ‘physically meaningful’ in-
variant measure, the Kolmogorov construction puts stochas-
tic noise into the deterministic dynamical system. This pro-
duces a unique invariant measure if the stochastic system is
ergodic. Then, the noise is reduced to zero and the limit-
ing invariant measure is taken as the physically meaningful
invariant measure.) The exploitation can sometimes facili-
tate the checking of stationarity of a complex nonlinear AR
model because of the existence of a wealth of knowledge on
stability in the applied mathematics and engineering litera-
ture. For recent developments of the skeleton approach with
special reference to TAR models, see Cline (2009). For re-
cent developments of the related area of stochastic stability,
see Meyn et al. (2009).

To give a flavour of the approach, I recall the following
theorem due to Chan and Tong (1985). First, let me state
Condition A. Note that the first two parts concern the
skeleton and its stability while the last part concerns the
stochastic noise.

Condition A

A1. T is Lipschitz continuous over Rm, that is ∃M > 0,
such that ∀x,y ∈ Rm, ‖T (x)− T (y)‖ ≤ M‖x− y‖.

A2. T (0) = 0 and ∃K, c > 0 such that ∀t ≥ 0, and starting
with x0 ∈ Rm, ‖xt‖ ≤ Ke−ct‖x0‖, where ‖.‖ denotes the
Euclidean norm in Rm.
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A3. Either {εt} are independent identically distributed
random variables, the marginal distributions of which
are absolutely continuous (with respect to the Lebesgue
measure) and have each an everywhere positive probability
density function over Rm with E‖εt‖ < ∞.

Or εt = (et, 0, . . . , 0)
′ with {et} being independent iden-

tically distributed random variables, each having an abso-
lutely continuous distribution function with an everywhere
positive probability density function over R and E|et| <
∞.

Theorem 4.1. Under condition A, the Markov chain with
state space Rm and given by

Xt = T (Xt−1) + εt, t ≥ 1, T : Rm → Rm

is geometrically ergodic.

The example below re-visits the case studied by Petruc-
celli and Woolford (1984) and highlights the facility that the
above theorem can sometimes provide.

Example 4.1.

xt =

{
αxt−1 if xt−1 > 0
βxt−1 if xt−1 ≤ 0.

Clearly, |α| < 1 and |β| < 1 ⇒ xt → 0 as t → ∞. As it
will be shown later, stationarity region can be considerably
bigger on the (α, β)-space.

Case (i): α > 0, β > 0

If x0 > 0, then xk = αkx0, k = 1, 2, . . . . Stability
requires α < 1 so that xk → 0 as k → ∞. If x0 < 0, then
xk = βkx0, k = 1, 2, . . . . Stability requires β < 1 so that
xk → 0 as k → ∞.

Case (ii): α > 0, β < 0

If x0 > 0, then xk = αkx0, k = 1, 2, . . . . Stability
requires α < 1 so that xk → 0 as k → ∞. If x0 < 0, then
x1 = βx0(> 0); x2 = αx1(> 0); x3 = α2x1(> 0); . . . So
xk = αk−1x0, k = 2, 3, . . . . Stability requires α < 1 so that
xk → 0 as k → ∞.

Case (iii): α < 0, β > 0

By symmetry with case (ii), it is required that β < 1.

Case (iv): α < 0, β < 0

xk = αβxk−2, k = 2, 3, . . . Stability requires αβ < 1 so
that xk → 0 as k → ∞.

Putting everything together, the condition can be relaxed
for stability of the skeleton from |α| < 1 and |β| < 1 to
α < 1, β < 1 and αβ < 1, the latter being considerably
bigger. (Note that the above argument has effectively used

a Lyapunov function, V (x), of the form: V (x) = ax for x ≥ 0
and b|x| for x ≤ 0, where a > 0, b > 0, 1 > α > −a/b, 1 >
β > −b/a.) Thus, it can be concluded that, under the same
condition on α and β, the SETAR model

Xt =

{
αXt−1 + εt if Xt−1 > 0

βXt−1 + εt if Xt−1 ≤ 0,

where εt ∼ IID(0, σ2) with an everywhere positive proba-
bility density function is geometrically ergodic. The model
is then strictly stationary if X0 has the unique invariant
measure. (Note: σ2 need not be finite.) Using the so-called
inverse theorems in stability theory, the necessity of the con-
dition can also be established.

For more complicated nonlinear AR models, sometimes
ingenuity may have to be exercised or searched in the ap-
plied mathematics and engineering literature to produce one
or more appropriate Lyapunov functions. Even if this fails,
running the noise-free skeleton with a variety of initial values
can often be quite informative.

4.2 Stationary distributions

Under strict stationarity and conditionally homoscedastic
noise, the probability density function (pdf), say Π(x), (as-
sumed to exist), of a nonlinear AR model of order 1 satisfies
the following integral equation:

(8) Π(x) =

∫ ∞

−∞
Π(y)pε(x− f(y))dy,

where pε(·) denotes the pdf of the innovation.

Analytic solutions of such equations rarely exist in closed
form; numerical solutions are usual. Even for strictly sta-
tionary linear AR models, the situation can be non-trivial:
although the Gaussian solution is well known for the case
with Gaussian innovation, an analytic solution may not al-
ways be possible for the case with non-Gaussian innovation.
For nonlinear AR models, analytic solutions are even rarer.
However, analytic solutions are useful when they do exist.
They can be used, among others, to check the efficacy of
numerical techniques suggested for solving the above inte-
gral equation and to provide stochastic models and insights
for some of the newer distributions proposed in the litera-
ture.

Example 4.2 (A special SETAR model).

Xt = −α|Xt−1|+ εt; |α| < 1,

where pε(·) is assumed to be symmetric about the origin. Ex-
ploiting the symmetry of the autoregressive function, Chan
and Tong (1986b) showed how the nonlinear integral equa-
tion for the stationary distribution could be solved by ref-
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Figure 5. Stationary distribution of Example 4.2.

erence to a linear AR model:

Π(y) =

∫ ∞

−∞
Π(x)pε(y + α|x|)dx

=

∫ ∞

0

Π(x)pε(y + αx)dx+

∫ 0

−∞
Π(x)pε(y − αx)dx

=

∫ ∞

0

Π(x)pε(y + αx)dx+

∫ ∞

0

Π(−x)pε(y + αx)dx

= 2

∫ ∞

0

Π̄(x)pε(y + αx)dx,

where

2Π̄(y) = Π(y) + Π(−y) = 2

∫ ∞

−∞
Π̄(x)pε(y + αx)dx,

corresponding to the integral equation for the stationary
linear AR(1) model with parameter α.

If εt ∼ N(0, 1), then Π̄(x) is the pdf for N(0, 1
1−α2 ), and

so

(9) Π(x) =

√
2(1− α2)

π
exp

{
−1

2
(1− α2)x2

}
Φ(−αx).

Andel et al. (1984) obtained the same solution by postu-
lating and verifying it.

Figure 5 shows the skewness of the solution. By varying
the value of α, a family of skew densities can be produced
that includes the normal at α = 0. In fact, this SETAR
model provides a stochastic model that can be used to un-
derpin the so-called family of ‘skew-normal distributions’
advocated by Azzalini (1985). These distributions were ap-
parently first introduced by O’Hagan and Leonard (1976) in

a Bayesian context. For multivariate time series, there are
many more groups of symmetry available than the above re-
flexive symmetry. Chan and Tong (1986b) also showed how
similar exploitation could be made of these. I think that
some of their results are relevant to developing multivariate
generalizations of skew-normal distributions, skew-t distri-
butions and others, although they do not seem to have been
followed up for the purpose.

Example 4.3 (A piecewise constant AR model). This is a
particularly simple SETAR model.

Xt = b+ (a− b)I(Xt−1 < 0) + εt,(10)

where εt ∼ N(0, 1). The stationary pdf is a mixture of Guas-
sian distributions (-I learnt this result from John Pember-
ton):

Π(x) = Aφ(x− a) + (1−A)φ(x− b),(11)

where A = Φ(−b)/{1− Φ(−a) + Φ(−b)}.
Example 4.4 (A martingale difference model). This is
another simple special case of the SETAR model (Tong,
2007b).

Xt =

{
εt if Xt−1 ≤ 0,
βεt if Xt−1 > 0,

(12)

where {εt} is standard Gaussian white noise. Simple calcu-
lation yields the stationary marginal pdf

f(x) =
1

2

[
φ(x) +

1

β
φ

(
x

β

)]
, −∞ < x < ∞,(13)

where φ(·) denotes the pdf of the standard normal, giving
another mixture of standard Gaussian distributions. Clearly,
it is leptokurtic for β �= 1. I shall return to this model in
Section 7.

Once the marginal distribution is found, then the next
job would be the joint distributions and the conditional dis-
tributions. The conditional distributions are of particular
relevance to prediction and are sometimes called the predic-
tive distributions. In fact, the derivative of the m-step-ahead
predictive distribution, with respect to the ‘present’ datum,
can be used to form the basis of a stochastic extension of the
notion of Lyapunov exponent that characterizes the initial-
value sensitivity of deterministic dynamical systems. (Yao
and Tong, 1994).

To evaluate more-than-one-step-ahead predictive distri-
butions exactly is very challenging for a general nonlin-
ear time series model. Fortunately, for SETAR models, the
piecewise linearity coupled with the Markovian structure
can be exploited to produce some exact solutions. Let me
explain. Suppose a stationary SETAR model of the form (4)
has been fitted to some real data and is now taken, for the
exercise, as the true model. Then for 1 ≤ m ≤ d, the m-
step-ahead predictive distribution of Xt+m given Xs, s ≤ t
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can be expressed exactly as anm-fold convolution of the dis-
tribution of ε with itself, up to a suitable scaling factor by
φ. For m > d, the situation is more complicated, although
there is always the Chapman-Kolmogorov equation as a last
resort. However, for cycling data with an approximate pe-
riod of say θ, I would suggest that the SETAR model be
refitted now with delay parameter fixed at d+ θ. Then, un-
der stationarity, the above convolution solution could still be
used to give a reasonable approximate solution for cases with
m ∈ [d+1, d+θ]. How good the approximation is depends on
how strongly cyclical the data are. In principle, the method
can be extended to cover further periods but it is expected
that the approximation will deteriorate rapidly, unless the
data are very strongly cyclical. The above suggestion rests
heuristically on the notion of cyclically moving subsets in
a Markov chain due to W. Doeblin (See, e.g., Doob, 1953),
which I have exploited in Tong (1983) for point predictors.

4.3 Invertibility and irreversibility

Invertibility concerns the ability to express the innova-
tion in terms of present and past observations. The issue
for nonlinear ARMA models (including TARMA models) is
non-trivial and has attracted some attention recently. For
the following threshold MA model, Ling et al. (2007) have
obtained sufficient and almost necessary conditions.

(14) Xt =

{
φ0 +

k∑
j=1

ψjI(rj−1 < Xt−1 ≤ rj)

}
εt−1 + εt,

where −∞ = r0 < r1 < · · · < rk = ∞. Let Fx(·) denote
the distribution function of Xt. They proved the following
theorem.

Theorem 4.2. Model (14) is invertible if
∏k

j=1{|φ0 +

ψj |Fx(rj)−Fx(rj−1)} < 1 and is not invertible if
∏k

j=1{|φ0 +

ψj |Fx(rj)−Fx(rj−1)} > 1.

More recently, Chan and Tong (2010) have considered the
harder problem of the invertibility of nonlinear ARMA mod-
els. Under very general conditions, their local analysis shows
that there is a generic dichotomy that the innovation recon-
struction errors either diminish geometrically fast or grow
geometrically fast. They derive a simple sufficient condition
for a nonlinear ARMA model to be locally invertible.

Despite their linguistic similarity, the terms ‘invertibility’
and ‘reversibility’ refer to two different concepts. Intuitively,
a time series is time-reversible if running it forward in time
has the same probability distribution as running it back-
ward in time, i.e. the direction of time is irrelevant. For a
stationary univariate time series, reversibility is universal
for the Gaussian case but rare for the non-Gaussian case.
Even a linear AR model driven by non-Gaussian innovation
is generally time irreversible. A striking and classic exam-
ple is the AR(1) model: Xt = 1

2Xt−1 + εt, t ≥ 0, where
{εt} is a sequence of iid random variables with a two-point

distribution residing at 0 or 1 with equal probability, and
X0 ∈ [0, 1]. In reversed time, the model is a noise-free SE-
TAR model, which generates chaos. (Clearly this model is
not strongly mixing.) This model has attracted the atten-
tion of many time series analysts, including Whittle (1963,
p. 24), who referred to Moran, Rosenblatt (1964), who re-
ferred to Jamison, and Bartlett (1990), which was his last
research paper. For a stationary multivariate time series,
reversibility is rare for all cases. (Chan et al., 2006). I find
that a lot can be learnt about a statistical technique for time
series by first running the time series forward in time and
then backward in time. For example, the forward-backward
check will show that, for vector AR modelling, the naive
uni-directional Levinson-Durbin algorithm has to be mod-
ified. In fact, a pair of algorithms running simultaneously
is needed, one for the ‘forward’ AR model and another for
the ‘backward’ AR model. (Whittle, 1963, p. 102). Another
example is the so-called backforecasting technique due to
Box and Jenkins (1970, Ch. 7). In fact, it is predicated on
time-reversibility.

5. STATISTICAL MODELLING

5.1 Initial data analysis

The emergence of the threshold models and other non-
linear time series models has led to the development and
sometimes the re-discovery of numerous data analytic tech-
niques. Many of these have found their way into book forms,
e.g. Tong (1990), Tsay (2002), Fan and Yao (2003), Cryer
and Chan (2008). An amusing example of re-discovery is the
plot of Xt against Xs. For an early exponent of correlation
analysis such as Yule, such plots came very naturally or even
routinely. Indeed, Yule (1927, p. 277) plotted Xt against
Xt−1 + Xt+1. The choice of the latter is, however, intrigu-
ing. Could he have some vague inkling of time irreversibil-
ity in view of the asymmetry of the sunspot cycles? Sadly
these plots dropped out of favour with time series practi-
tioners in the 1960s and 1970s, most probably due to the
pre-occupation with linear Gaussian time series of the pe-
riod. In contrast, free from attachment to linearity and nor-
mality, population ecologists have continued to plot them,
under the name of ‘Moran diagrams’. I remember being fas-
cinated in 1978 by such a plot as I was watching it evolving
on the monitor of my IBM 386 computer; slow computers
can sometimes be more helpful than fast ones! I joined the
scattered points by straight lines as they were being plot-
ted over time and called the resulting plot a (discrete-time)
phase plot, following the terminology in dynamical systems.

5.2 Fitting a threshold model

A popular approach to fit a threshold model is the condi-
tional least squares method. The first rigorous study of its
properties for a SETAR model was by Chan (1993). He as-
sumed that the SETAR model is geometric ergodic and sta-
tionary, with strictly positive and uniformly continuous dis-
tribution for the innovations, and both the innovations and
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the marginal distribution of the time series have finite sec-
ond order moment. Under these assumptions. he proved that
all the estimators (i.e. for the threshold r, the delay d and the
‘slopes’ and ‘intercepts’) are consistent. He further proved
that if finite fourth moments exist, then (i) the threshold
estimator is N−consistent; (ii) the threshold estimator is
asymptotically independent of the slope estimators and the
intercept estimators; and (iii) the slope estimators and the
intercept estimators are

√
N−consistent and asymptotically

normal. He also showed that the threshold estimator follows
a compound Poisson process (CCP), due to the fact that the
sum of squares of the residuals is a discontinuous function
of the threshold parameter. He noted that N−consistency is
not unusual by recalling a similar feature in the estimation
of a ‘jump’ in a cumulative distribution function.

After Chan’s important results, the estimation of the
threshold parameter has continued to attract much atten-
tion since it is a key parameter of the SETAR model. For
example, Hansen (1997) looked at the case in which the
threshold effect (the difference in slopes between the two
regimes) becomes small as the sample size increases and
showed then the asymptotic distribution of the threshold
estimate is free of nuisance parameters (up to scale). Chan
and Tsay (1998) studied the estimation of the threshold
parameter of a continuous SETAR model and showed

√
N−

asymptotic normality. Bayesian estimation has also been
studied. See, e.g., Stramer and Lin (2002), Chen and Lee
(2008) and Geweke (2009). For the related STAR model,
although

√
N− normality is obtained for the estimators

of all the parameters (Chan and Tong, 1986), the impre-
cision of the estimator of the ‘smoothness’ parameter σ
is problematic unless the sample size is very large. This
has a bearing on the issue of SETAR models versus STAR
models for real data, to which I shall return shortly.

Fitting a time series model to real data is an art as well
as a science. To assist practitioners to fit a TAR model,
numerous statistical tools are now available and many of
these have been described in book forms. See, e.g., Tong
(1990), Tsay (2002), Fan and Yao (2003), Cryer and Chan
(2008) and others. Computer softwares are also available,
some of which come as companions to books. The R codes
in Cryer and Chan (2008) are particularly helpful.

In practical applications, whether a STAR model or a
SETAR model should be used depends on a number of
considerations. However, there is always a place for sensible
compromises. Let me elaborate. Take the (log transformed)
MacKenzie lynx data for example. Ecological theory will
probably support a smooth autoregressive function. Now,
there is evidence to support that a threshold should lie
in the vicinity of 3. However, Figure 4 shows that there
are few observations to provide sufficient information on
the precise shape of the autoregression around 3, which is
the anti-mode. In this case, a SETAR model, of either the
continuous or the discontinuous genre, is a reasonable and
practical compromise/approximation because the ‘true’

smooth autoregessive function simply cannot be estimated
with any precision around the threshold. The best that
can be hoped for is the estimation of the function away
from the anti-mode, where linear dynamics would be quite
an adequate approximation. On the other hand, a STAR
model is clearly sensible by reference to ecological dynamics
but the imprecision of the estimator of the ‘smoothness’
parameter σ must be noted.

There are, of course, situations in which subject matter
considerations would dictate an un-smooth or even discon-
tinuous model. For example, a decision (e.g. an intervention)
is often discontinuous, which may lead to a switch to a dif-
ferent dynamics after say d units of time. The connection be-
tween discontinuous decision processes and TAR modelling
was discussed in a rarely cited note (Tong, 1982).

Although a TARMAX model and a multivariate TAR
model have been studied and fitted to real data, e.g. Tong
(1990), the sampling properties of the estimators have not
been studied in depth. Moreover, the estimation of param-
eters for more than two regimes is not fully developed.

In real applications of TAR models involving several time
series, it is not often clear as to the best way to define the in-
dicator time series {Zt}, i.e. the switching mechanism. The
principle of parsimony coupled with computational consid-
erations suggests that a vectorial {Zt} is probably not a
practical proposition. A practical approach could be based
on some sort of (non-linear) principal components. See, e.g.,
Wu and Chen (2007) and Xia et al. (2007).

5.3 Testing for linearity in threshold models

In model (6), suppose that φ = 1. Consider the null hy-
pothesis H0 : α = γ, β = δ. Under H0, model (6) is a lin-
ear AR model. Thus, to test H0, or its obvious extension
to higher order cases, is equivalent to testing for linearity
within the SETAR setup. This was a non-standard prob-
lem because, under H0, the nuisance parameter r is absent,
implying that the conventional χ2 asymptotics for the likeli-
hood ratio test would not apply. Chan (1990) and Chan and
Tong (1990) laid the theoretical foundations, by recognizing
that the problem is related to the maximum of a stochastic
process. These led to usable percentage points (Chan, 1991)
and extensions to threshold cointegration (Hansen and Seo,
2002), threshold MA models (Ling and Tong, 2005), and
others. I should remark that the non-standard problem has
serious implications on model selection. If the selection crite-
rion is based on the likelihood, such as Akaike’s information
criterion or the Bayesian information criterion, then care
should be exercised in counting the number of independently
adjusted parameters. This remark applies to parametric non-
linear time series modelling, neural networks, and others.

A separate but related area is the goodness-of-fit test. Li’s
comprehensive monograph (2004) is very valuable. There
have been some recent advances in the use of empirical
processes, following the lead by An and Cheng (1991). For
example, adopting a score-based approach, Ling and Tong
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(2010) has developed an array of goodness-of-fit tests, each
tailored for a specific model, e.g. an SETAR model. This
approach can, in many cases, lead to greater power than
residual based tests.

5.4 Real applications

The threshold models have been widely applied. Signif-
icant examples are in ecology (e.g. Stenseth et al., 1999),
epidemiology (e.g. Stenseth et al., 2006; Samia et al., 2007),
actuarial science (e.g. Chan et al., 2004), economics and fi-
nance (e.g. Tsay, 2002), water resources (e.g. Tong et al.,
1985). Many other examples can be found in, e.g., Tong
(1990) or by a Google search. Let me highlight just one
example to give some general flavour. In ecology, key ques-
tions include (i) What gives rise to the lynx cycle across
the whole of Canada (not restricted to just the MacKenzie
River region)? Is it due to ‘phase-dependency’ or ‘density-
dependency’, in the language of the ecologists? (ii) In what
way does the lynx dynamics vary with climatic regions?
Stenseth (2009) has given an authoritative summary of the
many collaborative contributions made, over many years, by
a team of ecologists, biologists, statisticians and climatolo-
gists gathered around him.

6. SOME OFF-SPRINGS

In Chan (2009), many of the important off-springs of the
TAR model have been discussed. Some notable ones are
threshold unit root (e.g. Chan et al. (1991), Enders and
Granger (1998) and Caner and Hansen (2001)), threshold
co-integration (e.g. Balke and Fomby, 1997), threshold
GARCH models (e.g. Glosten et al. (1993), Zakoian (1994),
Li (2009)), double threshold ARMA models (e.g. Li and Li,
1996).

7. THRESHOLD VOLATILITY MODELS

In the application of SETAR to the MacKenzie lynx data,
Tong and Lim (1980) addressed the issue raised by Moran
referred to in Section 2 by having different estimates for
the innovation variance in different regimes. However, it is
clear that the full potential of the TAR models for the mod-
elling of the conditional variance has not been exploited.
I shall now report some on-going research conducted by
Chan, Ling and myself. I have referred to the leptokurticity
of model (12). Now, consider a multi-regime generalization
of the model.

Xt = σ(Xt−1)εt.(15)

where R =
⋃m

i=1 Ri, Ris are mutually disjoint subsets of
the real line, σ(x) = σi > 0 for x ∈ Ri, and εt are inde-
pendent and identically distributed random variables with
zero mean and unit variance, independent of past X’s. The
above model is called the threshold volatility model, or TVM
for short, by Chan et al. (2010), in which the following re-
sults are established.

FACT 1: TVM is always strictly stationary and ergodic.

FACT 2: E[Xt|Xt−1] ≡ 0; {Xt} is a martingale difference
sequence.

FACT 3: Under general conditions, any continuous instan-
taneous nonlinear transformation of {Xt} is an ARMA(m−
1,m− 1) process.

Theorem 7.1. Let P = (pij), where pij = Pr(Xt+1 ∈
Rj |Xt ∈ Ri). Let Yt = h(Xt), where h is a continuous func-
tion. Assume that P is irreducible, {Yt} admits finite second
order moments and that E(h(εt)) �= 0. Let γk = γk,Y be the
lag-k auto-covariance of {Yt}. Then, there exist constants
ci, i = 1, . . . , cm−1 such that {γk} satisfies the Yule-Walker
equation:

γk = c1γk−1 + · · ·+ cm−1γk−m+1,(16)

for k ≥ m.

The above theorem indicates the possibility of clustering
effects. The order of the ARMA model is potentially useful
for the determination of the number of regimes for the TVM
in practical applications.

Note that by replacing the argument Xt−1 of the piece-
wise constant function σ(·) in (15) by Ut−1, where {Ut} is a
hidden time series independent of {Xt}, a hidden TVM re-
sults. It parallels the well-known stochastic volatility model.

8. CONCLUDING REMARKS

At the dawn of time series modelling, masters like Udny
Yule (1927) were aware that linear models are unrealistic.
Whittle (2009) recounted that ‘nonlinearity was forced on
him observationally when a seiche study (Whittle, 1954)
revealed the existence of subharmonics.’ He took a decisive
step and suggested a piecewise linear differential model
in 1954, referring to the master piece by Andronov and
Khaikin (1937) for the necessary theory. In a different
context, Tukey (1961) proposed the regressogram, which
is piecewise constant. Akaike told me in the 1970s that the
‘secret’ of his success in controlling a complex cement kiln is
a piecewise linear filter rather than the multivariate linear
AR models. He alluded to this in his discussion of Tong
and Lim (1980). I have never doubted the inevitability
of the threshold principle in time series analysis just as I
have never doubted non-linearity. The proliferation of the
threshold family, over the past 30 years, merely illustrates
once again the universal truth that simplicity is not only
beautiful but also productive.

Looking ahead, I can see that the threshold principle
will probably continue to make worthwhile contributions in
time series analysis over the next 30 years. In particular,
I am optimistic that it will lead to advances, for example,
in nonstationary-nonlinear time series modelling, multivari-
ate time series modelling, spatial-temporal series modelling,
panel time series modelling and others.
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