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A score test for variance components in a
semiparametric mixed-effects model under
non-normality
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In this paper, we propose a score test for variance com-
ponents in a semiparametric mixed-effects model when the
random-effects and measurement errors are not normally
distributed. The asymptotic null distribution of the test
statistic is shown to be a simple chi-squared distribution
with the degrees of freedom being the number of linearly-
independent variance components. The simulation results
show that the proposed score test is robust against the non-
normality of the random-effects and the measurement errors
and performs well in terms of both size and power. The score
test is illustrated via an application to a real longitudinal
data set collected in a clinical trial study.
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1. INTRODUCTION

Longitudinal data frequently arise in many scientific ar-
eas, including biology, psychology, sociology and economics
among others; examples may be found in Wu and Zhang
(2006) and references therein. The measurements of longi-
tudinal data were observed repeatedly over a time period on
a number of subjects. The within-subject measurements are
usually correlated with each other but the measurements
from different subjects are usually assumed to be uncor-
related. Modeling of such longitudinal data has played an
important role in scientific investigations.

Mixed-effects models provide an attractive tool for tak-
ing the within-subject and between-subject variations of
longitudinal data into account. Both parametric and non-
parametric regression models have been extended by in-
corporating random-effects properly into the models (Wu
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China (grant 10801093) and Leading Academic Discipline Program,
211 Project for Shanghai University of Finance and Economics (3rd
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†Zhang’s research was supported by the National University of Singa-
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and Zhang 2006). Although these parametric and nonpara-
metric mixed-effects models have been enthusiastically ac-
cepted by both practitioners and researchers (Breslow and
Clayton 1993), substantial theoretical and practical chal-
lenges remain. A natural question is whether or not the
inclusion of random-effects and the accompanying, often-
cumbersome mixed-effects modelling methodologies is nec-
essary for a particular longitudinal data set. In this paper,
we shall discuss this problem in the framework of a semi-
parametric mixed-effects model.

Suppose we have an experiment with m independent sub-
jects with the i-th subject having ni measurements over
time. Let yij denote the responses for the i-th subject at
design time points tij . Consider the following semiparamet-
ric mixed-effects (SPME) model:

(1.1) yij = η(tij)+zTijbi+εij , j = 1, . . . , ni; i = 1, . . . ,m,

where η(t) is the nonparametric fixed-effects function, mod-
eling the population mean function of the longitudinal data;
bi and zij are the q-dimensional parametric random-effects
and the associated random-effects covariates; and εij are
the measurement errors. Throughout this paper, we assume,
among others, that (1) the measurement errors εij are i.i.d.
with Eε11 = 0 and Var(ε11) = σ2; and (2) the random-effects
bi are i.i.d with Eb1 = 0 and Cov(b1) = D(θ) where θ is a
p-dimensional vector of unknown variance components vary-
ing in a parameter space Θ satisfying D(0) = 0. The mag-
nitude of θ can be used to measure the degree of overdisper-
sion and correlation. Following Lin (1997), we postulate that
each component of D(θ) is a linear function of θ. Note that
for imposing this assumption, we lose no generality since in
most practical situations, except the symmetricity, we know
nothing about D(·) and we usually form θ using the compo-
nents of D(·) on and above the main diagonal so that this
assumption is automatically satisfied. We further assume
that

(1.2) Eθ(‖b1‖r) = o(‖θ‖r), as ‖θ‖ → 0, for all r > 2.

This moment condition is satisfied if the random-effects have
an exponential-family distribution (McCullagh and Nelder
1989, Page 350), or a mixture of exponential-family distri-
butions (Johnson and Kotz 1970, Page 88).
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The SPME model (1.1) was first considered by Wang
(1998) who estimated η(t) using a smoothing spline ap-
proach. A number of approaches for fitting the SPME model
(1.1) and its various generalizations are given in Wu and
Zhang (2006, Chap. 8). In all these approaches, a smooth-
ing technique, e.g., smoothing spline (Wang 1998), is often
needed to approximate η(t) with the approximation con-
trolled by a smoothing parameter. For a grid of given val-
ues of the smoothing parameter, the SPME model (1.1)
is often fitted via the following two steps: (1) given the
variance components, η(t) and bi are computed; and (2)
for the given estimates of η(t) and bi, the variance com-
ponents are updated via some EM-algorithm. These two
steps are repeated a number of times until convergence.
The smoothing parameter is chosen according to some cri-
terion (Wu and Zhang 2006, Chap. 8). The whole process
is often-cumbersome and time-consuming mainly due to the
inclusion of the parametric random-effects, especially when
random-effects and measurement errors are not normally
distributed.

To check if the inclusion of the parametric random-effects
in the SPME model (1.1) is necessary is equivalent to test
the following hypothesis:

(1.3) H0 : θ = 0 versus H1 : θ �= 0.

When H0 is valid, the SPME model (1.1) reduces to its null
model, i.e., the following population mean model (Wu and
Zhang 2006):

(1.4) yij = η(tij) + εij , j = 1, . . . , ni; i = 1, . . . , m.

Compared with the full SPME model (1.1), the null model
(1.4) is much simpler. It can be much more easily fitted by
a number of techniques (Wu and Zhang 2006, Chap. 8).

To test H0 (1.3), one should avoid fitting the compli-
cated and time-consuming SPME model (1.1). For this end,
a score test may be preferred. In many situations, the score
test is an appealing competitor to both the likelihood ra-
tio and the Wald-type tests because it only requires fitting
the null model instead of the alternative model and esti-
mating the nuisance parameters under the null model. In
addition, all the three tests share the same local power (Cox
and Hinkeley 1974, Chap.9). Many authors have studied the
score tests in the framework of the parametric mixed-effects
model; see, for example, Lin (1997), Hall and Praestgaard
(2001), Verbeke and Molenberghs (2003), Zhu and Zhang
(2006) among others. According to our knowledge, less work
has been done in the framework of semiparametric mixed-
effects models. When the measurement errors εij are nor-
mally distributed, the score test proposed by Zhu and Fung
(2004) can be applied to test the null hypothesis in (1.3).
However, simulation studies conducted in Section 3 show
that Zhu and Fung’s (2004) testing procedure is not robust
against non-normality of the measurement errors. Therefore,

in this paper, we propose and study a score test for the vari-
ance components in a semiparametric mixed-effects model
which is robust against non-normality of the random-effects
and the measurement errors.

The proposed score test admits several advantages. First
of all, it is valid under a broad class of distributions for the
random-effects and the measurement errors. This is because
except for the first two moments, no particular distribution
assumptions are made for the random-effects and the mea-
surement errors. This is really in the spirit of generalized
estimating equations which rely only on specification of the
first two moments. The basic idea of using the score test
under “working likelihood” or “working scores” has been
used by other authors in different contexts; see, for exam-
ple, Wang and He (2007) who developed a robust rank score
test for linear quantile models with random-effects to detect
differentially expressed genes in GeneChip studies. Secondly,
the proposed score test can be simply constructed with the
nuisance parameters estimated under the simple null model.
This allows fast computation, especially when the sample
size is large. Thirdly, the test statistic asymptotically has
a simple chi-squared distribution with p degrees of freedom
where p is the number of linearly-independent variance com-
ponents in θ. Therefore it is easy to conduct the proposed
score test using the usual χ2-table. Last but not least, we
expect that the proposed score test is useful in dealing with
longitudinal data collected from scientific investigations in
biology, psychology, sociology and economics among others.
In Section 4, as an illustrative example, we shall apply the
proposed score test to a real longitudinal data set collected
in a clinical trial study.

The rest of the paper is organized as follows. The main
development of the score test and its asymptotic null dis-
tribution are given in Section 2. In Section 3, two simula-
tion studies are conducted and they show that the proposed
score test is robust against non-normality of the random-
effects and measurement errors. Some concluding remarks
are given in Section 5. The technical proof of a main result
is given in the Appendix.

2. THE SCORE TEST

Under the SPME model (1.1), set yi = (yi1, . . . , yini)
T,

ηi = (η(ti1), . . . , η(tini))
T, and Zi = (zi1, . . . , zini)

T. The
extended quasi-likelihood (Nelder and Pregibon 1987) of the
variance components σ2 and θ can be expressed as

(2.1) l(σ2,θ) =
m∏

i=1

E
{

exp
[
li(σ2;bi)

]}
,

where given the random-effects bi, li(σ2;bi) is the i-th con-
ditional extended log-quasi-likelihood given by li(σ2;bi) =
− 1

2σ2 (yi − ηi − Zibi)T(yi − ηi − Zibi) − ni

2 log σ2. Follow-
ing Solomon and Cox (1992), Brewslow and Lin (1995), by
the moment assumption (1.2) imposed on the random-effects
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and by the Laplace expansion, the extended quasi-likelihood
(2.1) can be approximated by

(2.2)
la(σ2,θ)

=
m∑

i=1

li(σ2;0)

+
1
2
tr

(
m∑

i=1

{∂li(σ2;0)
∂bi

∂li(σ2;0)
∂bT

i

+
∂2li(σ2;0)
∂bi∂bT

i

}
D(θ)

)

= − 1
2σ2

(y − η)T(y − η) − n

2
log σ2

+
1

2σ4
(y − η)TΩ(y − η) − tr(Ω)

2σ2
,

where η = (ηT
1 , . . . ,ηT

m)T, y = (yT
1 , . . . ,yT

m)T, and Ω =
diag(Z1D(θ)ZT

1 , . . . ,ZmD(θ)ZT
m).

Note that in the above extended quasi-likelihood expres-
sions, the nuisance parameter η and the response vector
y are suppressed for simplicity of the presentation. When
the measurement errors εij are normally distributed, the
extended quasi-likelihood (2.1) reduces to the usual like-
lihood of σ2 and θ. In this paper, however, this normality
assumption is not imposed since it is not needed. In fact, the
approximate extended quasi-likelihood (2.2) is used only for
deriving the score test statistic and the related estimators
for the variance components and some nuisance parameters.
It is not needed when we later derive the asymptotic distri-
bution of the proposed score test.

The score test can be constructed in four simple steps: (1)
estimate the nuisance parameters under H0; (2) calculate
the score function under H0 with the estimated nuisance
parameters; (3) calculate the information matrix of θ under
H0 with the estimated nuisance parameters; and (4) form
the score test using the score function and the information
matrix.

First of all, we describe how to implement Step (1). Under
H0, the SPME model (1.1) reduces to the null model (1.4)
where σ2 is a 1-dimensional nuisance parameter while η(t)
is an infinite-dimensional nuisance parameter. We will also
use the nuisance parameter τ = Var(ε211) in the development
of the score test. We first construct the estimator of η(t)
under the null model (1.4) and then give the estimators of
σ2 and τ . Under the null model (1.4), various approaches
for estimating η(t) have been surveyed in Wu and Zhang
(2006). In this paper, we shall adopt the well-known local
linear method (Fan 1992) which has many good properties
such as automatic boundary correction, design-adaptiveness
among others.

The local linear method for estimating η(t) can be briefly
described as follows. Assume that for any fixed time point t,
η(t) has a second continuous derivative in a neighborhood of
t. Then by Taylor’s expansion, η(tij) can be locally approxi-
mated by a linear function, i.e., η(tij) ≈ η(t)+η

′
(t)(tij−t) =

xT
ijπ in the neighborhood of t, where xij = (1, tij − t)T and

π = (π0, π1)T with π0 = η(t), π1 = η
′
(t). The local linear

estimator of η(t) is then defined as η̂(t) = π̂0 = eT1,2π̂, where
e1,2 = (1, 0)T, and π̂ is the minimizer of the weighted least
squares criterion

∑m
i=1

∑ni

j=1[yij − xT
ijπ]2Kh(tij − t) where

Kh(·) = K(·/h)/h with K(·) being the kernel function, usu-
ally a symmetric probability density function, and h is the
bandwidth, specifying the size of the local neighborhood of
t and controlling the smoothness of η̂(t).

By simple calculation, we have η̂(t) = eT1,2(X
TWX)−1×

XTWy where the weight matrix W = diag(Kh(t11 − t), . . . ,
Kh(t1n1 − t), . . . , Kh(tm1 − t), . . . , Kh(tmnm − t)) and X =
(XT

1 , . . . ,XT
m)T, with Xi = (xi1, . . . ,xini)

T. The bandwidth
h can be chosen by various methods, e.g., GCV; for more
details, the reader is referred to Wu and Zhang (2006).

We are now ready to construct the estimators for σ2 and
τ . At η(t) = η̂(t), the maximum extended quasi-likelihood
estimator of σ2 and the method of moment estimator of τ
under H0 are respectively

(2.3)

σ̂2 = n−1(y−η̂)T(y−η̂), τ̂ = n−1
m∑

i=1

ni∑
j=1

[
yij−η̂(tij)

]4

−σ̂4,

where η̂ = (η̂T
1 , . . . , η̂T

m)T with η̂i = (η̂(ti1), . . . , η̂(tini))
T

and n =
∑m

i=1 ni, the total number of measurements for the
whole dataset.

In Step (2), the r-th entry of the score function uθ =
(uθ1 , . . . , uθp)T is easily calculated as

uθr =
∂la(σ2,θ)

∂θr

∣∣∣
θ=0, σ2=σ̂2, η=η̂

=
1

2σ̂4
(y − η̂)T

{
Ω̇r −

In

n
tr(Ω̇r)

}
(y − η̂),

where In is the n × n identity matrix, and Ω̇r =
diag(Z1ḊrZT

1 , . . . ,ZmḊrZT
m) with Ḋr = ∂D(θ)

∂θr
|θ=0, r =

1, 2, . . . , p.
Throughout this paper, let D = {(tij , zij), j = 1, 2, . . . ,

ni; i = 1, 2, . . . ,m} denote the collection of the observed co-
variates and diag(A) denote the diagonal matrix formed by
the diagonal entries of A. In Step (3), the required infor-
mation matrix of θ is given by V = Vθθ −Vθσ2V−1

σ2σ2Vσ2θ

where, by applying Lemma 1 in the Appendix, we have

Vσ2σ2 = E

(
∂la(σ2,θ)

∂σ2

∂la(σ2,θ)

∂σ2
|D

)∣∣∣
θ=0, σ2=σ̂2, τ=τ̂

=
nτ̂

4σ̂8
,

Vσ2θr
= E

(
∂la(σ2,θ)

∂σ2

∂la(σ2,θ)

∂θr
|D

)∣∣∣
θ=0, σ2=σ̂2, τ=τ̂

=
τ̂

4σ̂8
tr(Ω̇r),
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Vθrθs = E

(
∂la(σ2,θ)

∂θr

∂la(σ2,θ)

∂θs
|D

)∣∣∣
θ=0, σ2=σ̂2, τ=τ̂

=
1

2σ̂4

{
tr(Ω̇rΩ̇s) − tr(Δ̇rΔ̇s)

}
+

τ̂

4σ̂8
tr(Δ̇rΔ̇s),

where Δ̇r = diag(Ω̇r). It follows that

(2.4) V = (vrs)1≤r,s≤p, with vrs =
1

2σ̂4
v(1)

rs +
τ̂

4σ̂8
v(2)

rs ,

where v
(1)
rs = tr(Ω̇rΩ̇s)− tr(Δ̇rΔ̇s), and v

(2)
rs = tr(Δ̇rΔ̇s)−

1
n tr(Ω̇r)tr(Ω̇s).

Finally in Step (4), the score test statistic is constructed
as

T = uT
θV

−1uθ.(2.5)

Note that when εij are normally distributed, we have τ =
2σ4. In this case, the above score test statistic T can be
simplified as

T̃ = uT
θṼ

−1
uθ,(2.6)

where Ṽ is the associated simplified information matrix
of θ with Ṽ = (ṽrs)1≤r,s≤p, ṽrs = 1

2σ̂4 {tr(Ω̇rΩ̇s) −
1
n tr(Ω̇r)tr(Ω̇s)}. The simplified score test statistic (2.6) is
similar to the one proposed by Zhu and Fung (2004) for a
semiparametric mixed-effects model with the normality as-
sumption imposed for the measurement errors.

The asymptotic distribution of the score test statistic
(2.5) is very simple and is given in Theorem 1 below.

Theorem 1. Under H0 and the conditions in the Appendix,
as n → ∞, the score test statistic T asymptotically follows
a chi-squared distribution with p degrees of freedom.

3. SIMULATION STUDIES

In this section, we shall present two simulation studies.
We aim to examine the performance of the proposed score
test T defined in (2.5) via comparison against the test T̃ de-
fined in (2.6) which is constructed based on the assumption
that the measurement errors εij are normally distributed.

We generated the data from the following SPME model:

(3.1)
yij = 1+2 cos(2πtij)+zTijbi+εij , j = 1, . . . , ni; i = 1, . . . , m,

which is a special case of the SPME model (1.1) with η(t) =
1 + 2 cos(2πt). The design time points are first scheduled as
tj = j/(K + 1), j = 1, . . . ,K with K = 10 here. To obtain
an imbalance design, we randomly remove some design time
points for a subject at a rate of 10%, so that there are about
9 measurements per subject and 9m measurements for all
the subjects. The resulting design time points are denoted
as tij , j = 1, 2, . . . , ni; i = 1, 2, . . . ,m as in (3.1).

Simulation 1 aims to study the case when the random-
effects are univariate and the random-effects covariates are
time-independent. In this case, we write bi and zij as bi and
zi respectively. We generate zi from the standard uniform
distribution and the random-effects bi (i = 1, . . . , m) from
the following normal mixture:

F = 0.25N(−0.75γ, ν2) + 0.75N(0.25γ, ν2),

which has mean 0 and variance θ = 3
16γ2 + ν2. The tuning

parameters γ and v can be flexibly specified so that various
cases of F can be considered. In Simulation 1, the following
three cases of F are considered:

Case 1: γ = ν = 0 so that θ = 0, specifying the null model.

Case 2: γ = 0, ν2 = 2/5 so that θ = 2/5, specifying an
alternative model with normal random-effects bi.

Case 3: γ = 1/2, ν2 = 9/64 so that θ = 3/16, specify-
ing an alternative model with non-normal random-
effects bi.

These three cases of F allow us to assess the empirical sizes
and powers of T and T̃ and compare their performance
under normality and non-normality assumptions. To assess
the effect of the number of subjects and the effect of the
measurement error structure, we consider two choices of
the number of subjects: m = 50 and m = 100, and two
structures of the measurement errors: N(0, 1) and 1√

3
t3 (In

both cases, the generated measurement errors have variance
σ2 = 1). For each choice of m, F , and the measurement
error structures, 1, 000 replications are conducted. In each
replication, the null model (1.4) is fitted using the local lin-
ear method described in Section 2 in which the well-known
Epanechnikov kernel K(t) = 3

4 (1 − t2)+ is used with the
bandwidth h chosen by GCV. The score test statistics T and
T̃ are then computed using the method described in Section
2. The null hypothesis is rejected if the computed test statis-
tic is larger than the critical value of the χ2

1-distribution at
the nominal significance level α = 5%. The empirical powers
of T and T̃ are defined as the proportions of the rejections
in 1, 000 replications.

Table 1 presents the results of Simulation 1. As expected,
when the measurement errors are normally distributed, T
and T̃ have the same empirical powers and sizes. However,
when the measurement errors are 1√

3
t3 distributed, the em-

pirical sizes (Type-I errors) of T̃ are inflated, and much
larger than those of T which are not inflated. This explains
why the empirical powers of T̃ are generally larger than
those of T , possibly resulting in misleading results due to
misspecifying the distribution of the measurement errors.
In this sense, the proposed score test T outperforms the
existing score test T̃ proposed by Zhu and Fung (2004) con-
structed based on the normality assumption of the measure-
ment errors. This situation becomes more serious when the
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Table 1. Empirical powers of T and T̃ in 1, 000 replications
at α = 5%

(Simulation 1)

m random-effects measurement errors T T̃

50 Null N(0, 1) .042 .042
(Case 1) 1√

3
t3 .041 .067

Normal N(0, 1) 0.874 0.874
(Case 2) 1√

3
t3 0.848 0.882

Non-normal N(0, 1) 0.754 0.754
(Case 3) 1√

3
t3 0.693 0.752

100 Null N(0, 1) .044 .044
(Case 1) 1√

3
t3 .044 .092

Normal N(0, 1) 0.988 0.988
(Case 2) 1√

3
t3 0.951 0.978

Non-normal N(0, 1) 0.947 0.947
(Case 3) 1√

3
t3 0.858 0.910

random-effects are multivariate and the random-effects co-
variates are time-dependent as indicated by the results of
Simulation 2 presented below.

Simulation 2 aims to study the case when the random-
effects are bivariate and the random-effects covariates are
time-dependent. For simplicity, we specify the time de-
pendent covariates as zij = [1, tij ]T. The random-effects
bi (i = 1, . . . ,m) are generated from the following two-
dimensional normal mixture:

F = 0.25N2

(
− 0.75γ, ν2Λ

)
+ 0.75N2

(
0.25γ, ν2Λ

)
,

which has mean 0 and covariance matrix

D(θ) =
(

θ1 θ2

θ2 θ3

)
=

3
16

γγT + ν2Λ.

Set Λ = ( 1 0.2
0.2 0.5 ). As in Simulation 1, via specifying γ and

ν, we specify the following three cases of F for study:

Case 1: γ = 0, ν = 0 so that θ = (θ1, θ2, θ3)T = 0, speci-
fying the null model.

Case 2: γ = 0, ν2 = 0.1 so that θ = (0.1, 0.02, 0.05)T,
specifying an alternative model with normal
random-effects bi.

Case 3: γ = (0.4,−0.2)T, ν2 = 0.05 so that θ = (0.08,
−0.005, 0.0325)T, specifying an alternative model
with non-normal random-effects bi.

Other tuning parameters are the same as those in Simula-
tion 1. Since the dimension of θ is now p = 3, under H0,
the score tests T and T̃ now asymptotically follow the χ2

3-
distribution. Therefore, the null hypothesis is now rejected
if the computed test statistic is larger than the critical value
of the χ2

3-distribution at α = 5%.
Table 2 presents the results of Simulation 2, which are

similar to those of Simulation 1 in Table 1 except the em-
pirical sizes of T̃ in Simulation 2 are much more inflated

Table 2. Empirical powers of T and T̃ in 1, 000 replications
at α = 5%

(Simulation 2)

m random-effects measurement errors T T̃

50 Null N(0, 1) .046 .046
(Case 1) 1√

3
t3 .053 .222

Normal N(0, 1) 0.938 0.938
(Case 2) 1√

3
t3 0.917 0.959

Non-normal N(0, 1) 0.706 0.706
(Case 3) 1√

3
t3 0.743 0.818

100 Null N(0, 1) .043 .043
(Case 1) 1√

3
t3 .048 .261

Normal N(0, 1) 0.998 0.998
(Case 2) 1√

3
t3 0.987 0.997

Non-normal N(0, 1) 0.928 0.928
(Case 3) 1√

3
t3 0.918 0.960

from α = 5% than in Simulation 1. Thus, more serious mis-
leading results (much larger Type-I errors) from using T̃ in
Simulation 2 than in Simulation 1 may be yielded when the
measurement errors are not normally distributed. Therefore,
from these two simulation studies, we shall recommend to
use T instead of T̃ in practice unless we have strong evidence
showing that the measurement errors are indeed normally
distributed.

4. AN ILLUSTRATIVE EXAMPLE

We now apply the proposed score test T to an AIDS
clinical study conducted by the AIDS Clinical Trials Group
(ACTG). The study enrolled 517 HIV-1 infected patients
in three antiviral treatments. The data considered here just
consist of one of the treatment arms in which 166 patients
were treated with a highly active antiretroviral therapy
(HAART) for 120 weeks during which CD4 cell counts were
monitored at weeks 0, 4, 8, and every 8 weeks thereafter.
However, each individual patient might not exactly follow
the designed schedule, and missing clinical visits for CD4 cell
measurements frequently occurred which makes the result-
ing longitudinal data set unbalanced. The number of CD4
cell count measurements per patient varies from 1 to 18.

The longitudinal data set was originally analyzed by Park
and Wu (2006) using a nonparametric mixed-effects model.
We are interested in whether the CD4 cell counts are dif-
ferent among the patients. We handled this problem via the
following SPME model:

(4.1)
yij = η(weekij)+ zTijbi + εij , j = 1, . . . , ni; i = 1, 2, . . . , 166,

where zij = (1, weekij , week2
ij)T,bi = (bi1, bi2, bi3)T with

mean vector 0 and covariance matrix
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D(θ) =

⎛
⎝ θ1 θ2 θ3

θ2 θ4 θ5

θ3 θ5 θ6

⎞
⎠ ,

and considering the null hypothesis H0 : θ1 = θ2 = · · · =
θ6 = 0. Since there is no information about the normality
of the random-effects bi and the measurement errors εij ,
we applied the proposed score test T to the above problem.
The computed test statistic T = 9445.3 and the associated
P-value is 0, suggesting a strong rejection of the null hy-
pothesis. That is, the inclusion of the random-effects in the
SPME model (4.1) is strongly supported.

5. CONCLUDING REMARKS

In this paper, we propose and study a score test for vari-
ance components testing in the framework of the SPME
model (1.1). The proposed score test can be easily con-
structed with the score function, the information matrix and
the nuisance parameters computed under the null model.
It has simple asymptotic null distribution and hence can
be conducted easily without assuming normality of the
random-effects and measurement errors. Although it may
be tedious, the proposed score test can be extended to the
framework of other semiparametric or time-varying coeffi-
cients mixed-effects models (Carter and Yang 1986; Wu and
Zhang 2006). When heterogeneity across clusters is taken
into account with the inclusion of random-effects in the
model, the score test may be used to ascertain whether the
fixed-effects model without the random-effects is adequate
to fit the data. Other potential applications include a ho-
mogeneity test for variation over groups. For example, in
genetic epidemiology, such tests can be used to study if fa-
milial aggregation of a disease, which may be determined
by genetic factors, is homogeneous in different families; in
Cobb-Douglas production function studies, it is of practical
interest to test the homogeneity of the industrial variation
in the effects of input on production. When the null hypoth-
esis H0 : θ = 0 is rejected, it is of practical interest to test if
some of the variance components in θ are zero. The studies
in these directions are warranted.
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APPENDIX: PROOF OF THEOREM 1

In this appendix, we shall outline the proof of Theorem
1. First of all, we present the following lemma which was
used to calculate the score function in Section 2 and will be
used in the proof of Theorem 1. The proof of Lemma 1 can
be found in Sun and Zhang (2010), an online version of this
paper.

Lemma 1. Suppose ε1, . . . , εM are i.i.d. with E(ε1) = 0 and
Var(ε1) = σ2. Then for any two constant and symmetric
matrices A : M × M and B : M × M , we have

E
{

εTAεεTBε
}

= 2σ4
[
tr(AB) − tr{diag(A)diag(B)}

]
+ τ tr{diag(A)diag(B)} + σ4tr(A)tr(B),

where ε = (ε1, . . . , εM )T and τ = Var(ε21).

We now list some notations and the required conditions
for Theorem 1. Let α = (α1, . . . , αp)T be any given constant
vector. Set

Rn =
p∑

r=1

αr

{
Ω̇r −

tr(Ω̇r)
n

In

}
,

ε = (εT1 , . . . , εTm)T, εi = (εi1, . . . , εini)
T.

Further, write V(1) = (v(1)
rs )1≤r,s≤p,V(2) = (v(2)

rs )1≤r,s≤p,
where v

(1)
rs and v

(2)
rs are as defined in Section 2. Finally define

the norms of a vector a and a matrix A as ‖a‖ = (aTa)
1
2 and

‖A‖ = {tr(AAT)} 1
2 respectively. The following regularity

conditions are imposed for Theorem 1:

(1) The number of measurements per subject is bounded,
i.e., ni < C, i = 1, . . . , m for some 0 < C < ∞. Again
n =

∑m
i=1 ni denotes the total number of measurements

for the whole dataset.
(2) The measurement errors εij are i.i.d. with

Eε411 < ∞; the random-effects covariates satisfy
max1≤i≤m;1≤j≤ni E‖zij‖4 < ∞.

(3) The largest eigenvalues of matrices Ḋr, r = 1, . . . , p
are bounded, and for some δ > 0, we have
max1≤i≤m,1≤j,l≤ni E(‖zij‖‖zil‖)2+δ < ∞.

(4) There exist nonnegative definite matrices V(1)
0 and V(2)

0

such that n−1V(1) P→ V(1)
0 , n−1V(2) P→ V(2)

0 , and V0 =
1

2σ4 V
(1)
0 + τ

4σ8 V
(2)
0 is positive definite.

(5) The marginal density f(t) has a compact support T ,
and is Lipschitz continuous on T . In addition, f(t) �=
0, t ∈ T .

(6) The second derivative function η
′′
(t) is bounded on T

and η
′′
(t) �= 0, t ∈ T .

(7) The kernel function K(u) is a symmetric probability
density function having a compact support, e.g., [−1, 1].

(8) The bandwidth h satisfies h → 0, nh2 → ∞, and
nh8 → 0.

Condition (1) is satisfied by almost all longitudinal data;
otherwise, the associated data are often referred to as func-
tional data. Conditions (3) and (4) are needed for apply-
ing the Lindeberg-Feller central limit theorem when the
random-effects and measurement errors are non-normal. We
assume Conditions (3) and (4) for easy presentation al-
though it is difficult to check in practice. From the proof
of Theorem 1, we can see that V(1) and V(2) must be
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nonnegative matrices since Var(Jn1|D) = 2σ4αT V(1)α and
Var(Jn2|D) = ταT V(2)α must be nonnegative for all α.
Therefore, Condition (4) is easily satisfied. Conditions (5)–
(8) are regularity conditions for local linear smoothing for
the null model (1.4). Under the null model, we can show
that the optimal bandwidth for η̂(t) is h = O(n− 1

5 ) which
satisfies Condition (8).

Proof of Theorem 1. Using Lemma 1 in Fan and Zhang
(1999) and the same arguments as those establishing The-
orem 1 of their paper, we can show that under H0 and for
any given point t ∈ T , the asymptotic conditional bias and
variance of η̂(t) are

(A.1)
Bias{η̂(t)|D} = OP (h2), Var{η̂(t)|D} = OP {(nh)−1},

uniformly in t.
By some standard arguments and by the definitions of

σ̂ and τ̂ in (2.3), it is straightforward to show that under
H0 both σ̂2 and τ̂ are consistent for σ2 and τ respectively.
Therefore, by Condition (4), we have n−1V P→ 1

2σ4 V
(1)
0 +

τ
4σ8 V

(2)
0 = V0. Theorem 1 will follow if we can show that

under H0, n−1/2uθ
L−→ N(0,V0) as n → ∞. It is equivalent

to show that under H0, for any given α = (α1, . . . , αp)T , we
have

(A.2) n−1/2αTuθ
L−→ N(0,αT V0α).

For this end, we write

αTuθ =
1

2σ̂4

{
εT(Rn − Qn)ε + εTQnε

+ E[(η̂ − η)T|D]RnE[(η̂ − η)|D]
+ [η̂ − E(η̂|D)]TRn[η̂ − E(η̂|D)]
− 2εTRnE[(η̂ − η)|D]
− 2εTRn[η̂ − E(η̂|D)]

+ 2[η̂ − E(η̂|D)]TRnE[(η̂ − η)|D]
}

≡ 1
2σ̂4

{
Jn1 + Jn2 + Jn3 + Jn4

− 2Jn5 − 2Jn6 + 2Jn7

}
,

where Qn = diag(Rn), a diagonal matrix having the same
diagonal entries as Rn.

By straightforward calculation, we have

Jn1 =
m∑

i=1

⎧⎨
⎩

ni∑
j=1

ni∑
l=1,l �=j

zTij
( p∑

r=1

αrḊr

)
zilεijεil

⎫⎬
⎭ ,

with E(Jn1|D) = σ2tr(Rn − Qn) = 0 and Var(Jn1|D) =
E(J2

n1|D) = 2σ4αTV(1)α obtained by applying Lemma 1.
By Condition (4), as n → ∞, we have E{n−1/2Jn1} = 0

and Var{n−1/2Jn1} → 2σ4αT V(1)
0 α. Thus, under Condi-

tions (1)-(4) and by the Lindeberg-Feller central limit theo-
rem, as n → ∞, n− 1

2 Jn1
L−→ N(0, 2σ4αTV(1)

0 α).
Since Qn is a diagonal matrix and tr(Qn) = 0, we

have E(Jn2|D) = σ2tr(Qn) = 0 and Var(Jn2|D) =
E(J2

n2|D) = ταTV(2)α obtained by applying Lemma 1
again, where τ = Var(ε211) as defined before. By Condi-
tion (4), we have Var{n−1/2Jn2} → ταTV(2)

0 α, as n →
∞. Since Qn is a diagonal matrix, Jn2 is a sum of in-
dependent variables. By Conditions (1)–(4), and by the
Lindeberg-Feller central limit theorem, as n → ∞, we
have n− 1

2 Jn2
L−→ N(0, ταTV(2)

0 α). Since Cov(Jn1, Jn2) =
E{E(Jn1Jn2|D)} = 2σ4E[tr((Rn − Qn)Qn)] = 0, Jn1 and
Jn2 are uncorrelated. Therefore, as n → ∞, we have
n− 1

2 {Jn1 + Jn2} L−→ N(0,αT[2σ4V(1)
0 + τV(2)

0 ]α). Then we
will have n− 1

2 αTuθ
L−→ N(0, 1

4σ8 αT{2σ4V(1)
0 + τV(2)

0 }α), if
we can show that

(A.3) n−1/2(Jn3 + Jn4 − 2Jn5 − 2Jn6 + 2Jn7) = oP (1).

The expression (A.2) then follows by noticing that
1

4σ8 {2σ4V(1)
0 + τV(2)

0 } = 1
2σ4 V

(1)
0 + τ

2σ8 V
(2)
0 = V0. The

proof of (A.3) is much involved and is hence omitted here
for space saving. Interested readers are referred to Sun and
Zhang (2010), an online version of this paper, for the com-
plete proof of Theorem 1.
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