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Inversion of Bayes formula and measures
of Bayesian information gain and pairwise
dependence
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∗
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By inverting the Bayes formula in a point-wise manner,
we develop measures quantifying the information gained by
the Bayesian process, in reference to the Fisher information.
Simple examples are used for focused illustrations of the
ideas. Numerical computation for the measures is discussed
with formulae. By extending the information gain concept
to the broader context of distribution theory, we arrive at a
pairwise dependence measure, which can handle the case of
functional dependence and becomes Pearson’s φ2 when the
joint probability density function is defined.
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1. INTRODUCTION

In standard Bayesian notation, we use π(θ) to denote
the prior probability density function (pdf) of parameter
θ with support S(Θ), L(y|θ) the likelihood function (i.e.
the pdf of data given the parameter) with support S(Y |θ),
p(θ|y) the posterior pdf with support S(Θ|y) of parameter
given the data, and f(y) the unconditional pdf for the data
with support S(Y ). Both θ and y can be vectors. Note that
in general, the projection of S(Y |θ) into S(Y ) is a subset,

i.e. S(Y |θ)
pj.
⊂ S(Y ), and the equality S(Y |θ) pj.

= S(Y ) may
hold for some θ. In regard to integral or probability, the
latter is essentially the same as when the complement of the
projection of S(Y |θ) into S(Y ) is a set of measure zero. If the
joint support S(Θ, Y ) equals the product space S(Θ)×S(Y ),

then S(Y |θ) pj.
= S(Y ) for all θ; and vice versa. A similar

relationship is true between S(Θ|y) and S(Θ).
From the joint pdf identity, L(y|θ)π(θ) = p(θ|y)f(y), the

Bayes formula

p(θ|y) = π(θ)L(y|θ)/
∫
S(Θ|y)

π(θ)L(y|θ)dθ,

follows by a substitution of f(y), which is expressed
as the integral of the joint pdf with respect to θ over
∗Corresponding author.

S(Θ|y). We can re-write the above joint pdf identity as
π(θ)L(y|θ)/p(θ|y) = f(y), where (θ, y) is in the joint sup-
port S(Θ, Y ). Now for any fixed θ, we can integrate both
sides of the re-expressed joint pdf identity with respect to y
over S(Y |θ) and obtain the prior pdf at θ,

π(θ) =
∫
S(Y |θ)

f(y)dy

{∫
S(Y |θ)

L(y|θ)
p(θ|y)

dy

}−1

(1.1)

≤
{∫

S(Y |θ)

L(y|θ)
p(θ|y)

dy

}−1

,(1.2)

where the equality holds if and only if S(Y |θ) pj.
= S(Y ),

or the complement of the projection of S(Y |θ) into S(Y )
is a set of measure zero. In particular, under the so-called
“positivity assumption”, (cf. Tanner and Wong, 1987; and
Tanner, 1996, Chapter 5), where S(Θ, Y ) = S(Θ) × S(Y ),
we have

π(θ) =

{∫
S(Y |θ)

L(y|θ)
p(θ|y)

dy

}−1

, ∀θ ∈ S(Θ).(1.3)

In the words of Meng (1996, p. 311), the explicit form
(1.3) ‘was “mysteriously” missing in the general literature.’
This may be due to the tradition in the Bayesian literature
to express the posterior distribution in terms of the prior
distribution. We shall follow Ng (1995, 1997) and call (1.3)
the (point-wise) Inverse Bayes Formula (IBF), in order to
emphasize its unconventional character, in that the prior
distribution is expressed in terms of the the posterior dis-
tribution. In fact, it is the harmonic mean of p(θ|y) with
respect to L(y|θ).

The not-so-well-known (1.3) deserves to be better known
because it can lead to a number of important consequences
as those already discussed in the above-cited papers and in
Tan, Tian and Ng (2009). The objective of this paper is
to continue the exploration of other consequences, including
some unexpected.

The plan of our paper is as follows. In Section 2, we in-
troduce two natural functions measuring Bayesian informa-
tion gain, in reference to Fisher’s information function, and
justify them with the aid of (1.2). And we propose two nor-
malized information gain indices between 0 and 1, Γπ and
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Γπ(y), the former measuring the total information gain ag-
gregated over all parameter values and all possible data and
the latter measuring the information gain on all parameter
values for the datum y at hand. After fixing the ideas with
simple examples, we discuss numerical computation. In Sec-
tion 3, we extend the concept of total Bayesian information
gain to the context of distribution theory, yielding a natu-
ral pairwise dependence measure, ψ2, between two random
variables or random vectors under conditional specification.
This measure is normalized to a pairwise dependence index,
δ, which takes a value between zero and unity. The index δ
equals zero if and only if we have an independent pair. It
equals unity for a highly dependent pair, which can even be
functionally dependent. When the unconditional joint pdf
is defined, ψ2 is the same as Pearson φ2. However, unlike
Pearson’s φ2, our ψ2 does not require the existence of the
joint pdf. The difference is demonstrated by a functional de-
pendence example, for which φ2 is not defined. To illustrate
the main ideas, we include what we hope are instructive ex-
amples. In Section 4, we draw some conclusions and describe
an alternative sensitivity function.

2. INFORMATION GAIN

The Fisher information function, I(θ), measures one par-
ticular kind of information regarding the parameter in the
sense that if I(θ1) is larger than I(θ2), then the precision
of likelihood inference is higher at θ1 than at θ2. It is de-
fined as the expectation of the squared derivative of the
log-likelihood function, where the expectation is taken with
respect to the pdf of the data with the same θ as used in
the likelihood. There are two essential ingredients in Fisher’s
construction: (i) the function (of the parameter and the
data) to be aggregated and (ii) the distribution with which
to perform the aggregation. The function in (i) should reflect
the sensitivity to changes in the parameter. As a measure
of inference precision whose inverse measures the variabil-
ity (or uncertainty of inference), the positive definiteness of
the resulting function upon aggregation is particularly re-
quired. For want of better terms, we shall call the function
in (i) the sensitivity function and the distribution in (ii) the
aggregating distribution.

Similarly, in quantifying the information gained by a
Bayesian process, the pertinent question is what sensitivity
function should be aggregated with respect to which aggre-
gating distribution. Since the input to a Bayesian inferential
process is the prior pdf, π(θ), and the output from it is
the posterior pdf, p(θ|y), in the light of an observation y,
it is natural to consider the change (p(θ|y) − π(θ)) as the
sensitivity function. Following Fisher, it is natural to use
the likelihood L(y|θ) as the aggregating distribution (over
all possible data). The choice entails the following Bayesian
Information Gain on Parameter relative to the prior π:

BIGPπ(θ) ≡ EL(y|θ)[p(θ|y) − π(θ)](2.1)
= EL(y|θ)[p(θ|y)] − π(θ).

Here and later, we use the notation Eν to denote the expec-
tation with respect to the pdf ν. Note that the first term
on the right-hand side of (2.1) is not difficult to obtain by
simulation if the variate y given θ can be generated. The
subscript π in BIGPπ(θ), which indicates the dependence
of the information gain function on the choice of the prior
distribution π, can be dropped whenever the context is clear.
Clearly, before we can accept BIGPπ(θ) as a measure it must
be non-negative, since π(θ) reflects the available information
about θ without any data. We now show by means of (1.2)
that BIGPπ(θ) ≥ 0 always.

Let AM and HM be respectively the arithmetic mean and
the harmonic mean of a function of a random variable with
respect to the distribution of the random variable. It is well
known that

(2.2) AM ≥ HM.

Treating the posterior pdf as a function of the data and
the likelihood as the pdf of the data and by virtue of (1.2),
we can express (2.1) as

BIGPπ(θ)(2.3)

=
∫
S(Y |θ)

p(θ|y)L(y|θ)dy − π(θ)

≥
∫
S(Y |θ)

p(θ|y)L(y|θ)dy −
{∫

S(Y |θ)

L(y|θ)
p(θ|y)

dy

}−1

= AM − HM ≥ 0,

where the equality in the second step holds if and only if
S(Y |θ) pj.

= S(Y ), or the complement of the projection of
S(Y |θ) into S(Y ) is a set of measure zero. In the last step,
the equality BIGPπ(θ) = 0 holds for all θ if and only if y and
θ are independent, i.e. no information is gained if y carries no
information about the parameter. Since BIGPπ(θ) measures
the information gain at each θ and is always non-negative,
we may consider the total Bayesian Information Gain, or
BIGπ for short, by integrating the function BIGPπ(θ) (or
summing if we are dealing with a discrete distribution):

BIGπ ≡
∫
S(Θ)

BIGPπ(θ)dθ(2.4)

=
∫
S(Θ)

{∫
S(Y |θ)

L(y|θ)p(θ|y)dy

}
dθ − 1.

Note that BIGπ is invariant with respect to a one-to-one
transformation of the data y as well as the parameter θ.
Now, in the repeated integral, the outside one does not have
the interpretation of an expectation as the inside one does,
and thus the result may be positive infinity. Thus it is of-
ten more convenient to use the following normalized form,
called the Information Gain Index, or Γπ for short, which is
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confined to the closed unit interval [0, 1]:

Γπ ≡ BIGπ/(1 + BIGπ)(2.5)

= 1 −
{∫

S(Θ)

{∫
S(Y |θ)

L(y|θ)p(θ|y)dy

}
dθ

}−1

.

The index is 0 if the parameter and the data are indepen-
dent, and 1 if the total information gain is positive infinity.
Different choices of the prior distribution π(θ) can be com-
pared by reference to Γπ, as demonstrated later in examples.

A Bayesian data analyst may sometimes find the infor-
mation gain for data at hand more attractive than the total
information gain aggregated over all possible data. In that
case, it is more relevant to use the following Bayesian In-
formation Gain conditional on the data,

BIGDπ(y) ≡ Ep(θ|y)L(y|θ) − Eπ(θ)L(y|θ)(2.6)
= Ep(θ|y)L(y|θ) − f(y)

and the corresponding Bayesian Information Gain Index
conditional on the data,

(2.7) Γπ(y) ≡ BIGDπ(y)/(1 + BIGDπ(y)),

which obviously involves less and easier calculation, espe-
cially for y in a numerical form. Using a completely anal-
ogous argument for BIGPπ(θ) in (2.3), we can show that
BIGDπ(y) ≥ 0 always, confirming its legitimacy as an in-
formation gain measure.

We can also get BIGπ through BIGDπ(y),

BIGπ =
∫
S(Y )

BIGDπ(y)dy(2.8)

=
∫
S(Y )

{∫
S(Θ|y)

L(y|θ)p(θ|y)dθ

}
dy − 1,

provided that the order of integration can be interchanged.
However, there is no direct relationship between Γπ(y) de-
fined in (2.7) and the Γπ defined in (2.5); specifically

(2.9) Γπ �=
∫
S(Y )

Γπ(y)dy.

We demonstrate the ideas by three simple examples be-
fore considering practical computation at the end of this
section.

Example 1. For the Binomial likelihood

L(y|θ) =
(

n
y

)
θy(1 − θ)n−y,

the usual prior distribution is from the Beta family, Be(a,b),
of conjugate priors with pdf

π(θ) = θa−1(1 − θ)b−1/B(a, b),

where B(a, b) is the Beta function. The posterior pdf is then

p(θ|y) = θy+a−1(1 − θ)n−y+b−1/B(y + a, n − y + b).

The Bayesian information gain on parameter is

BIGPπ(θ) =
n∑

y=0

( n
y

)
θ2y+a−1(1 − θ)2n−2y+b−1

B(y + a, n − y + b)

− θa−1(1 − θ)b−1

B(a, b)

and the total Bayesian information gain is thus

BIGπ =
n∑

y=0

(
n
y

)
B(2y + a, 2(n − y) + b)

B(y + a, n − y + b)
− 1,

Since the uniform prior with a = b = 1 is commonly used
whenever there is no information on θ before collecting the
data, intuition would suggest that this prior should result in
the maximum information gain after the Bayesian process-
ing. It can be shown, however, that BIGπ as well as Γπ is a
decreasing function of a, b. That is, the prior with a < 1 and
b < 1 yields larger information gain than the uniform prior.
This includes Jeffreys prior with a = b = 0.5. Furthermore,
when a or b approaches 0, BIGπ approaches ∞ and hence
the normalized index Γπ approaches 1.

On the other hand, BIGπ is an increasing function of n,
confirming the intuition that a larger sample size n should
yield a larger information gain.

Instead of the aggregated information gain, we may some-
times wish to focus on the information gain at a particular
observation y. In this case, we first note the unconditional
pdf for the observation y:

g(y) =
(

n
y

)
B(y + a, n − y + b)

B(a, b)

and obtain the Bayesian information gain conditional on the
observation y at hand, namely

BIGDπ(y) =
(

n
y

) (
B(2y + a, 2(n − y) + b)

B(y + a, n − y + b)

− B(y + a, n − y + b)
B(a, b)

)
.

As a function of a and b, BIGDπ(y) depends on both y and
n in a much more complicated way, but it can be computed
easily using the software SAS or R.

Example 2. Consider the following likelihood function as
a dislocated exponential with a positive but unknown loca-
tion parameter and an exponential prior pdf for the positive
parameter,

L(y|θ) = e−(y−θ) for y > θ > 0;

π(θ) = λ e−λθ for θ > 0, where λ > 0.

Inversion of Bayes formula and measures of Bayesian information gain and pairwise dependence 97



Table 1.

λ 1 2 3 4 5 6 7 8 9 10
Γλ 1 0.392 0.279 0.217 0.178 0.151 0.131 0.116 0.104 0.094

Figure 1. Information Gain Index as a function of λ.

Since λ completely determines the prior distribution in this
family, we wish to find the λ which achieves the maximum of
information gain Γλ. In this case, the posterior pdf is defined
in the domain 0 < θ < y:

p(θ|y) = 1/y if λ = 1,

(λ − 1)e−(λ−1)θ/(1 − e−(λ−1)y) if λ �= 1.

In words, if λ = 1, the posterior pdf is uniform in (0, y). If
λ > 1, it is a right-truncated Exponential(λ − 1) defined in
(0, y). If λ < 1, it is proportional to the increasing function
of θ, (1−λ)e(1−λ)θ, but normalized within the interval (0, y).

For λ ≤ 1, the repeated integral in (2.5) is positive infinity
and thus the information gain index Γλ = 1. We can easily
use any software to compute Γλ for λ > 1, obtaining Table 1
and Fig. 1.

In conclusion, the measure Γλ achieves the maximum pos-
sible value of 1, if λ ≤ 1. This is quite natural since λ equals
the modal value of pdf at the origin. The greater its value,
the greater the concentration around the origin, so that a
large λ corresponds to high prior information to start with,
leading to a correspondingly small gain in the end.

For completeness of the example, the unconditional pdf
of the data, y > 0, is as follows:

g(y) = ye−y if λ = 1,

(λ/(λ − 1))e−y(1 − e−(λ−1)y) if λ �= 1.

Thus, if λ = 1, g(y) is Gamma(2); otherwise it is a mixture of
Exponential(1) and Exponential(λ) with respective weights
of w and 1 − w, where w = λ/(λ − 1) for λ > 1 and w =
1 − (1 − λ)−1 for λ < 1.

Example 3. Consider the following likelihood, which is not
so standard,

L(y|θ) = e|θ|(2πy)−1/2 exp(−θ2/2y − y/2),
y > 0, −∞ < θ < ∞.

This likelihood is related to the inference of the mean ve-
locity θ (negative sign for moving towards left) of a parti-
cle moving in a linear Brownian motion. Other parameters
have been omitted for a simpler illustration here. The sam-
ple average of first-passage times of such a particle over a
unit length of distance is distributed as an inverse Gaussian
distribution and the reciprocal of the sample average is in-
terpreted as an estimator of the velocity of the particle. See
Johnson et al. (1994, Chapter 15) for more detail.

As suggested by the range of θ, suppose that we wish
the posterior distribution of θ to be as simple as the normal
with zero mean and variance y, N(0, y), i.e.

p(θ|y) = (2πy)−1/2 exp(−θ2/2y),
−∞ < θ < ∞, y > 0.

However, in general, there may not exist a joint distribution
yielding a pair of families where each is the conditional pdf of
the other; that is, a conditional specification of the joint dis-
tribution may not be compatible without further checking.
In the present case, the Inverse Bayes Formula (1.3) yields a
proper prior pdf. Hence, L(y|θ) and p(θ|y) are compatible.
Indeed, by (1.3) we have

π(θ) =
{

e|θ|
∫ ∞

0

e−y/2dy

}−1

= e−|θ|/2,
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which is the standard Laplace (or double exponential) distri-
bution, confirming the compatibility. Note that the compat-
ibility can also be confirmed by the successful factorization

L(y|θ) × π(θ) = 2−1(2πy)−1/2 exp(−θ2/2y − y/2)

= (2πy)−1/2 exp(−θ2/2y) × 2−1e−y/2

= p(θ|y) × g(y), − ∞ < θ < ∞, y > 0,

where the unconditional pdf of data, g(y), is an exponential
distribution with mean 2.

The prior distribution so derived from the posterior dis-
tribution concentrates more around the origin than a normal
prior. Here we can envisage a particle performing a linear
Brownian motion on the surface of some medium for which
the prior expectation of the velocity (ignoring direction, i.e.
|θ|) of the particle is as close to zero as in an exponential
distribution.

Now let us find BIGπ and Γπ, according to (2.4) and
(2.5). In general, the repeated integral can be calculated
by numerical integration methods. For the present case, the
order of integration can be interchanged and we can find the
exact solution for the double integral∫∫

L(y|θ)p(θ|y)dydθ

=
∫ ∞

−∞

∫ ∞

0

e|θ|(2πy)−1 exp(−θ2/y − y/2) dydθ.

First, note that the integrand as a function of θ is symmet-
ric about zero. The double integral equals twice the double
integral that is restricted to positive θ,∫ ∞

−∞

∫ ∞

0

e|θ|(2πy)−1 exp(−θ2/y − y/2) dydθ

=
∫ ∞

0

∫ ∞

0

eθ(πy)−1 exp(−θ2/y − y/2) dydθ.

Changing variables (θ, y) to (t, s) by θ = ts and y = s with
the Jacobian being equal to s, we have∫ ∞

0

∫ ∞

0

eθ(πy)−1 exp(−θ2/y − y/2) dydθ

= π−1

∫ ∞

0

{∫ ∞

0

exp{−s(t2 − t + 1/2)} ds

}
dt

= 3/2.

Hence we obtain the following from (2.4) and (2.5),

BIGπ = 3/2 − 1 = 1/2, and Γπ = 1 − (3/2)−1 = 1/3.

In real applications, numerical computation is usually
employed. Suppose we can sample from π(θ) and from
L(y|θ) for a given θ; i.e. the joint distribution of (Θ, Y ) can
thus be sampled. For the BIGDπ(y) in (2.6) with a partic-
ular y, we can compute f(y) by Monte Carlo integration of
L(y|θ) through sampling from the given prior π(θ),

f(y) ≈
M∑
i=1

L(y|θi)/M, θi ∼ π(θ).(2.10)

Then through sampling from p(θ|y) = π(θ)L(y|θ)/f(y) with
the computed f(y), we can obtain the conditional expecta-
tion given y by Monte Carlo again,

Ep(θ|y)[L(y|θ)] ≈
M∑
i=1

L(y|θi)/M,(2.11)

θi ∼ p(θ|y).

For cases where the propagation of computational error by
a numerical f(y) is of concern, we can instead sample from
p(θ|y) by any one of the following methods that do not re-
quire the normalizing constant 1/f(y), namely the Rejection
Method of von Neumann (1951), Adaptive Rejection Sam-
pling (Gilks & Wild, 1992), Metropolis Sampling (Metropo-
lis et al., 1949, 1953), Metropolis-Hastings Sampling (Hast-
ings, 1970), the SIR method (Rubin, 1987 and 1988), and
others. The MCMC methods and Gibbs sampling may be
used in conjunction with the above variate-generating meth-
ods in the above sampling processes if stationarity can be
assured (or trusted) on termination of iterations; see Gel-
man et al. (2004).

In regard to the information gain BIGPπ(θ) in (2.1) for
a particular θ, we can compute EL(y|θ)[p(θ|y)] in the for-
mula by drawing a sample (y1, . . . , yM2) from L(y|θ) and
taking average of p(θ|yj). Since each f(yj) in the expression
p(θ|yj) = π(θ)L(yj |θ)/f(yj) is computed as in (2.10) with
a sample from π(θ), say a common sample (θ1, . . . , θM1) for
all f(yj), we therefore have

EL(y|θ)[p(θ|y)](2.12)

≈ π(θ)
M1

M2

M2∑
j=1

{
L(yj |θ)/

M1∑
i=1

L(yj |θi)

}
,

where θi ∼ π(θ), yj ∼ L(y|θ).
Now for the total Bayesian Information Gain, BIGπ, the

numerical computation for the repeated integral in (2.4) or
(2.8) needs caution, as the second integration may lead to
infinity. Assume, however, the repeated integral in (2.4) is
finite. Then by p(θ|y) = π(θ)L(y|θ)/f(y), we have∫

S(Θ)

{
EL(y|θ)[p(θ|y)]

}
dθ(2.13)

=
∫
S(Θ)

{∫
S(Y |θ)

L2(y|θ)
f(y)

dy

}
π(θ)dθ.

This integral can be interpreted as the expectation of the
function L(Y |Θ)/f(Y ) with respect to the joint density
π(θ)L(y|θ) for (Θ, Y ). When it is finite, we can draw a sam-
ple {(θ1, y1), . . . , (θM , yM )} from π(θ)L(y|θ) by first gener-
ating θi from π(θ) and then yi from L(y|θi), i = 1, . . . , M .
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Table 2.

λ 1 2 3 4 5 6 7 8 9 10
δ 1 0.392 0.279 0.217 0.178 0.151 0.131 0.116 0.104 0.094
ρ2 0.500 0.200 0.100 0.059 0.038 0.027 0.020 0.015 0.012 0.010

Applying (2.10) to each f(yk) with the same sample {θi}
from π(θ) before plugging in L(Y |Θ)/f(Y ), we have∫

S(Θ)

{
EL(y|θ)[p(θ|y)]

}
dθ(2.14)

≈
M∑

k=1

{
L(yk|θk)/

M∑
i=1

L(yk|θi)

}
,

where θk ∼ π(θ), yk ∼ L(y|θk).

3. PAIRWISE DEPENDENCE MEASURE
AND PEARSON’S φ2

As we have seen, the concepts of Bayesian information
gain function and total information gain after the Bayesian
processing arise naturally. We have shown that the stronger
the dependence between the data and the parameter, the
more information we can gain. In this section, we discuss
how these concepts, when extended to the general distribu-
tional set-up, can be employed to measure pairwise depen-
dence between two random variables, or two random vectors.

Let X and Y be a pair of random variables, or random
vectors. We use the following notation that is more com-
mon in distribution theory: fX|Y (x|y), fY |X(y|x), fX(x),
fY (y), and fXY (x, y) shall denote either the pdf (proba-
bility density function) or the pmf (probability mass func-
tion) depending on whether the distribution indicated in
the subscript is continuous or discrete. By the same token,
Z = fY |X(y|X) is a random variable as a function of X
through its being the second argument of the pdf of the con-
ditional distribution of Y given X, and EX|Y =y[fY |X(y|X)]
denotes the expectation of Z with respect to the conditional
distribution of X given Y = y.

The X here plays the same mathematical role of Θ as in
the previous section, but is symmetrical in its relationship
with Y . In view of the total Bayesian gain in (2.4) and the
equal footing of X and Y , we define ψ2(X, Y ), the Pairwise
Dependence Measure, between X and Y as:

ψ2(X, Y ) ≡
∫

EX|Y =y[fY |X(y|X)]dy − 1(3.1)

=
∫ {∫

fX|Y (x|y)fY |X(y|x)dx

}
dy − 1

=
∫

EY |X=x[fX|Y (x|Y )]dx − 1(3.2)

=
∫ {∫

fX|Y (x|y)fY |X(y|x)dy

}
dx − 1,

provided that the two repeated integrals in the above are
equal. Here and in the sequel, we shall omit the specification
of various supports of the random variables or vectors in
the integrals for simplicity. Note that ψ2(X, Y ) ≡ ψ2(Y, X)
and we simplify the notation to ψ2. Now, corresponding to
the Information Gain Index (2.5), we define the Pairwise
Dependence Index, δ, by

δ ≡ ψ2/(1 + ψ2) = 1/(1 + 1/ψ2)(3.3)

which takes values in the range 0 ≤ δ ≤ 1. Note that δ =
0 if and only if X and Y are independent. The example
below shows that for bivariate standard normal distribution
with correlation coefficient ρ, we have δ = ρ2, suggesting a
benchmark comparison of δ with ρ2.

Example 4. Consider the bivariate normal distribution
with zero means, unit variances and correlation coefficient
ρ. Although the bivariate pdf exists in this case, we shall
use only the conditional pdf’s in order to keep to the spirit
of our conditional approach. Now, Y |X = x ∼ N(ρx, 1−ρ2)
and X|Y = y ∼ N(ρy, 1 − ρ2). Thus, the repeated integral
in (3.1) is the same as that in (3.2) due to the symmetry in
x and y, and is given by

I ≡
∫ ∞

−∞

{∫ ∞

−∞

1
2π(1 − ρ2)

× exp
{
− (y − ρx)2 + (x − ρy)2

2(1 − ρ2)

}
dx

}
dy.

The exponential term in the integrand can be re-written as
the product:

exp{−(1/2B)(x − A)2} exp{−(B/2)y2},

where A = 2ρy/(1 + ρ2) and B = (1 − ρ2)/(1 + ρ2). Thus,

I =
∫ ∞

−∞
f1(x|y)dx ×

∫ ∞

−∞
f2(y)dy × 1

1 − ρ2
,

where f1(x|y) is the pdf of N(A, B) and f2(y) is the pdf of
N(0, B−1). This implies that I = 1/(1−ρ2), so the pairwise
dependence index is, by (3.3),

δ = 1 − 1/I = 1 − (1 − ρ2) = ρ2.

Example 2 (Continued). In Example 2, let θ and y be X
and Y , δ = Γπ and ρ2 = 1/(1 + λ2). Table 2 compares the
two quantities for various values of λ.
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Example 3 (Continued). In Example 3, Γπ = 1/3. Now,
let θ be the X variable. The pairwise dependence index be-
tween X and Y is δ = Γπ = 1/3. It turns out that the
squared correlation coefficient ρ2 = 0, clearly not as useful
as a measure of dependence. To see this, the joint pdf is

fXY (x, y) =
1

2
√

2π y
e−

1
2 (x2y−1+y), y > 0, −∞ < x < ∞.

It can be shown that E(XY ) = 0, by means of the bivariate
transformation of s =

√
y and t = x/y in the double integral.

We omit the detail.

When the joint distribution of two or more random vari-
ables (or random vectors), say (X, Y, Z), does not degener-
ate into a lower dimensional subspace, so that the joint pdf
fXY Z(x, y, z)) is defined, Pearson’s φ2 (1904) for measuring
multi-party dependence is defined as

(3.4) φ2 =
∫∫∫

f2
XY Z(x, y, z)

fX(x)fY (y)fZ(z)
dxdydz − 1.

See Joe (1989, p. 161) for a discussion of φ2 and for more
references. In the case of a pair of random variables (or
random vectors), we have

φ2 =
∫∫

f2
XY (x, y)

fX(x)fY (y)
dxdy − 1(3.5)

=
∫∫

fX|Y (x|y)fY |X(y|x) dxdy − 1 = ψ2.

Pearson’s φ2 uses the expectation of the ratio of the joint
pdf to the product of marginal pdf’s, which should be equal
to unity in the case of independence, to measure the de-
parture from independence. However, his approach cannot
accommodate functional dependence of continuous random
variables, which is a stronger form than statistical depen-
dence. On the other hand, as we have seen that the ψ2 has
the advantage of being capable of handling both types of
dependence, namely functional and statistical. Because its
development is based on conditional expectations, its ex-
tension to more than two parties, however, is not as readily
available as for φ2. The following example underlines the
difference between the two approaches.

Example 5. Let X have a continuous distribution on the
real line, which is symmetric about zero such as N(0, 1), and
let Y = X2. It is a classic example to illustrate the limita-
tions of ρ as a measure of association, because ρ2 = 0 in this
case while X and Y are obviously and strongly associated.
This is in stark contrast with the measure δ, which takes the
value 1 in this case, thus achieving the maximum of its range
as shown below. Owing to the deterministic relationship, the
joint distribution of (X, Y ) is degenerate and restricted to
the parabola, Y = X2, in the upper-half of the X ×Y plan,
and does not have a joint pdf fXY (x, y) with respect to the
familiar Lebesgue measure on the plan. Therefore, φ2 is not

defined. However, the induced conditional distributions are
discrete distributions with genuine probability mass func-
tions on the parabola. The conditional pmf fY |X(y|x) is an
atom along the parabola y = x2,

fY |X(y|x) = 1 if y = x2, and 0 otherwise.

The other conditional pmf fX|Y (x|y) is defined as:

When y > 0 : fX|Y (x|y) = 1/2
if x = −√

y or
√

y, and 0 otherwise.
When y = 0 : fX|Y (x|y) = 1

if x = 0, and 0 otherwise.

So we have EX|Y =0[fY |X(0|X)] = 1 and for y > 0,

EX|Y =y[fY |X(y|X)] = 1/2 × 1 + 1/2 × 1 = 1,

so that ∫ ∞

−∞
EX|Y =y[fY |X(y|X)]dy = ∞.

Similarly,

EY |X=x[fX|Y (x|Y )] = 1/2 for all x,

except thatEY |X=0[fX|Y (0|Y )] = 1

and ∫ ∞

−∞
EY |X=x[fX|Y (x|Y )]dx = ∞.

Hence ψ2 = ∞ and δ = 1, reflecting the deterministic
relationship between X and Y .

4. DISCUSSIONS

Inspired by the essential ideas behind Fisher’s informa-
tion function from a frequentist framework to a Bayesian
framework, we have proposed a natural measure, denoted
by BIGPπ(θ), of the average information gained at any par-
ticular value of θ when the data collection set-up is repeated
indefinitely. Under positivity condition, this gain actually
equals the arithmetic mean minus the harmonic mean of
the posterior distribution with respect to the likelihood. In-
tegrating the function BIGPπ(θ) with respect to θ we have
the total Bayesian information gain BIGπ and an index Γπ

taking value between 0 and 1 as a normalized measure. In
regard to Bayesian data analysis, we also consider a measure
of Bayesian information gain conditional to datum at hand,
denoted by BIGDπ(y), and its normalized index, Γπ(y). We
have used very simple examples for focused demonstration
on the ideas and then indicated the way forward for numer-
ical computation. Reversing the Bayes’ formula is a long-
neglected thought process by Bayesian statisticians. Our ex-
amples, especially Example 3, have highlighted the fact that
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the inverse Bayes’ formula can lead to many unexpected con-
sequences.

Noting that the amount of information gain measures the
degree of dependence between the data and parameter, we
have extended the measure to the general distribution the-
ory, in which the data and parameter are treated, on equal
footing, as a pair of random variables, or random vectors.
We are thus led to the measure, ψ2, for pairwise dependence
by defining it in terms of the two relevant conditional dis-
tributions. When the unconditional joint pdf is defined, ψ2

reduces to Pearson’s φ2. However, one advantage enjoyed
by ψ2 is that it can handle functional dependence while φ2

cannot. We have also introduced the Pairwise Dependence
Index, denoted by δ, which is capable of revealing non-linear
association. Moreover, δ can achieve its maximum of one
when the variables are functionally related, thus complet-
ing the spectrum from dependence to independence of two
random variables or two random vectors.

Of course, (p(θ|y) − π(θ)) is not the only possible sensi-
tivity function. An alternative is log(p(θ|y)/π(θ)), for which
we have the following Bayesian Information Gain on Pa-
rameter in Log:

BIGPLπ(θ) ≡ EL(y|θ) log(p(θ|y)/π(θ))(4.1)
= EL(y|θ) log p(θ|y) − log π(θ).

Its similarity to the Kullback-Leibler measure permits sim-
ilar interpretation. The requirement for BIGPLπ(θ) ≥ 0 is
guaranteed by the following inequalities

exp

{∫
S(Y |θ)

L(y|θ) log p(θ|y)dy

}
(4.2)

≥
{∫

S(Y |θ)

L(y|θ)
p(θ|y)

dy

}−1

≥ π(θ),

where the first inequality is between the geometric mean on
the left-hand side and the harmonic mean on the right-hand
side, while the second is just (1.2). Analogous to (2.4) and
(2.5), we have the Bayesian Information Gain in log,

BIGLπ

≡
∫
S(Θ)

BIGPLπ(θ)dθ(4.3)

=
∫
S(Θ)

{∫
S(Y |θ)

L(y|θ) log[p(θ|y)/π(θ)]dy

}
dθ,(4.4)

and the Information Gain Index on log scale, or LogΓπ for
short,

(4.5) LogΓπ ≡ BIGLπ/(1 + BIGLπ).

ACKNOWLEDGMENTS

The authors thank the referee and the Associate Edi-
tor for their comments. They are grateful to the referee for
his pertinent questions and constructive suggestions, which
have helped removing errors and obscurities in the compu-
tation. The joint research was conducted during HT’s visit
to The University of Hong Kong as a distinguished visiting
professor and the paper was completed during his tenure as
the Saw Swee Hock Professor at the National University of
Singapore.

Received 8 January 2010

REFERENCES

Gelman, A., Carlin, J., Stern, H. and Rubin, D. (2004). Bayesian
Data Analysis, 2nd ed., London: Chapman & Hall. MR2027492

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57 97–109.

Joe, H. (1989). Relative entropy measures of multivariate depen-
dence. Journal of American Statistical Association 84 157–164.
MR0999674

Johnson, N. L., Kotz, S. and Balakrishan, N. (1994). Continuous
Univariate Distributions Vol. 1, 2nd ed., New York: John Wiley &
Sons. MR1299979

Meng, X. L. (1996). Comments on “Statistical inference and Monte
Carlo algorithms” by G. Casella. Test 5(2) 310–318. MR1439726

Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. Jour-
nal of American Statistical Association 44 335–341. MR0031341

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H. and Teller, E. (1953). Equation of state calcu-
lations by fast computing machines. Journal of Chemical Physics
21 1087–1092.

Ng, K. W. (1995). Explicit formulas for unconditional PDF (Rev.
March 1995). Research Report No. 82, Department of Statistics and
Actuarial Science, The University of Hong Kong.

Ng, K. W. (1997). Inversion of Bayes Formula: Explicit Formulae for
Unconditional pdf, Advances in the Theory and Practice of Statis-
tics (N. L. Johnson and N. Balakrishnan, eds.) Chapter 37, pp.
571–584. New York: John Wiley and Sons. MR1481195

Pearson, K. (1904). Mathematical Contributions to the Theory of
Evolution, XIII: On the Theory of Contingency and Its Relation
to Association and Normal Correlation, in Drapers Company Re-
search Memories (Biometric Series I). London: University College
[reprinted in Early Statistical Papers (1984) by the Cambridge Uni-
versity Press, Cambridge, UK].

Rubin, D. B. (1987). Comments on “The calculation of posterior distri-
butions by data augmentation” M. A. Tanner & W. H. Wong. Jour-
nal of American Statistical Association 82 543–546. MR0898357

Rubin, D. B. (1988). Using the SIR algorithm to simulate poste-
rior distributions (with discussions). In Bayesian Statistics, Vol. 3
(J. M. Bernardo, M. H. DeGroot, D. V. Lindley & A. F. M. Smith,
eds.), 395–402. Oxford University Press, Oxford.

Tan, M., Tian, G. and Ng, K. W. (2009). Bayesian Missing Data
Problems: EM, Data Augmentation and Noniterative Computation,
London: Chapman & Hall/CRC. MR2562244

Tanner, M. A. (1996). Tools for Statistical Inference: Methods for the
Exploration of Posterior Distributions and Likelihood Functions,
3rd ed., New York: Springer. MR1396311

Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior
distributions by data augmentation (with discussion). Journal of
American Statistical Association 82 528–540. MR0898357

102 K. W. Ng and H. Tong

http://www.ams.org/mathscinet-getitem?mr=2027492
http://www.ams.org/mathscinet-getitem?mr=0999674
http://www.ams.org/mathscinet-getitem?mr=1299979
http://www.ams.org/mathscinet-getitem?mr=1439726
http://www.ams.org/mathscinet-getitem?mr=0031341
http://www.ams.org/mathscinet-getitem?mr=1481195
http://www.ams.org/mathscinet-getitem?mr=0898357
http://www.ams.org/mathscinet-getitem?mr=2562244
http://www.ams.org/mathscinet-getitem?mr=1396311
http://www.ams.org/mathscinet-getitem?mr=0898357


Kai Wang Ng
The University of Hong Kong
Hong Kong
E-mail address: kaing@hku.hk

Howell Tong
London School of Economics and Political Science
London, UK

The University of Hong Kong
Hong Kong

Inversion of Bayes formula and measures of Bayesian information gain and pairwise dependence 103

mailto:kaing@hku.hk

	Introduction
	Information gain
	Pairwise dependence measure and Pearson's 2
	Discussions
	Acknowledgments
	References
	Authors' addresses

