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Bayesian decision analysis for choosing between
diagnostic/prognostic prediction procedures∗
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New diagnostic procedures and prognostic markers are
contnually being developed for a wide range of medical
complaints. Medical institutions are therefore regularly
faced with the decision as to whether to replace an
existing procedure with a new one. The decision to adopt
a new method is primarily based on diagnostic/predictive
accuracy and cost-effectiveness, but this trade-off is not
usually considered in a formal decision-theoretic way. The
decision process for diagnostic procedures is complicated by
the fact that diagnostic decisions are typically based on
thresholding one or more continuous variables. Therefore,
a formal decision process should account for uncertainty in
the optimal threshold value for each diagnostic procedure.
We here propose a Bayesian decision approach based on
maximizing expected utility (incorporating accuracy and
costs) with respect to diagnostic procedure and threshold
level simultaneously. The Bayesian decision approach
is illustrated via an application comparing the utility
of different bone mineral density (BMD) measurements
for determining the need for preventative treatment of
osteoporotic hip fracture in elderly patients.
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1. INTRODUCTION

Diagnostic technologies evolve rapidly, forcing medical
institutions, insurance companies, policy makers, and clin-
icians to make difficult decisions as to whether and how
to incorporate the new diagnostic procedures. These new
procedures can be used to determine patient disease status
(diagnosis) or to predict adverse outcomes (prognosis). In
either situation, treatment often follows a positive diagno-
sis in attempt to prevent, delay, or ameliorate more costly
outcomes.

Often a selection of different diagnostic p rocedures is
available, but when choosing which diagnostic procedure to
employ, cost-benefit considerations are typically made out-
side a formal decision-theoretic framework (e.g. based on
informal judgments of required sensitivity and specificity).
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An additional level of complexity in the decision process
occurs because most diagnostic procedures do not directly
produce a definitive diagnosis. Instead, some more or less
arbitrary rule uses a pre-defined threshold value to convert
an underlying continuous measurement into a categorical
(usually binary) diagnostic decision. These threshold val-
ues, which are typically based on trading off sensitivity and
specificity or other more ad hoc mechanisms, can vary for
different target healthcare populations.

We propose here to incorporate threshold optimization
directly into the decision process so that the decision space
is extended to optimize over diagnostic procedure–threshold
combinations. The integration of optimal threshold level
estimation into the diagnostic/prognostic procedure deci-
sion process constitutes the primary methodological devel-
opment of this paper.

Decisions pertaining to the choice of diagnostic proce-
dure depend on the perspective of the decision-maker(s).
From the institutional perspective that we focus on, a hos-
pital department often must decide whether to adopt a new
diagnostic procedure, continue with an existing one, or pos-
sibly to employ two or more methods side-by-side. In this
paper we concentrate on the process of choosing an optimal
diagnostic procedure in the case where the institution is re-
quired to make a decision between two (or more) diagnostic
procedures for hospital/departmental-level implementation.

Bayesian decision analysis [28] has received consider-
able attention in medical statistics. An extensive litera-
ture addresses the application of Bayesian decision anal-
ysis in clinical trials where the decision to accept a new
treatment over an old one depends directly on the cost-
benefit trade-off [50, 17, 41, 42, 38–40, 53, 37, 51]. Other
medically related areas where Bayesian decision analy-
sis has been used include optimal sample size determina-
tion [29, 47, 4, 54, 16, 56], drug screening designs [48], bioe-
quivalence trials [30], evidence-based medicine [3], clinical
and public health research policy [45, 52] and choosing op-
timal experimental designs [35].

The diagnostic procedure decision problem has previ-
ously been considered from a Bayesian perspective, but only
where no optimization is required for the procedures them-
selves, i.e. when the procedures provide direct diagnosis
or when threshold levels have already been defined. Mur-
ray et al. [36] provide a Bayesian analysis approach for de-
termining the utility of a diagnostic procedure based on the
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ability to detect the presence of disease for a given preva-
lence: the difference in posterior probability of having dis-
ease given that diagnosis was positive rather than negative.
Parmigiani [44] considers a multi-stage utility-based analy-
sis of diagnostic decisions and subsequent treatment options,
where the expected utility is maximized over all possible
paths (diagnosis-treatments-outcome combinations) in the
decision tree.

In addition, a series of related papers has appeared that
examines the use of Bayesian decision analysis for variable
selection in generalized linear models [9, 11–13]. Among
these, the paper by Fouskakis and Draper [12] provides an
MEU-based approach. Their idea is to explicitly include
costs, benefits and predictive accuracy into their utility func-
tion when deciding which subset of variables to select for
the purpose of health care evaluation. They construct proxy
sets of future patients to measure predictive accuracy by re-
peatedly partitioning the data into modeling and validation
subsets for cross-validation. For each partition, a logistic
regression model is fit via maximum likelihood to the mod-
eling dataset (for a particular subset of predictors) and this
is evaluated against the validation set. The fitted posterior
probabilities of the validation set are thresholded to mimic
the discrete decision to perform or not perform a process
audit, with the probability threshold chosen to maximize
predictive accuracy. The expected utility is then maximized
over all possible subsets of variables.

There is also a long history of applying frequentist meth-
ods to the choice of diagnostic procedures. These methods
are primarily focused on Receiver Operator Characteristics
(ROC) curves and area under the ROC curve (AUC) [57, 46]
or non-inferiority methods based on differences between
AUCs [18, 19]. Except for a classification tree algorithm
by Li and Lu [27] that selects the optimal diagnostic pro-
cedure based on expected cost-effectiveness differences and
patient characteristics, we are not aware of other work that
selects the optimal diagnostic procedure based on accuracy
and cost combined. However, Li and Lu did not search for
optimal thresholding, but rather the optimal decisions based
on given thresholds.

We are unaware of any publications that are more di-
rectly related to the present work, i.e. that apply Bayesian
decision analysis to simultaneously choosing between diag-
nostic procedures and optimal thresholds. The present paper
specifically considers comparisons between diagnostic proce-
dures for which optimal thresholds should be determined.

The remainder of this paper has the following format.
Section 2 describes the data structure for the diagnostic
procedure decision process. Section 3 gives the methodology
for using plug-in estimates (non-Bayesian) of model param-
eters to obtain the MEU of diagnostic procedures, when the
procedures are based on thresholding continuous measures
but with unknown optimal thresholds. Section 4 expands
the MEU procedure in Section 3 into a Bayesian approach
by integrating over parameter uncertainty in the posterior

distribution. In Section 5 we illustrate the methodology via
an example comparing diagnostic procedures for prognosing
osteoporotic hip fracture. Finally, in Section 6 we offer some
discussion and conclusions.

2. DATA STRUCTURE

We consider the hospital level decision problem to deter-
mine which diagnostic procedure(s) should be implemented
for a particular medical problem. The decision is based on
datasets that include measurements from two or more di-
agnostic procedures for the same medical problem and the
same patient population, along with a gold standard diag-
nosis. The gold standard, could come from pathology or be
determined by clinical outcomes (as with the osteoporosis
example described in Section 5). It is important for optimal
decision making that this dataset be representative of the
population to be referred for diagnosis, unless the differences
in population composition can be properly compensated for.

Setting up the notation, for patient i = 1, . . . , I and di-
agnostic procedure j = 1, . . . , J we define binary variables:
disease state yi (with yi = 1 indicating that the patient has
the disease and 0 if not); and diagnosis dij (with dij = 1
indicating a positive diagnosis and 0 negative).

We are specifically concerned with diagnostic procedures
based on an underlying continuous variable xij . A continu-
ous diagnostic variable xij is typically dichotomized at some
(diagnostic procedure-specific) threshold aj to produce a di-
agnosis. In anticipation of our example of Section 5, we de-
velop the model for the case when a low value implies a
positive diagnosis, i.e. xij ≤ aj ⇔ dij = 1. The changes
required for the reverse situation of a high value implying
positive diagnosis are straightforward.

For subject i and diagnostic procedure j we therefore
have dij = I(xij ≤ aj), where I is the indicator function.
An optimal decision process must find an optimal procedure-
threshold combination among the set of diagnostic proce-
dures and their possible associated thresholds.

3. MAXIMUM EXPECTED UTILITY (MEU)

We consider the contributing factors towards utility in the
diagnostic procedure decision problem to be: a) cost of the
jth diagnostic procedure, cD

j ; b) cost of preventative treat-
ment, cT ; and c) cost of disease onset and progression, cP ,
where the “cost” of disease progression includes both money
and quality of life. In addition, we assume that the preventa-
tive treatment has a constant efficacy rate, Λ across subjects
and that conditional on knowing Λ, preventative treatment
acts independently across subjects1.

We proceed by defining the utility of the possible out-
comes for each of the diagnostic procedures: false negative
1This assumption could be relaxed by modeling Λ as a function of
covariates, possibly including the (continuous) diagnostic variable of
interest. Implementation would require data or/and prior knowledge
relating covariates to treatment outcomes.
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(FN): uFN
j = −(cD

j + cP ); true negative (TN): uTN
j = −cD

j ;
false positive (FP): uFP

j = −(cD
j + cT ); true positive (TP):

uTP
j =

{
−(cD

j + cT ) if treatment succeeds
−(cD

j + cT + cP ) if treatment fails.

Taking the expectation of the utility with respect to the
possible outcomes leads to

E(uj) = E(uTP
j )p(yi = 1, dij = 1) + uTN

j p(yi = 0, dij = 0)
(1)

+ uFP
j p(yi = 0, dij = 1) + uFN

j p(yi = 1, dij = 0)

= − {cD
j + cT p(dij = 1)

+ cP [(1−Λ)p(yi = 1, dij = 1) + p(yi = 1, dij = 0)]}

Note that if the costs were to vary across individuals we
could substitute “expected costs” for actual costs in Equa-
tion 1 provided the costs could be considered independent of
diagnostic variables and disease status. However, for utility
functions that are nonlinear in the costs, the expected util-
ities for each possible outcome would need to be integrated
over the joint distribution of the costs. Similarly, we can sub-
stitute “expected efficacy” for actual efficacy in Equation 1
provided that we are willing to make the assumption that
the efficacy is independent of diagnostic variables, disease
status and costs.

When the diagnostic procedure depends on an underlying
continuous diagnostic variable, the expected utility depends
on the associated threshold aj . For the case when a low value
of the continuous variable leads to a positive diagnosis then
Equation 1 becomes:

E(uj |aj) = − {cD
j + cT p(xij ≤ aj)(2)

+ cP [(1 − Λ)p(yi = 1, xij ≤ aj)
+ p(yi = 1, xij > aj)]}

As previously stated, a major component of the problem
when continuous diagnostic variables are used, is to obtain
optimal threshold values for each procedure (a∗

j ). Our ap-
proach is to optimize threshold values as part of the MEU
procedure, and we implement this as a 2-step process:

1. for each diagnostic procedure, maximize the expected
utility E(uj |a∗

j ) = max
aj

E(uj |aj)

2. select the diagnostic procedure j ∈ 1, . . . , J with the
highest expected utility at a∗

j

3.1 Condition on yi or xij ≤ aj?

Given Equation 2, we can expand p(yi = k, xij ≤ aj),
k = 0, 1, by conditioning on either the event yi = k to give
p(xij ≤ aj |yi = 1)p(yi = 1) or the event xij ≤ aj to give∫ aj

−∞ p(yi = 1|xij = x)dp(xij ≤ x). The model for condition-
ing on yi = 1 is typically easier to define when the value
of the continuous variable depends directly on whether the

subject has the disease or not. That is, the distribution for
the continuous variable differs depending on whether or not
the subject has the disease. An example would be diagnos-
ing influenza based on body temperature; when you develop
the flu you ‘move’ to a different distribution of body tem-
perature. By contrast, conditioning on xij ≤ aij is more
intuitive when the definition of the disease depends directly
on the magnitude of the continuous variable. For example,
hypertension is typically defined in terms of whether a pa-
tient has high blood pressure, and is a mediator/marker for
cardiovascular disease and stroke. It therefore seems appro-
priate to define a model for the marginal distribution of the
population as a whole.

We hereafter focus on conditioning on yi. Primarily be-
cause in practice we found that conditioning on xij ≤ aij

(using logistic regression) has specific disadvantages. In par-
ticular, the difference between expected utility at the lowest
(no positive diagnoses) and highest (no negative diagnoses)
thresholds does not generally equal the difference in costs
of the diagnostic procedures as expected. The discrepancy
occurs because when conditioning on xij ≤ aij the posterior
distribution of disease prevalence cannot be constrained to
be the same for different diagnostic procedure models.

3.2 Conditioning on yi

When expanding by conditioning on the event yi = k,
Equation 2 becomes

E(uj |aj) = −

⎧⎨
⎩

cD
j + cT [p(yi = 0)F j0(aj)

+ p(yi = 1)F j1(aj)]
+ cP p(yi = 1)(1 − ΛF j1(aj))

⎫⎬
⎭ ,(3)

where F jk(x) is the CDF of the continuous variable x for
diagnostic procedure j conditional on disease state k.

Theorem 3.1. Let each F jk(x) be a differentiable CDF
with associated pdf f jk(x). Furthermore, let each Gj(x) =
fj1(x)
fj0(x) be a strictly decreasing continuous function of x

with limx→−∞ Gj(x) > cT p(yi=0)
p(yi=1)(cP Λ−cT , limx→∞ Gj(x) <

cT p(yi=0)
p(yi=1)(cP Λ−cT )

, and cP Λ − cP > 0. Then max
aj

E(uj |aj)

exists and occurs at a∗
j = (Gj)−1( cT p(yi=0)

p(yi=1)(cP Λ−cT )
).

Proof in Appendix A.
To obtain the optimal diagnostic procedure and threshold

choice we finally compare the expected utility for each a∗
j to

determine the diagnostic procedure with maximum expected
utility (MEU).

4. INCORPORATING PARAMETER
UNCERTAINTY

The methodology developed thus far assumes that all
model parameters are known a priori. We can estimate and
“plug-in” any parameters, but the plug-in approach ignores
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parameter uncertainty when estimating utility. That is, in
general max

aj

Ex,ξ(uj |aj) �= max
aj

Ex(uj |aj , ξ̂), where, ξ is a

vector of the unknown parameters and ξ̂ is some estimate
of these parameters. We here develop a fully Bayesian ap-
proach based on Markov chain Monte Carlo (MCMC) sam-
pling that incorporates parameter uncertainty when calcu-
lating MEU. The approach takes the following steps:

1. Simulate from the posterior distribution of ξ using
MCMC.

2. For an appropriately finely sampled set of values for a,
use the generated MCMC sample to estimate Ex,ξ(uj |a)
at all values (for each diagnostic procedure).

3. Determine a∗
j and Ex,ξ(uj |a∗

j ) for each diagnostic pro-
cedure by selecting the a that leads to the largest
Ex,ξ(uj |a).

4. Determine the procedure j that corresponds to
max

j
Ex,ξ(uj |a∗

j ) – the MEU across all diagnostic pro-

cedures.

Here, Ex,ξ(uj |a) is calculated by approximating the in-
tegral

∫
p(ξ|x,y)Ex(uj |aj , ξ) dξ using MCMC samples; the

vector x is the complete set of continuous diagnostic vari-
ables across all procedures, i.e. {xij : i = 1 . . . I, j = 1 . . . J},
and y = {yi : i = 1 . . . I} is the set of gold standard diag-
noses.

The expected utility is integrated over the posterior dis-
tribution with f jk(x) and p(yi = k) considered as condi-
tional on their parameters γjk and δ respectively. When
incorporating parameter uncertainty Equation 3 expands to

E{x,γjk,δ}(uj |aj) =

−

⎡
⎢⎢⎢⎣

cD
j + cT

∑1
k=0

∫
γjk

∫
δ

∫ aj

−∞ f jk(z|γjk)[kδ

+ (1 − k)(1 − δ)]π(γjk|x,y)π(δ|x,y) dz dδ dγjk

+ cP

{∫
δ
δπ(δ|x,y)

∫
γj1

∫ aj

−∞
[
1 − Λf j1(z|γj1)

]
π(γj1|x,y) dz dγj1 dδ

}
⎤
⎥⎥⎥⎦

In the above expression we have implicitly assumed that
γ = {γjk : j = 1 . . . J, k = 0, 1} and δ are independent of
each other.

The integrals with respect to γ terms and δ are estimated
by averaging the expectation over an MCMC sample of the
posterior distribution, i.e.:

E{x,γjk,δ}(uj |aj) ≈(4)

− 1
N

∑
s∈S

⎡
⎢⎢⎣

cD
j + cT

∑1
k=0

∫ aj

−∞ f jk(z|γs
jk)[kδs

+ (1 − k)(1 − δs)]π(γs
jk|x,y)π(δs|x,y) dz

+ cP

{
δs

{
π(δs|x,y)

∫ aj

−∞[1 − Λf j1(z|γs
j1)]

π(γs
j1|x,y) dz

} }
⎤
⎥⎥⎦

where s denotes a single realization of the parameter set
(γ, δ) from the complete set S of N MCMC sample realiza-
tions.

5. OSTEOPOROTIC HIP FRACTURE
EXAMPLE

Osteoporosis is a major public health problem estimated
to have cost on the order of $19 billion in the USA dur-
ing 2005. The worst outcome of osteoporosis, hip fracture,
is extremely painful, debilitating, and in 10% of cases leads
to death. The World Health Organization (WHO) defines
osteoporosis as having bone mineral density (BMD) or bone
mineral content (BMC) below a “T -score” of −2.5, where
the T -score is defined as an individual’s BMD or BMC nor-
malized to that of a young adult reference range from a his-
torical/population dataset [23]. The WHO definition does
not consider the optimality of the BMD/BMC threshold in
terms of utility with respect to potential treatment. In addi-
tion, BMD/BMC estimation, diagnostic accuracy, and test
cost all vary by skeletal site; the WHO definition fails to
specify which skeletal sites to use when measuring BMD or
BMC for the diagnosis of osteoporosis [24].

We provide an example of the Bayesian diagnostic pro-
cedure decision process applied to the prognosis of oseo-
porotic hip fracture in The Study of Osteoporotic Frac-
tures (SOF) [7, 8]. In the SOF, 7071 randomly selected
post-menopausal Caucasian women had distal forearm
BMD measured by single X-ray absorptiometry (SXA) and
femoral neck BMD measured by dual x-ray absorptiometry
(DXA).

Validity of the SOF population to study osteoporotic
hip fracture risk is well established. The population in the
study is reasonably representative of the untreated Cau-
casian post-menopausal women aged 65 and older in the US
that would currently be considered for osteoporosis screen-
ing via BMD measurement. We use the subject outcome of
5-year post-examination hip fracture as the objective stan-
dard against which we compare the BMD measurement pro-
cedures.

We wish to emphasize here that in the interest of pro-
viding a clear illustration of the methodology we have made
simplifying assumptions with respect to this study and do
not go into detail as to how costs/utilities were evaluated.
Therefore, this is not meant as an authoritative analysis of
this dataset, and in no way do we mean to encourage changes
in medical practice based on the results.

Figure 1 displays summary BMD histograms classified by
measurement location and 5 year hip fracture status (y = 0
no fracture, y = 1 fracture). The primary observation to
note is that there appears to be poor separation between
the fracture and non-fracture individuals with respect to
BMD. The separation appears particularly limited for dis-
tal forearm BMD. The femoral neck measurements do show
a clear distributional shift towards lower BMD for the frac-
ture cases. However, there is very large overlap between the
fracture and non-fracture individuals.
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Figure 1. Histograms and associated sample mean and standard deviation estimates illustrating distributions of BMD
measurements for distal forearm BMD (Left) and femoral neck BMD (Right) for each of the non-fracture (y = 0, Top) and

fracture (y = 1, Bottom) outcome states.

5.1 Determining costs/utilities

Because the determination of component costs is not the
focus of this paper, we only give a brief overview of how
costs/utilities were determined. The costs we use for the
osteoporosis diagnostic procedures are based on medicare
reimbursement values for Current Procedural Terminology
(CPT) 7605 DXA measurements: distal forearm BMD mea-
surement costs cD

1 = $42 and femoral neck BMD measure-
ment costs cD

2 = $139. The cost of preventative treatment
we use is cT = $12, 000 (based on the product of esti-
mates of annual medication costs [10] and life expectancy
for this group of post-menopausal women [1]); and we use
an estimated preventative treatment efficacy rate of Λ =
0.55 [34, 5, 25]. Assessment of the expected cost of disease
progression (i.e., hip fracture) is more complex, requiring
consideration of medical costs [33, 14], loss of life [34, 26, 32]
and loss of quality of life [33, 49, 31, 6, 20, 22, 21] among
hip fracture patients. The total expected cost of disease pro-
gression we use is cP = $234, 000.

5.2 Model specification and implementation

We model the joint distribution of the continuous diag-
nostic variables (distal forearm and femoral neck BMD) con-

ditional on each disease state as bivariate lognormal. For
each disease state k (hip fracture versus no hip fracture),
the vector of BMD measurements for each subject, xi, is
distributed as

log(xi)|yi = k ∼ MV N(μk, Σk),

where μk is the mean vector of the natural logarithm of the
diagnostic variables and Σk is the corresponding covariance
matrix. The log-normal distribution appeared to provide a
reasonable fit to the data (based on diagnostic plots – not
shown).

MCMC sampling for this application was coded in
WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
contents.shtml) and was called from the R (http://www.
r-project.org/) library R2WinBUGS (http://cran.r-project.
org/web/packages/R2WinBUGS/index.html). Weak prior
distributions are placed on μk and Σk, consisting of a
bivariate normal prior for μk (MV N(0, 103I2)) and a
weak Wishart prior for Σ−1

k (W2(2, 104I2)) [2]. There are
implied constraints when using Wishart priors for Σ−1

k [15,
p.p. 284–287]. However, for this study the posterior esti-
mates of the SDs and correlations for the μk’s are very
close to the sample estimates, and therefore, the prior does

Bayesian decision analysis for choosing between diagnostic/prognostic prediction procedures 31



Table 1. Comparison of MEU between prognostic procedures
for hip fracture. The plug-in estimates were evaluated using
Theorem 3.1 for which all assumptions were met if the MLE

estimates were considered as true

Plug-in Fully Bayes

distal a∗
j 0.189 0.191

neck a∗
j 0.498 0.497

distal MEU −7,513 −7,507
neck MEU −7,335 −7,329
optimal method neck neck

not perceivably constrain the posterior results. If a prior
that does not control the precision of all elements of Σ
with a single parameter is desired, then a scaled inverse
Wishart could be used instead [43]; [15, p.p. 286–287]. The
prior distribution for disease prevalence is a weak beta
distribution (Be(10−5, 10−5)), approximating the improper
and non-informative Be(0, 0) prior [58]. The WinBUGS
code for this model is given in Appendix B.

5.3 Results

Figure 2 (a) plots expected utility against BMD thresh-
old for distal forearm and femoral neck BMD. The plot
displays both fully Bayesian and plug-in (maximum likeli-
hood) estimation of utility curves evaluated by a grid search
over the range [0, 1.5] with threshold increments of 0.001
between evaluations (1.5 is well beyond the range of any
BMD measurements in the data). The fully Bayesian and
plug-in methods lead to similar utility curves, though there
are slight differences visible in the enlarged region of Fig-
ure 2 (b). Regardless of whether plug-in or fully Bayesian
MEU is used, the decision is to use femoral neck BMD as
the optimum prognostic procedure for hip fracture. This is
reflected in the quantitative results in Table 1, that also
provides values for optimal threshold.

The fact that low threshold values have similarly high
utility in Figure 2 (a) is a consequence of the treatment
being expensive combined with the relatively low preva-
lence of fracture in the randomly sampled elderly popu-
lation (≈ 3%). Overall, it is cost-effective to accept that
most patients who will experience fractures will go untreated
rather than risk a large number of false positives that will be
treated unnecessarily. However, there is some gain in MEU
to be obtained by using femoral neck BMD at its optimal
threshold value rather than not treating anyone. This value
is in the lower range of BMD values as can be seen by relat-
ing the optimal threshold in Table 1 back to the histograms
of Figure 1.

The fully Bayesian and plug-in curves can be similar for
three reasons: 1) weak prior information, 2) strong data in-
formation and 3) near symmetry of the fracture and non-
fracture BMD data subsets. For this dataset, the large sam-
ple and weak priors combination led to very precise pos-
teriors for the parameters of the fracture and non-fracture

BMD distributions (with posterior means similar to the ML
estimates). To examine the extent to which the size of the
dataset contributed to the similarity between plug-in and
fully Bayesian MEU, we repeated the analysis based on a
randomly selected sub-sample of 100 individuals (which con-
tained only 4 fracture patients). Figure 2 (c) of the ensu-
ing expected utility plot shows increased difference between
plug-in and fully Bayes expected utility curves (and the as-
sociated MEUs).

5.4 Strong prior information

Thus far we have only considered weak, uninformative
prior information when comparing the plug-in and fully
Bayesian approach. At least for this dataset, the differ-
ences between the two approaches have proved relatively
minor — not affecting the overall decision much. However,
increased prior information can lead to larger differences be-
tween the plug-in and fully Bayes approaches. The most ob-
vious prior information that could be used here would come
from knowledge about disease prevalence in the target pop-
ulation, which we incorporate through the prior distribution
on δ.

For illustration purposes, we employ a very tight prior
(Be(5 × 105, 95 × 105)) for δ centered at 0.05 (contrast-
ing with the disease prevalence in the data of approxi-
mately 0.03). This is an unrealistically tight prior that we
have adopted in order to force the posterior estimate of δ to
be close to 0.05 in contradiction of the strong information
in the data.

Figure 2 (d) shows a plot of utility against threshold for
this strong prior on δ. The increased posterior expectation
of prevalence level induced by the strong prior leans the
optimal decision towards treating more subjects based on
femoral neck BMD; the importance of threshold choice is
more obvious in this plot than in those with weak prior infor-
mation because there is more of a balance between expected
treatment and fracture costs induced by the increased pos-
terior prevalence rate.

6. DISCUSSION

6.1 Alternate decision perspectives and
modeling extensions

In this paper we have presented a model of institu-
tional/departmental decision-making for choosing between
diagnostic procedures. The perspective would be different
for other decision makers necessitating modifications to
costs/utility and potentially the utility model structure.

The decision from the clinician’s perspective requires that
individuals be assigned to particular diagnostic procedures
based on patient circumstances, e.g. based on the patient’s
subgroup classification or patient-level covariates. However,
there are logistical, legal and ethical issues that would have
to be overcome before clinicians would be motivated to con-
sider assigning personalized diagnostic procedures based on
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Figure 2. Plots of expected utility against threshold (a) for the model conditioning on yi: dots correspond to the MEU for
each prognostic procedure for hip fracture. Panel (a) shows the expected utility plot for the full sample and panel (b) shows

the same plot zooming in on the peaks; panel (c) shows the same (zoomed) plot generated from a random sub-sample of 100
individuals (note that the range on the utility axis is changed) and panel (d) shows an expected utility plot based on a strong
prior for δ with mean of 0.05 (c.f. fracture prevalence ≈ 0.03) using the full dataset. The dots at the top of the curves give

the locations of the MEU estimates. The plug-in MEU estimates were evaluated using Theorem 3.1 for which all assumptions
were met once the MLE estimates were considered as true.

patient-level covariates. The hospital-level decision could
also be affected by other (measured) known covariates in
which case they might be integrated marginally into the
model. The perspective of the insurance company may vary
from global-level decisions applied to a complete insured
group to whether or not to provide coverage of a specific
diagnostic procedure for an individual. We do not directly
consider additional covariates here, but provide some dis-
cussion in Section 6.

Further potential extensions to the model include consid-
eration of start-up costs for switching to a new diagnostic
procedure (potentially allowing for risk aversion) and al-
lowing for the possibility of running diagnostic procedures
side-by-side which relates back to the clinician’s perspective.

6.2 Comparison of MEU for a range of
disease progression costs

Determining the costs to be used in the Bayesian decision
analysis/MEU procedure is difficult and subject to criticism

on ethical grounds. The main concern is that defining the
utility of disease progression requires assigning relative val-
ues to loss of life and quality of life. Defining a relative value
on life (even in non-monetary terms) has ethical implica-
tions that need to be considered carefully. The loss of life
and quality of life needs to be converted to a scale that
can be compared with the other costs (or vice-versa). A
graphical approach plotting MEU against a range of costs
for disease progression could be used to aid decision making
when the decision maker is unable or unwilling to assign a
specific cost to loss of life or quality of life. This approach
allows the decision-maker to determine the range of loss of
life/quality of life for which each diagnostic procedure is
optimal. The graphical approach is similar to that of the
Cost-Effectiveness Acceptability Curve (CEAC) for clinical
trials proposed by van Hout et al. [55]. The CEAC plots
the probability that treatment 1 is more cost-effective than
treatment 2 against a quantity K that describes the rela-
tive willingness to pay for 1 unit of treatment effectiveness.
O’Hagan and Stevens [40] extend this idea to plot the mean
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incremental net benefit (INB) – the improvement in cost-
effectiveness of treatment 1 over treatment 2 – against K.

6.3 Computational overhead

Computation was very quick for the models considered
in this paper. 20,000 MCMC iterations took 1 minute on a
Mac OS X laptop with a 2GHz Intel Core 2 Duo and 4 GB
667 MHz DDR2 SDRAM. We used 10,000 burn-in samples
and 10,000 samples for evaluation. Good convergence (and
mixing) of MCMC output was achieved within a few hun-
dred iterations (based on visual diagnosis of MCMC out-
put for model parameters) and so the burn-in period was
perhaps conservative. The estimated Monte Carlo error for
all parameters was consistently less than 1% of the asso-
ciated sample standard deviation for all parameters of the
model.

6.4 Conclusions

The work presented here provides a Bayesian utility
framework for choosing between diagnostic procedures. We
have shown that a Bayesian utility based approach is fea-
sible for choosing between diagnostic procedures that are
derived from threshold values for continuous diagnostic vari-
ables. The fully Bayesian decision is different from an ‘esti-
mate and plug-in’ approach in that the fully Bayesian ap-
proach appropriately incorporates uncertainty in parameter
values and can incorporate other prior information. As il-
lustrated in the osteoporosis hip fracture example, the fully
Bayesian decision approach provides maximum benefit over
‘plug-in’ when there is a) considerable uncertainty in pa-
rameter estimates — small n, and b) strong prior informa-
tion.

APPENDIX A. PROOF OF THEOREM 3.1

Proof.

dE(uj |aj)
daj

= − cT
[
p(yi = 0)f j0(aj) + p(yi = 1)f j1(aj)

]
+ cP p(yi = 1)Λf j1(aj) = 0

(5) ⇒ f j0(aj)
{
Gj(aj)p(yi = 1)

(
cP Λ − cT

)
−cT p(yi = 0)

}
= 0.

Because Gj(x) is a strictly decreasing continuous function,
it is one-to-one and hence invertible. Therefore, there is
at most one aj that satisfies Equation 5. Furthermore, be-
cause (cP Λ− cT ) > 0 and limx→∞ Gj(x) < cT p(yi=0)

p(yi=1)(cP Λ−cT )
,

dE(uj |aj)
daj

< 0 for aj > a∗
j . Similarly, limx→−∞ Gj(x) >

cT p(yi=0)
p(yi=1)(cP Λ−cT )

implies dE(uj |aj)
daj

> 0 for aj < a∗
j . Thus,

E(uj |a∗
j ) = maxaj E(uj |aj).

APPENDIX B. WINBUGS CODE

model {
for (i in 1:N) {
# Model specification

# y[i] is disease status

y[i]~dbern(delta)

# change outcome to 1 and 2 for matrix

# indexing rather than 0 and 1

ix[i] <- y[i] + 1

# joint distal and neck BMD conditional

# distributions, lgx is log(BMD), mu/tau are

# prior mean/var vectors of distal and neck BMD

lgx[i,1:2]~dmnorm(mu[ix[i],1:2],tau[ix[i],1:2,1:2])

}
smallnumber <- 1.0E-5

# theta is marginal probability of disease

# in study population

theta~dbeta(smallnumber,smallnumber)

for(j in 1:2) {
# hyper-parameters of Mean/Precision from R

mu[j,1:2]~dmnorm(Mean[],Prec[,])

# hyper-parameters of Omega/degFdm from R

tau[j,1:2,1:2]~dwish(Omega[,],degFdm)

}
}
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