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A likelihood ratio test for the proportion of

non-differentially expressed genes

ANASTASIOS MARKITSIS AND YINGLEI LAT*

The proportion of non-differentially expressed genes ()
is an important quantity in microarray data analysis. Al-
though there is a wealthy literature about the estimation of
7o, the issue of hypothesis testing for 7y has not been well
addressed. In this study, we develop a likelihood ratio test
for my based on our recently proposed censored beta mix-
ture model, and evaluate its power through a comprehensive
simulation study. In order to understand the performance of
our method for general experimental data, we simulate gene
expression measurements based on a widely used data simu-
lation scheme. The results confirm that a satisfactory power
can still be achieved when there is a considerable sample
size, a considerable number of genes, or a relatively large
proportion of non-differentially expressed genes. Based on
two experimental datasets, we illustrate that our method
can be particularly useful for testing the hypothesis of no
differentially expressed genes and calculating the sample size
in an experimental design.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62F03,
62F40; secondary 62F30.

KEYWORDS AND PHRASES: Proportion of true null hypoth-
esis, Likelihood ratio test, Mixture model, Censored beta
distribution, Power, Microarray gene expression data.

1. INTRODUCTION

With the introduction of microarray technology, large
scale gene expression data have been collected for many bi-
ological and medical studies. Based on the expression data,
a large number of statistical tests are performed to iden-
tify differentially expressed genes (Hendenfalk et al., 2001;
Mootha et al., 2003). In microarray experiments, a param-
eter crucial both for controlling false positives and for cal-
culating the appropriate sample size is the proportion of
non-differentially expressed genes (7). Most papers regard-
ing the proportion of true null hypotheses () focus on
the estimation of my (Pounds and Morris, 2003; Storey and
Tibshirani, 2003; Liao et al., 2004; Scheid and Spang, 2004;
Langaas et al., 2005; Nettleton et al., 2006; Lai, 2006; Lai,
2007; Guan et al., 2008; Markitsis and Lai, 2010).

To model the marginal distribution of p-values obtained
in microarray data analysis, a mixture model is commonly
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used. [Although some non-parametric methods (e.g. Lan-
gaas et al., 2005) have been proposed for estimating g, it
is not clear to us how to extend these methods for test-
ing mp.] In the general mixture-model literature there are
many papers published to address the issue of testing for ho-
mogeneity (for example, Chen et al, 2001; Qin and Smith,
2004). Furthermore, Lo et al. (2001), and Lo (2005) have
proposed likelihood ratio tests for the number of compo-
nents in normal mixtures. However, the issue of a hypoth-
esis test for my has not been well addressed in the litera-
ture. To our best knowledge, only Xu and Liu (2008) have
proposed a likelihood ratio test for the mixing proportion
in a general two-component mixture model. However, the
proposed test is based on a generalized pivotal quantity.
Furthermore, the statistical inference about 7 has its own
unique features. In Markitsis and Lai (2010), we introduced
a new method, which is a modification of the BUM method
of Pounds and Morris (2003). The new method utilizes an
artificially censored beta mixture model, and has demon-
strated a better performance than most existing 7y estima-
tion methods in both our simulation studies and applica-
tions to experimental datasets. In this study, we introduce
and discuss the properties of the likelihood ratio test for
testing Hy : mo = ko vs. H, : mg # ko based on our recently
proposed censored beta model (Markitsis and Lai, 2010).

Remark. The method proposed by Xu and Liu (2008) is a
different approach that requires the specified forms of com-
ponent distributions. However, a p-value distribution from
a microarray data set can be complicated, and it is difficult
to specify an accurate model for this distribution. Addi-
tionally, Xu and Liu (2008) proposed this method for esti-
mating a general mixing proportion but not specifically the
proportion of non-differentially expressed genes . Further-
more, our method was developed based on the assumption
mo = f(1) as discussed by Langaas et al. (2005), which is an-
other clear difference between our method and the method
proposed by Xu and Liu (2008).

2. METHODS
2.1 g and BUM

Suppose that a statistical test is performed to evaluate
whether a gene is differentially expressed in two groups. Let
u1 and pe be the population mean expression levels of the
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Table 1. Numbers of true/false null hypotheses and
negatives/positives in a typical situation of multiple
hypothesis testing

True Null False Null Total
Negative U T m—R
Positive 1% S R
Total mo m — mo m

gene in groups 1 and 2, respectively. Then, the null and
alternative hypothesis are:

Ho @ py = pg, vs. Hy @ py # pa.

A positive occurs when Hj is rejected in favor of H,, and a
negative when Hj is not rejected.

Since the number of genes m studied in an experiment
can be usually up to tens of thousands, and these genes are
tested simultaneously, a multiple hypothesis testing setting
arises, and four possible outcomes are possible (Benjamini
and Hochberg, 1995). The outcomes in the case where m
genes are simultaneously tested are shown in Table 1. Genes
having a p-value less than a given threshold are declared
significantly differentially expressed, and the quantity R is
the number of these genes among the m genes being tested.
The quantity mg is the number of genes that are truly non-
differentially expressed. However, mq is unknown (and so
are U, V, T, S) in general, and only R (and m — R) can be
observed. The quantity

0 :mo/m

is called the proportion of true null hypotheses, or the pro-
portion of non-differentially expressed genes, which is impor-
tant in sample size estimation (Wang and Chen, 2004; Jung,
2005) and false discovery rate (FDR) estimation (Storey and
Tibshirani, 2003).

The estimation of 7y is generally based on the observed
m p-values and different models have been proposed for
f(p), the marginal distribution of p-values. Without any
constraints imposed, 7 is usually not identifiable due to
a lack of degrees of freedom (although the p-value distribu-
tion under the null hypothesis generally follows a uniform
distribution). Since the probability that a truly differentially
expressed gene produces a large p-value should decrease as
p — 1, it is common to assume that f(1) = g (or practically
f(1) = mp). Based on this assumption, a widely used conser-
vative approach is to estimate 7wy by f (1) after an estimation
of the marginal p-value distribution f(p). Two representa-
tive methods based on this approach are the beta uniform
model (BUM) proposed by Pounds and Morris (2003) and
a nonparametric method proposed by Langaas et al. (2005).
The simple BUM assumes:

flxla,y) =7+ (1 — 7)oz,
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with 0 < @ < 1 and 0 < v < 1. Note that this is a
mixture of a Uniform[0,1] and a Beta(a,1) distribution.
With ¢ = logit(a)) and ¢ = logit(y), BUM uses a nu-
merical optimization technique to find 1Z and 5 that maxi-
mize the log-likelihood I(¢, @) = > log[f(p|a,v)]. The es-

timates of o and v are @ = exp(¢)/(1+ exp(¥)), and

7 = exp(¢)/(1 + exp(¢)). Then, the estimate of 7y is given
by

= f1) =7+ (1-9a

Remark. Notice that the assumption f(1) = mp can also
be considered as an upper bound of the true proportion. It
has been long argued whether the term conservative esti-
mation or simply the assumption m9 = f(1) should be used.
[There was a short discussion about this issue in Langaas
et al. (2005).] We eventually chose to use the assumption
mo = f(1) for its simplicity. Furthermore, this assumption
is generally valid when the sample size is relatively large or
the true value of 7 is close to one.

2.2 A censored beta mixture model

To improve BUM, we proposed (Markitsis and Lai, 2010)
to artifically censor the p-values that are less than a cut-off
point A. In other words, even though the actual p-values less
than A are available, we do not use those values; our model
only uses the number of such p-values. (We do not consider
p-values < X as missing data). Then, we have the mixture
model:

f(p) =vg1(p) + (1 —7)g2(p),

where

_ Jcensored, 0<p<A
SRS A<p<i1

is a left-censored uniform U[0, 1] distribution, and,
censored, 0 <p<A\
27 apet, a<p<i
is a left-censored Beta(a, 1) distribution (0 < a < 1). Al-
though we do not assume a specific form for the density
of f(p) in [0,A), we know that Pr(0 < p < Alg1) = A
and Pr(0 < p < A|lg2) = A®. The marginal probability is
Pr(0 < p < A) = yA + (1 — y)A“. In this study, we set
A = 0.05, which is conventionally considered small (e.g., a
threshold value for declaring statistical significance in prac-
tice), and has been shown to give a satisfactory performance
in both simulation and application studies (Markitsis and
Lai, 2010).

Remark. Notice that our purpose is to use a simple mixture
model for the marginal distribution of p-values and achieve
a satisfactory statistical inference of 7y [which is assumed to
be f(1) in many published papers (e.g. Langaas et al., 2005)



and also in this study]. Based on our experience in the beta-
uniform mixture model, small p-values have a considerable
impact on the estimation of my. This impact can be greatly
reduced by the introduction of artificial censoring. This has
also been demonstrated in our estimation study (Markitsis
and Lai, 2010).

2.3 Estimating model parameters

We can use the Expectation-Maximization (EM) algo-
rithm for a mixture model (McLachlan and Krishnan, 2008)
to estimate the parameters v and a. The latent indicator
variables z;, 1 < i < m (where m is the total number of
genes) are defined as:

. {0’
i 1,

Let z = {z1,22,...,2m}. The log-likelihood of our model
given the “complete” data {p,z}, is:

if p; belongs to the component gy,

if p; belongs to the component go.

I(v,alp,2z) = log { H [(yg)' % ((1 — v)gz)“]}

With the introduction of z, the E-step and M-step can be
easily implemented and then the EM algorithm can be run
iteratively. Let 4 and & be the MLE estimates of v and
«, respectively, returned by the EM algorithm. Then, the
estimate of 7 is given by:

= (1) =4+ (1 -A)a.

More details about the estimation procedure and the related
issues can be found in Markitsis and Lai (2010).

2.4 Test statistic

Suppose that we want to test

Ha:ﬂo#k(h

for ko € (0,1). Under our censored beta model for the
marginal distribution of p-values in a two-group microarray
experiment, the likelihood is given by

(1)
E(’Yﬂ a|p) -

H()ZTFO:]{JO VS.

A+ =px I [+ =7apd ™,

#ASpi<1

where by = #{i: 0 < p; < A}, 1 <i < m, and p = {p1,p2,

..yDm}. Let @ denote the parameter vector (v, «). Since A
is fixed at 0.05, the likelihood ratio test statistic for testing
Hy vs. H, is given by

(2) A(p) = [sup L(8|p)]/[sup L(6]p)],
[SH) [S)
where the parameter space ® = (0,1) x (0,1), and 69 =

{(v,) : v+ (1 —7)a=ko,0 < a<1,0<~vy<1} with the
details provided below.

2.5 Maximizing the restricted likelihood

Clearly, the likelihood in the denominator of equation
(2) is maximized by the (v,a) pair returned by the EM
algorithm in the my estimation procedure described in Sec-
tion 2.3. To maximize the likelihood in the numerator, we
note that under our model, mp = f(1); under Hy, 7o = ko.
Therefore, to find supg, £(0|p) we need to find the (v, )
pair that maximizes the likelihood, subject to the constraint
f(1) = ko. This constraint is equivalent to

(3)

To incorporate constraint (3) into an EM algorithm for max-
imizing the restricted likelihood, we use the method of La-
grange multipliers (see the supplementary materials for a
general description of this method).

From Section 2.3, the log-likelihood of our model, given
the z;’s is:

v+ (1 =)o =ko.

Z 1 — 2;)log(vg1) +Zz110g (1 —7)g2].
i=1 i=1

We define the Lagrangian
H(y,a,m) =1+n[y+ (1= y)a— ko,

where 7 is the Lagrange multiplier. Then, we take the partial
derivatives of H(vy,a,n) w.r.t. 7, «, and 7, and set each of
them equal to zero, obtaining three equations. After some
algebra (see the supplementary materials for details), we
arrive at the following cubic equation for a:

(4) Bl()é3 —+ [BQ — Al —
+[A1 + koBy —

(ko + 1)By]a?
(ko + 1)Bgm(k0 - 1)]0[ + kQBQ = 0,

where A1 = ZZZI Ziy B2 Zi:/\gpig Ziy and Bl =
10g(A)(3_.0<ps<n 2i) T (Din<p, <1 %i 10g(pi))-

Using Cardano’s method (see the supplementary materi-
als for details), we solve for a.. Letting & denote the solution,
the estimate for v is ¥ = (kg — &) /(1 — &) [based on Equa-
tion (3)]. The pair (3, &) maximizes the likelihood given the
z;’s, subject to constraint (3).

In the first iteration of the EM algorithm for maximiz-
ing the restricted likelihood, the z;’s are all set equal to 0.5,
and equation (4) is solved to obtain 4 and &. Then, z are
updated using ¥ and & in the EM algorithm mentioned in
Section 2.3, and the process is iterated. At its convergence,
the EM algorithm produces the final pair of (¥, &), which
maximize the restricted likelihood. In practice, the EM al-
gorithm converges numerically when ﬁék) (the estimate of g
in the current iteration) is within a preset error threshold
(say 1 x 1079) of ﬁékil) (the estimate of 7y in the previous
iteration).

After the parameter estimation in ® and Gg, the likeli-
hood ratio test statistic is given by:
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N vy a1 b - ANA G—1
AA+ (1 —A)A¢ v+ (1—7%)ap;

A(p):[~/\ ( _~))\& H - ( ~)~ &1 |
A+ (1-79) repicr LT+ (L =9)ap;

2.6 Computing the p-value for the test

In likelihood ratio tests in general, it is well-known that
under regularity conditions, the test statistic —2log(A) un-
der Hy has an asymptotic X<21 distribution where ¢ is the
difference in dimensionality between ® and ©q in Equation
(2) (Lehmann and Romano, 2005). Clearly, in our likelihood
ratio test for mp, we have ¢ = dim(0@) —dim(6g) = 2—1 = 1.
However, in our situation, the regularity conditions do not
hold since our censored beta model density is not differen-
tiable for 0 < p < A.

Therefore, to compute the p-value for the test, we use
the parametric bootstrap method proposed by McLachlan
(1987). The logic behind the parametric bootstrap is to cre-
ate an estimate of the distribution of the test statistic un-
der Hy. To do this, we assume that the data follow a cen-
sored beta distribution. Then, we estimate the censored beta
model parameters from the observed data under Hy, and we
generate a large number of samples from the censored beta
model with those parameters. The set of the test statis-
tic values computed from the generated samples serves as
a sample of observations from the distribution of the test
statistic under Hj.

The procedure is as follows:

1. Compute 4 and & (Section 2.5), the estimates of v and
«a under Hy;

2. Compute 4 and & (Section 2.3), the estimates of v and
o under H,;

3. Calculate the value of A [Equation (5)] and let LR, =
—2log(A);

4. Generate B parametric bootstrap samples by repeating
the procedure below B times.

o Generate an observation from the
Binomial(m,7); call this my.

o Generate 7 observations from the Uniform[0,1]
distribution. These represent p-values from the g;

component.

e Generate ™y observations (m; = m—my) from the
Beta(a, 1) distribution. These represent p-values
from the g component.

5. For each of the B samples, compute the test statistic
value Ay, 1 < b < B. Let LR, denote the value of
—2log(Ap) for the b-th sample.

6. The p-value for the test is given by

(6)

Notice that the observed LR, itself is included as an obser-
vation from the null distribution, along with the LR}’s from
the bootstrap samples. This explains why we have “41” in
both the numerator and denominator of equation (6).

p-value = [#{b: LRy, > LR,} + 1]/(B +1).
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Remark. Based on the requirement of parametric boot-
strap (McLachlan, 1987), the simulation configuration (in
the parametric bootstrap procedure) should be consistent
with the estimation under the null hypothesis. From the
modified EM algorithm, the estimate of the mixing propor-
tion for the g component (under the null hypothesis) is 5.
(Note that we do not define g; and gy as the p-value dis-
tributions of nondifferentially and differentially expressed
genes, respectively. We actually use the mixture of g; and
g2 to model the marginal distribution of p-values.) There-
fore, myg, the number of observations from the g; compo-
nent, should be generated from the binomial distribution
Binomial(m,4). This configuration is also confirmed by our
additional simulation result presented in the supplementary
materials. When data are generated exactly from the beta-
uniform model, the p-values computed based on the null
hypothesis scenario follow a uniform distribution.

2.7 Testing Hy : mg = 1 vs. H, : mg # 1

In the case of the test Hy : mp = 1 vs. H, : mg # 1, under
H, we have

JAO)=r+0=ya=1L

The equation v + (1 — y)a = 1 can be re-written as (1 —
a)—(1—a) =0, or, (1—a)(y—1) =0. The latter equation
implies that either v or a (or both) are equal to 1. Hence,
the likelihood equation (1) reduces to

L(y,alp) = (N)™,

and equation (5) simplifies to

IT [+0-9ap].

A+ (1- w@r*
A<p; <1

A(p)z[ .

Therefore, it is clear that Step 1 in the previous p-value
calculation procedure can be omitted in this special testing
scenario.

Remark. Notice that testing mg = 1 is also equivalent to
testing a simple uniform p-value distribution (for all genes)
in our study (The one-sample Kolmogorov-Smirnov test can
also be considered in this situation). For some microarray
data sets (e.g. our first application), the proportion of dif-
ferentially expressed genes can be small and then g is close
to one. Then, testing my = 1 can be biologically important.
An application to such an experimental microarray data set
has been presented later for an illustration.

2.8 Power evaluation

The power evaluation with data generated exactly from
the beta-uniform models is presented in the supplementary
materials. Here, we consider a simulation scenario in which
data are not generated from a beta-uniform model. This is
intentionally performed so that the robustness of our test
statistic can be evaluated.



To evaluate the power of the test
Ho:’/TO:k()VS. HaZT('()?éko,

when the true value of 7y is ¢, we first generate K datasets
where my = ¢, using the gene expression data simulation
procedure below. For each of the K datasets, we compute
the p-value, as described in Section 2.6. Let py be the p-value
obtained for the k-th dataset, 1 < k < K. An estimate of
the power of the test Hy : w9 = ko vs. Hy : mg # ko at
significance level o when the true value of 7y is ¢ is

ﬂll = [#{k * Pk é OZ}]/K,

where 1 < k < K. To obtain a power curve for a given value
of kg, we evaluate the power as described above, for each c
(true mp) alternative in the set {ko —0.05, ko —0.04, ... ko +
0.04, ko + 0.05}. For example, for kg = 0.6, we evaluate the
power for ¢ € {0.55,0.54,...,0.64,0.65}.

Procedure for Gene Expression Data Simulation

We simulate the expression measurements for m genes
based on the widely used scheme below:

1. Generate m expression profiles for two sample groups
with n observations per group as follows:

(a) For non-differentially expressed genes (mg = m x
¢), generate observations from the standard nor-
mal distribution N(0,1) for both sample groups.

(b) For differentially expressed genes (m —myg), gener-
ate observations from the standard normal distri-
bution N(0,1) for the first sample group, and ob-
servations from a normal distribution N(u, 1) for
the second sample group. (For each differentially
expressed gene, its p is first randomly simulated
from a uniform distribution U[0.5,1.5] and then
fixed for the simulation of expression data from
N(p,1).)
2. Use the two-sample Student’s t-test (assuming equal
variances) to obtain the p-values for the simulated m
genes.

To consider the dependence structure among different genes,
we can use a widely used block dependence structure for sim-
ulations (Allison et al., 2002; Langaas et al. (2005)). How-
ever, based on our additional simulation results presented
in the supplementary materials, a satisfactory performance
can still be achieved in the situation of general positive de-
pendence structures. Therefore, for simplicity, we present
the simulation results based on the independence structure
in this study. Notice that the simulated data are not from a
censored beta distribution; this has been intentionally done
in order to understand the performance of our method when
the underlying population is different from our proposed
model.

Remark. The marginal p-value (or test statistic) distribution
from a microarray data set can be complicated, and it is
difficult to propose an accurate model for this distribution.
Therefore, we prefer a simple model so that the test statistic
for my can be powerful. Based on the widely used block-
dependent multivariate normal distributions, we conducted
a simulation study to evaluate the robustness of our test.
However, we also understand that the data distribution of
a microarray data set is usually much more complicated.
The simulation configuration used in our study is just a
much simplified setting to evaluate the performance of our
method when the true model is not a uniform-beta mixture.

3. RESULTS

To study the behavior of our likelihood ratio test for mg,
we generate data and evaluate the test power for different
combinations of sample size (n = 10 + 10, 15 + 15 and 20 +
20) and number of genes (m = 2,500, 5,000, and 10,000),
at different values of k.

3.1 Effect of sample size

We first investigate the effect of sample size in the case
of the test Hy : mg = 0.6 vs. H, : mp # 0.6 for ¢ € {0.55,
0.56,...,0.64,0.65} (i.e., 11 different cases of true m). Using
the procedure above, for each value of ¢, we simulate data
for K = 300 datasets with m = 5000, using sample sizes
n = 10 4+ 10, and compute the power as described above.
Hence, we obtain power curves for significance levels a =
0.01,0.05, and 0.10. We then repeat this for sample sizes
15 + 15, and 20 + 20. (In all cases, to compute p-values, we
generate B = 300 parametric bootstrap samples). The same
procedure is used to obtain results for the test Hy : mg =
0.7 vs. H, : mg # 0.7, for ¢ € {0.65,0.66,...,0.74,0.75}.

The striking feature in Figure 1 is that for n = 10 + 10
(first column), the power curves are not centered at my = 0.6
(0.7). This can be explained as follows: Suppose we are test-
ing Hy : mo = 0.6 vs. H, : mp # 0.6, and we are evaluating
the power at ¢ = 0.6. Recall that our method estimates 7
by f (1), and is expected to give a conservative estimate for
mo; i.e., f(l) > mg. Therefore, each of the K = 300 datasets
simulated using the “Procedure for Gene Expression Data
Simulation” with ¢ = 0.6 is expected to give a marginal p-
value distribution with f(1) > 0.6. Consequently, for ¢ = 0.6
the simulated datasets “behave” (under our censored beta
model estimation) as having a m value greater than 0.6.
For some c slightly less than 0.6, the simulated datasets be-
have as having a true my = 0.6. As a result, the test has
the lowest power at some c slightly less than 0.6, and the
power curve is horizontally shifted to the left. Now, recall
that each simulated dataset consists of m p-values generated
from two-sample t-tests. When the sample size is increased,
in each simulated dataset the t-tests gain power and produce
smaller p-values. Hence, in the marginal p-value histogram,
density is shifted toward 0, and the minimum of the fitted

A likelihood ratio test for the proportion of non-differentially expressed genes 41



Power

Power

T
0.68

T
0.72
True value of ng

0.70 0.74

T
0.70
True value of mg
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True value of mg
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Figure 1. Effect of sample size (n) on power. First row: ko = 0.6. Second row: ko = 0.7. First column is for n = 10 + 10, the
second for n =15+ 15 and the third for n = 20 + 20. In all cases m = 5,000. The horizontal lines (“-",".”, and “--")
represent significance levels 0.10, 0.05, and 0.01, respectively.

curve is shifted toward the true value of my. Therefore, the
positive bias is reduced and the power curve becomes cen-
tered at ¢ = 0.6.

3.2 Effect of number of genes

In Figure 2, we observe that as the number of p-values
(number of genes), m, increases (doubles), the power curves
become visibly steeper. We can argue that as m increases,
so does the power of the test, since the number of obser-
vations (p-values) has increased. Note (Figure 2, first row)
that increasing the number of genes does not seem to affect
the location of minimum of the power curves (unless the
sample size is increased; Figure 2, second row), because the
value of m does not have any impact on the minimum of the
marginal p-value density in the simulated datasets.

3.3 Effect of kg

In Figure 3, it seems that for larger values of kg, the
power curves become closer and closer to being centered at
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ko. The power curves for kg = 0.90 are perfectly centered at
0.90. In our estimation study (Markitsis and Lai, 2010), we
have observed that the bias of the my estimate decreases as
the true value of my approaches 1. As explained above, this
shifts the power curves toward my = kg.

3.4 On the shifts of power curves

In the results above, we have noted that due to the effect
of sample size, a horizontal shift in the power curves occurs.
Another type of shift present in all the results is a vertical
shift. It is clear that, at the power curves’ minimum, the
power is lower than the nominal « level. This can be ex-
plained as follows: the parametric bootstrap samples used
to obtain the p-value for the test are from a censored beta
distribution, but the simulated dataset on which the test is
performed is not. Therefore, the loss of power in our sim-
ulations was due to the fact that the parametric bootstrap
samples are not from the same distribution as the dataset
on which we are conducting the hypothesis test. We have
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T
0.66

Power

0.68 0.70 0.72
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Figure 2. Effect of sample size (n) and number of genes (m) on power. Both rows are for kg = 0.7. First row: n = 10 + 10,
and m = 2,500; 5,000; 10, 000, for the first, the second and the third columns, respectively. Second row: n = 20 + 20, and
m = 2,500;5,000; 10,000, for the first, the second and the third columns, respectively. The horizontal lines (“. -”,*..”, and
‘. -") represent significance levels 0.10, 0.05, and 0.01, respectively.

run some simple simulations that confirm this conclusion
(results given in the supplementary materials).

3.5 Application to experimental datasets

In practice, a hypothesis test for 7y can be important in
the specific case of testing whether mp = 1 (i.e., whether
all the genes in the experiment are non-differentially ex-
pressed). Furthermore, testing my from a pilot study can
help researchers to plan an appropriate sample size for a
follow-up study. We apply our hypothesis testing procedure
to two experimental datasets. For the first dataset, many
methods give an estimate of my close to one. It is therefore
necessary to conduct the test of Hy : mg = 1. For the sec-
ond dataset, my estimates from different methods lie around
0.6 — 0.7, representing a more general situation for test-
ing my. The histogram of the permutation p-values (Storey
and Tibshirani, 2003) for each dataset are shown in Fig-
ure 4.

3.5.1 Type 2 diabetes data

The gene expression data (Mootha et al., 2003) are from
17 subjects with normal glucose tolerance (NGT) and 18
subjects with Type 2 diabetes (DM2). Expression measure-
ments were collected for 22,283 different genes. As men-
tioned above, most methods estimate my to be 1, which sug-
gests that none of the 22,283 genes is differentially expressed
in the two groups of subjects (NGT vs. DM2). We conduct
the test Hy: mg = 1 using the method described in Sections
2.6 and 2.7. The point estimate for my from our method is
0.998. Using B = 500 bootstrap samples, the p-value for the
test Hy : mp = 1 is 0.3952. Therefore, there is no strong
evidence that any differentially genes exist.

Remark. The one-sample Kolmogorov-Smirnov test can
be considered as an alternative. We used the R function
“ks.test” and obtained the p-value 0.1476 [R gave a warn-
ing that ties exist among the 22,283 permutation p-values.
After adding an observation from Normal N(u = 107°,0 =
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Figure 3. Effect of ko on power. Top row: kg = 0.6,0.7 (first and second column, respectively). Bottom row: ko = 0.8,0.9

(first and second column, respectively). For all graphs n = 15+ 15. The horizontal lines (. -”, *. .

[Tl “

, and ‘- -") represent

significance levels 0.10, 0.05, and 0.01, respectively.

10~%%) to each permutation p-value to avoid ties, the p-value
of the test was 0.1484.] This p-value does not contradict the
p-value of 0.3952 from our test.

3.5.2 Breast cancer data

We use the microarray gene expression data collected
by Hedenfalk et al. (2001) for a breast cancer study.
The data were obtained from breast cancer patients with
tumors involving mutation of either the BRCA1 or the
BRCA2 gene. The data consist of expression measure-
ments for 3,226 genes, with 7 samples (patients) for
BRCA1 and 8 for BRCA2. The dataset can be ac-
cessed at http://research.nhgri.nih.gov/microarray/
NEJM_Supplement. Since 56 genes exhibited expression mea-
surements above 20 for one or more of the 15 patients, they
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were excluded, being regarded as unreliable (Storey and Tib-
shirani, 2003). Hence, 3170 genes remained in the study.
The point estimate of 7y from our method is 0.632. Re-
garding the given data as a pilot study, we conduct the
test Ho LTy = k'() VS. Ha IYY) 7£ ko, for ko = 058,
0.59,...,0.67,0.68, and obtain the corresponding p-values.
Then, using the sample size computation method by Jung
(2005), we calculate the sample size that would be required
for a follow-up study to discover 100 of the differentially
expressed genes (i.e., r1 = 100 true positives). We control
the FDR at f = 0.01, and since ny/(n1 + na) =~ 0.5, we set
a1 and ag in Jung’s formula both equal to 0.5. To estimate
the overall effect size § in Jung’s formula, we first transform
the p-values to z-scores; i.e., compute z = ®~1(1 — p) for
each p-value, where @1 is the inverse cumulative distribu-
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Figure 4. Histograms of permutation p-values for the type 2
diabetes data (left) and the breast cancer data (right).

tion function (inverse c.d.f.) of the standard normal distri-
bution. Then, since the average z-score for the p-values from
null genes will be zero, the average of all the z-scores will
be approximately (1 —m0)d/(ny* +ny*)'/2. Using the aver-
age of the observed z-scores and the estimated value of mg,
we can obtain an estimate of ¢. Figure 5 shows the graph
of the p-values for the tests Hy: mg = ko vs. Hy: mg # ko
(ko € {0.58,0.59,...,0.68}), with the required sample size
(n1 + n2) printed in the plot. The horizontal line represents
the significance level 0.05. The test clearly rejects the null
hypothesis of g = 0.58,0.59, or 0.68. Therefore, there is
strong evidence that my is not equal to one of them. For
mo = 0.67, the p-value is 0.05, which equals to the signifi-
cance level. Therefore, there is no strong evidence that mg
is not equal to 0.67. For a conservative strategy, we would
recommend n; = ne = 20 for a follow-up study.

4. DISCUSSION

The issue of a hypothesis test for the proportion of non-
differentially expressed genes, mp, which is an important pa-
rameter in the analysis of microarray data, has not been
well addressed in the literature. In general, the major dif-
ficulty for hypothesis testing in mixture models is the fact
that the behavior of the likelihood ratio test statistic is usu-
ally unknown. In this article, we have developed a likelihood
ratio test for my based on a parametric bootstrap procedure
(McLachlan, 1987). In a comprehensive simulation study, we
have evaluated the effects of sample size, number of genes,
and null hypothesis value on the power of our test. Over-
all, our test has shown a satisfactory performance. We have
applied our method for testing whether my = 1 in the type
2 diabetes gene expression data (Mootha et al., 2003), and
found no strong evidence that any differentially expressed
genes exist. Through an application to the breast cancer
gene expression data (Hedenfalk et al., 2001), we have also

p-value

0.58 0.60 0.62 0.64 0.66

ko

Figure 5. Results for the breast cancer data: p-values for
testing Hy : mg = ko for ko € {0.58,0.59,...,0.67,0.68} and
estimated sample size for each case.

demonstrated the usefulness of our method for selecting the
appropriate sample size for a follow-up study.

In our simulation study, we have observed that when the
sample size is relatively small, the conservative (positively
biased) m estimate causes the power curves in our simula-
tions to shift to the left of the null hypothesis value of 7.
However, as the sample size increases to relatively large, the
power curves become centered at the null hypothesis value
of mg. Another observation from our simulation study is that
the power curves usually have minimums below the nomi-
nal significance level. Both observations can be explained by
the model misspecification, i.e., that our test is based on the
assumption of a censored beta mixture model, but our sim-
ulated data are from a widely used data simulation scheme.
In our future work, we will investigate possible modifications
to our test for improving the power.
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SUPPLEMENTARY MATERIAL

APPENDIX: MATHEMATICAL
DERIVATIONS

Parameter estimation

The three equations are:

m—A1

Multiplying the first equation by (1 — «) (assuming v # 0
or 1) gives:

(I =7)(m— A1) - —n(1 =)yl - ).

Substituting the LHS of the second equation for —n(1 —~),
we have:

vAL =

(1) (1= )m— Ay) — 4A; = (Bl + %)m )

Finally, by the third equation, v = 1 -+, which we substi-
tute into Equation (1), and obtain the followmg equation
[Equation (5) of the main article].

Bla3 + [BQ — Al — (k‘o + 1)31]042
+ [A1 + koB1 — (ko + 1)Bam(ko — 1)]a + koB2 = 0,

To solve this cubic equation for «, we first divide it through-
out by Bj, to obtain:

S+ ao? +bia+e = 0,

where a; = (B — Al)/B]_ — (k‘0+ 1), bl = [m(k‘o — 1) +A1 —
Ba(ko + 1)]/B1 + ko, and ¢; = koBz/B;y. Then we follow
Cardano’s method to solve for .

Cardano’s method for solving a cubic
equation

Suppose we want to solve the equation

(2) 23 +ax® +br+c=0.

(Any cubic equation can be written in this form by divid-
ing throughout by its 2% coefficient.) First, to eliminate the
quadratic term, we make the substitution z = t—a/3. Equa-
tion (2) then becomes:

3)

where p = b—a?/3 and ¢ = c+ (2a® — 9ab)/27. Now, write ¢
as the sum of two new variables, v and v; i.e., let t = u +v.
Substituting « + v for ¢ in equation (3) gives

t3+pt+q=0,
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u® +v® 4 (Buv + p)(u + v)

(4)

Since we expressed t in terms of two new variables, we need
to impose an extra condition on u and v. Cardano suggested
the condition

()
which simplifies equation (4) to
(6)

Solving 3uv + p = 0 for v and substituting into equation (6)
gives

+q=0.

3uv +p =0,

u3+03+q:0.

3

(7) ub +qud — 2

27:0.

Equation (7) can be solved as a quadratic in u?, producing
q

8 83— _24

Q u =1

Choosing the “+” sign in equation (8), and substituting for
3 into equation (6) yields

v= (%4—2@)\3/ 1-VD
(~3 — 94~ VD,

where (—3 + @z) are the complex cubic roots of 1. Notice

that choosing the “—” in equation (8) does not change the
final values of ¢ because ¢, as well as equations (6) and (5)
are symmetric in u and v.

Now, u and v must satisfy equation (5), or, equivalently,
wv = —p/3. Since p is real, in order to compute t = u +
v, only certain combinations of the values of v and v are
appropriate ( 1% value of u with 1% value of v; 2" with
3rd; and 374 with 27¢ ). Hence,

J~4+vD+i/-4-vD
(G-~ +VD+(G-i)y-4- VD
(-3 =)=+ VD + (G- {/~4 - VD,

and z =t — a/3.




Remarks.
e If D > 0, we have a real root and two (conjugate) com-

plex roots.
e If D =0, and ¢ = 0 (which imply that also p = 0), then
u = v = 0 and we have the triple root x = —%. (This

case also occurs when D = 0 and p = 0, which imply
that ¢ = 0 as well.)

e If D =0 and neither p nor g are 0, then we have three
real roots: one single and one double root.

o If D < 0, then we have three distinct real roots.

Method of Lagrange multipliers

The method of Lagrange Multipliers is used for maxi-
mizing (or minimizing) a function of two or more variables
subject to a constraint. Suppose we want to maximize the
function f(x,y) subject to the constraint g(x,y) = k. First
note that f(x,y) represents a surface in 3-D. The contour
lines of f(x,y) are the curves f(x,y) = c on the zy-plane for
different values of ¢ € R . (The horizontal plane at height
¢ cuts the surface f(z,y) along a curve; the projection of
this curve on the xy-plane is the contour line f(x,y) = ¢).
Also note that the constraint g(x,y) = k is a contour line of
9(@,y).

If we draw some of the contour lines of f(z,y), the point
(20, yo) where one of them touches (but does not cross) the
curve g(x,y) = k will be the location of the maximum (if
a maximum exists). At (xo,yo), the contour line of f(z,y)
and the contour line of g(z, y) have parallel tangent vectors.
Hence, their gradient vectors at (xq, yo) are also parallel. We
can express this relationship as

(9) Vi(z,y) =nVg(z,y),
where 7 is called the Lagrange multiplier, and

of 0
Vf(x,y) = (C{)_i",a_i)

Solving Equation (9) is equivalent to setting the partial
derivatives of the Lagrangian

H(z,y,n) = f(x,y) —ng(z,y)

equal to zero, and solving for x and y to obtain (xq,yo)-

SIMULATION BASED ON THE CENSORED
BETA MIXTURE MODEL

In this section, we present the power evaluation with data
generated exactly from the beta-uniform models. The fol-
lowing simulation configuration was considered: kg = 0.7,
m = 6000, a = 0.25, and v = 0.5, 0.525, 0.55, 0.575, 0.6,
0.625, 0.65, 0.675 and 0.7 [corresponding to mg = f(1) =
0.625, 0.64375, 0.6625, 0.68125, 0.7, 0.71875, 0.7375, 0.75625
and 0.775]. For each of 500 rounds of simulation, we first gen-
erated mg from the Binomial distribution Binomial(m, )

and then generated mg p-values from the uniform distribu-
tion UJ0, 1] and m — mg p-values from the beta distribution
Beta(a, 1) (see below “Procedure for generating censored
beta mixture data with mp = ¢”). We then computed the
p-values based on B = 500 parametric bootstrap samples.

Procedure for generating censored beta
mixture data with oy = ¢

1. Set a = 0.25.

2. Let v = (¢ — a)/(1 — @), using the value of « from the
previous step.

3. Let mg be an observation generated from a
Binomial(m, ) distribution. This will be the number
of non-differentially expressed genes.

4. For p-values corresponding to differentially expressed
genes, generate m — mg observations from a Beta(a, 1)
distribution (o = 0.25).

5. For p-values corresponding to non-differentially ex-
pressed genes, generate mg observations from a Uni-
form[0,1] distribution.

Notice that the value 0.25 is arbitrarily set since there are
infinite number of pairs (v, ) satisfying v + (1 —y)a = c.

To address the issue of type I error control more clearly,
we chose to present in Figure 1 the curves of (empirical) cu-
mulative distribution functions (ECDF') based on the above
simulation scenarios including the null hypothesis (79 = 0.7
or v = 0.6). It is clear that the p-values simulated based on
the null hypothesis scenario follow a uniform distribution.
The two-sided one-sample Kolmogorov-Smirnov test gave a
p-value 0.316. (Such p-values were also calculated for other
ko and 7 values in similar simulation scenarios. For exam-
ple, when ky = 0.55 and 0.85, the p-values were 0.846 and
0.310 for mp = 0.55 and 0.85, respectively.)

SIMULATION BASED ON THE
CORRELATED MULTIVARIATE NORMAL
DISTRIBUTIONS

We found it difficult to develop a test statistic and/or
implement the parametric bootstrap procedure with a de-
pendence structure incorporated. However, the test statis-
tic and the parametric bootstrap procedure proposed in this
study should be applicable to a general gene expression data
set. To confirm this, we include additional simulation study
results so that we can evaluate the power of our test statistic
when there is a dependence structure.

Based on our experience in the estimation study (Mark-
itsis and Lai, 2010), the block-dependence structure is a
reasonable and widely used one for simulating gene expres-
sion data (Allison et al., 2002; Langaas et al., 2005). Fur-
thermore, the correlation within a block is usually not too
strong. Therefore, we set 0.3 (for a modest dependence) or
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Figure 1. Test p-value distributions (ECDF) based on the data simulated from the beta-uniform models with: 7o = f(1) =
0.625, 0.64375, 0.6625, 0.68125, 0.7, 0.71875, 0.7375, 0.75625, 0.775, and ko = 0.7 (v = 0.5, 0.525, 0.55, 0.575, 0.6, 0.625,
0.65, 0.675, 0.7, and o = 0.25 in all cases).

0.5 (for a strong dependence) and also 0.0 (for a compari-
son) as the common correlation for each block with 25 genes
(total 6000 genes). Different sample sizes (numbers of ar-
rays) were considered: 10+10, 30430 and 50450, and the
expression variance of each gene was still fixed at one (no
other changes were made to the configuration described in
the manuscript).

48 A. Markitsis and Y. Lai

Based on Figure 2 below (the sample size is 10410, the
true proportion of non-differentially expressed genes is 0.75,
i.e. ¢ = 0.75, and the null hypothesis of my is 0.7, i.e.,
ko = 0.7), there is visible power loss when the common
block correlation is increased from 0.0 to 0.3 and 0.5. How-
ever, the overall power performance is still quite satisfactory.
A similar trend has also been observed for the results based
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on the other sample sizes, 30+30 and 50450 (results not
shown).

Remark. Notice that two-sided p-values have been consis-
tently used in this study. To understand the p-value distri-
bution under the non-null hypothesis more clearly, we simu-
late expression of 6000 genes all with p ~ U[0.5,1.5] (all dif-
ferentially expressed). We considered different sample sizes:
ny = ng = 5,10,15,20,25,30, and calculate some p-value
quantiles and generate the histograms. The 75-percentiles
of p-values are 0.402, 0.179, 0.069 0.035, 0.015 and 0.007
when the total sample sizes (ny + ng) are 10, 20, 30, 40,
50 and 60 respectively; the corresponding 95-percentiles
are 0.857, 0.712, 0.496, 0.353, 0.243 and 0.163. The his-
tograms in Figure 3 confirm further that there are still
many large p-values even when the sample size is relatively
large.
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