
Statistics and Its Interface Volume 4 (2011) 19–26

Class-specific variable selection for multicategory
support vector machines

Jian Guo

This paper proposes a class-specific variable selec-
tion method for multicategory support vector machines
(MSVMs). Different from existing variable selection meth-
ods for MSVMs, the proposed method not only captures
the important variables for classification, but also identi-
fies the discriminable and nondiscriminable classes so as to
enhance the interpretation for multicategory classification
problems. Specifically, it minimizes the hinge loss of MSVMs
coupled with a pairwise fusion penalty. For each variable,
this penalty identifies nondiscriminable classes by impos-
ing their associated coefficients in the decision functions to
some identical value. Several simulated and real examples
demonstrate that the proposed method provides better in-
terpretation through class-specific variable selection while
preserving comparable prediction performance with other
MSVM methods.
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1. INTRODUCTION

Classification, regression and density function estimation
are three canonical problems in machine learning. In a classi-
fication problem, all samples in the training data set are ac-
companied with the class labels indicating their class mem-
bership. The class labels of the samples in the test data set
are unobserved. The task of the classification problem is to
learn a discrimination rule from the training data and use it
to predict the class labels of the test data. In the past decade,
support vector machines (SVMs) gained a high degree of at-
tention due to their outstanding prediction performance in
real data analysis. The original SVM was proposed by Vap-
nik [14] based on the statistical learning theory. Vapnik [14]
also introduced the kernel trick to make SVM have good
performance for nonlinear classification problems. The orig-
inal SVM was designed for a binary classification problem
and it was extended to multicategory classification problems
in different ways [3, 9, 10, 15, 19, 20]. The class-specific vari-
able selection method proposed in this paper is based on the
MSVM framework proposed by Lee et al. [9]. To clarify the

notation, we use SVMs to represent binary SVMs and use
MSVMs to represent multicategory SVMs.

Besides the emphasis of prediction performance, in recent
years researchers have paid more and more attention to the
interpretability of SVMs. One challenging task of interpreta-
tion is how to select the most informative variables for SVM
classification. Bradley and Mangasarian [1] reformulated the
standard binary SVM problem into a “loss+penalty” form
and demonstrated that the utility of the �1 penalty can ef-
fectively select significant variables by shrinking the small
and redundant coefficients to zero. Zhu et al. [23] provided
an efficient algorithm to compute the entire solution path
for the �1 SVM. Under the same framework, other forms of
penalties were also studied, such as the �0 penalty [18], the
�q penalty [12], the combination of �0 and �1 penalties [11],
the elasticnet penalty [17], the SCAD penalty [21] and the
F∞-norm penalty [24]. Variable selection for MSVMs is more
complex since we need to estimate multiple decision func-
tions each of which has its own important variables. Wang
and Shen [16] selected informative variables by replacing the
�2 penalty in the standard MSVM [9] with an �1 penalty.
Thereafter, Zhang et al. [22] proposed a supnorm penalty
for MSVM. This penalty shrinks all coefficients associated
with the same variable simultaneously and hence it tends to
produce more sparse solutions than the �1 MSVM.

All existing variable selection methods for MSVMs select
informative variables in a “one-in-all-out” manner; that is,
a variable is selected if it is important for at least one pair of
classes and removed only if it is unimportant for all classes.
However, in many practical situations, one may be interested
in identifying which variables are important (discriminative)
for which specific classes, or in other words, which classes are
discriminable for which variables. For example, let’s imagine
a three-class problem with two variables. The first variable
may be important for discriminating classes 1 and 2, but
unimportant for classes 2 and 3; on the other hand, the
second variable may be important for discriminating classes
2 and 3, but unimportant for classes 1 and 2. We believe
that such situations arise often in high-dimensional data, for
example, in data obtained from high-throughput expression
technologies.

To address this problem, this paper proposes a class-
specific variable selection method for MSVMs. Specifically,
a pairwise fusion penalty is introduced to penalize the dif-
ference between (all) pairs of coefficients for each variable
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and shrink the coefficients of nondiscriminable classes to
some identical value. If all coefficients associated with a vari-
able are “fused,” this variable is regarded as noninformative
and removed from the model. Otherwise, the pairwise fusion
penalty has the flexibility of only fusing the coefficients of
nondiscriminable classes for this variable.

The rest of this article is organized as follows. Section 2
proposes the class-specific variable selection method for
MSVMs and introduces a linear programming algorithm to
solve the consequent optimization problem; Sections 3 and
4 evaluate the performance of the proposed method by two
simulated examples and one real example, respectively; and
we conclude in Section 5.

2. METHODOLOGY

Suppose we observed n sample pairs {xi, yi}n
i=1, where

xi = (xi,1, . . . , xi,p) is a vector composed of p variables and
yi is the label of xi. For a K-category classification prob-
lem, yi ∈ {1, 2, . . . ,K}. Without loss of generality, we as-
sume

∑n
i=1 xi,j = 0 for all 1 ≤ j ≤ p. A multicategory

support vector machine aims to learn K decision functions
f = (f1, . . . , fK) from the data {xi, yi}n

i=1, where each fk(xi),
a mapping from the input domain R

p to R, represents the
strength of the evidence that an example with input xi be-
longing to class k. Given an estimate of the decision func-
tions f̂ , MSVM assigns a new data point x∗ to the class
k∗ = arg max1≤k≤K f̂k(x∗).

In linear classification cases, we assume fk(xi) = wkxi
T +

bk, where bk is the intercept and wk = (wk,1, . . . , wk,p) is a
p-dimensional row vector, where each component wk,j cap-
tures the contribution of the j-th variable to the k-th class.
All w′

k,js (1 ≤ k ≤ K, 1 ≤ j ≤ p) are referred as (decision)
coefficients and they can be collected in a K × p matrix (as
follows) with rows corresponding to classes and columns to
variables

W =

⎡
⎢⎢⎢⎣

w1,1 w1,2 · · · w1,j · · · w1,p

w2,1 w2,2 · · · w2,j · · · w2,p

...
...

...
...

...
...

wK,1 wK,2 · · · wK,j · · · wK,p

⎤
⎥⎥⎥⎦ .

Throughout the paper, we use wk to represent the coeffi-
cients associated with the k-th class (k-th row vector of W )
and use w(j) = (w1,j , . . . , wK,j)

T to represent the coefficients
for the j-th variable (j-th column vector of W ).

In this paper, we focus on a family of MSVM methods
based on the following “Loss+Penalty” framework

min
b,W

n∑
i=1

K∑
k=1

I(yi �= k)[bk + wT

kxi + 1]+ + Jλ(W )(1)

subject to
K∑

k=1

bk = 0,

K∑
k=1

wk,j = 0, 1 ≤ j ≤ p ,

where b = (b1, . . . , bK)T is the vector of intercepts and
I(yi �= k) is an indicator function with value 1 if yi �= k

and 0 otherwise. The sum-to-zeros constraints
∑K

k=1 bk = 0
and

∑K
k=1 wk,j = 0 impose the identifiability of the solution

and they are also the necessary conditions for the Fisher
consistency of the MSVM [9]. Jλ(W ) is a penalty function
with tuning parameter λ. It involves some prior information
to help estimate the coefficients in W . For example, the
standard MSVM [9] employs an �2 penalty as follows

(2) JL2
λ (W ) = λ

p∑
j=1

K∑
k=1

w2
k,j .

For the purpose of variable selection, Wang and Shen [16]
proposed to use the �1 penalty as follows

(3) JL1
λ (W ) = λ

p∑
j=1

K∑
k=1

τk,j |wk,j | ,

where τk,j is the adaptive weight defined as τk,j = 1/|w̃k,j |γ
for some γ > 0. Due to its singularity property, the �1
penalty shrinks some wk,j ’s to be exactly zero and removes
the j-th variable from the model if all coefficients associ-
ated with the j-th variable (i.e., wk,j for all 1 ≤ k ≤ K)
are shrunken to zero (in this case, the j-th variable does not
contribute to discriminating between the decision functions
f1, . . . , fK and thus it is a noninformative variable). Zhang
et al. [22] proposed a supnorm (�∞) penalty (as follows) to
remove the insignificant variables more efficiently.

(4) JSN
λ (W ) = λ

p∑
j=1

‖w(j)‖∞ = λ

p∑
j=1

max
1≤k≤K

τk,j |wk,j | .

This penalty treats all coefficients associated with the same
variable as a natural group and shrinks them to zero si-
multaneously. It should be noted that the �1 penalty usu-
ally tends to shrink only some wk,j ’s to zero, thus being
more flexible but less efficient in removing noninformative
variables. In Zhang et al. [22], the adaptive weights τk,j ,
1 ≤ k ≤ K, 1 ≤ j ≤ p are defined in two ways: (1)
τk,j = 1/|w̃k,j |γ , 1 ≤ k ≤ K, 1 ≤ j ≤ p; (2) τ1,j = · · · =
τK,j = 1/ max{|w̃1,j |γ , . . . , |w̃K,j |γ}, 1 ≤ j ≤ p.

2.1 Class-specific variable selection

Given our focus on class-specific variable selection intro-
duced in Section 1, we propose the following pairwise fusion
penalty for MSVM

(5) JPF (W ) =
p∑

j=1

∑
1≤k<k′≤K

τ
(j)
k,k′ |wk,j − wk′,j | .

For each variable, this penalty aims at shrinking the differ-
ences between the coefficients associated with every pair of
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classes. Due to the singularity of the absolute value function,
some terms in the sum are shrunken to exactly zero, result-
ing in some coefficients wk,j ’s having identical values. For
example, if coefficients wk,j = wk′,j , then fk(x) − fk′(x)
doesn’t depend on the j-th variable. Consequently, this
variable is considered to be unimportant for discriminat-
ing between class k and k′, though it may be important
for separating other classes. Moreover, if all coefficients for
the same variable are shrunken to the same value, then
this variable doesn’t help discriminate between the decision
functions f1, . . . , fK and can be removed from the model.
We refer this variable as a noninformative variable. For
a two-class problem, the pairwise fusion penalty proposed
here is equivalent to the �1 penalty under the constraint∑K

k=1 wk,j = 0 (1 ≤ j ≤ p). Here we set the adaptive weights
τ

(j)
k,k′ ’s based on the intuition: if variable j is important for

separating classes k and k′, we would like the corresponding
τ

(j)
k,k′ to be small, thus the difference between wk,j and wk′,j

is lightly penalized. On the other hand, if variable j is unim-
portant for separating clusters k and k′, we would like the
corresponding τ

(j)
k,k′ to be large, hence the difference between

wk,j and wk′,j is heavily penalized. In our implementation,
we compute the weights using the estimates from the stan-
dard MSVM, i.e., τ

(j)
k,k′ = 1/|w̃k,j − w̃k′,j |γ where w̃k,j is the

estimate of wk,j by solving (1) with penalty (2). Note that
this decomposition has also been used by Guo et al. [7] for
clustering purpose.

2.2 Algorithm

Here we discuss how to minimize objective function (1)
with penalty (5), i.e., the optimization problem as follows

min
b,W

n∑
i=1

K∑
k=1

I(yi �= k)[bk + wT
k xi + 1]+(6)

+λ

p∑
j=1

∑
1≤k<k′≤K

τ
(j)
k,k′ |wk,j − wk′,j |

subject to
K∑

k=1

bk = 0,

K∑
k=1

wk,j = 0, 1 ≤ j ≤ p .

Objective function (6) can be converted to a standard lin-
ear programming (LP) problem and solved by most linear
programming software. Specifically, denote ai,k = I(yi �= k),
ξi,k = [bk+wT

k xi+1]+ and θk,k′,j = wk,j−wk′,j . To deal with
the absolute value in (6), let θ+

k,k′,j = max{0, θk,k′,j} be the
positive part of θk,k′,j and θ−k,k′,j = max{0,−θk,k′,j} be the
negative part of θk,k′,j . Consequently, θk,k′,j = θ+

k,k′,j−θ−k,k′,j

and |θk,k′,j | = θ+
k,k′,j + θ−k,k′,j . Thus, (6) can be written as

min
b,W ,Θ,ξ

n∑
i=1

K∑
k=1

ai,kξi,k(7)

+λ

p∑
j=1

∑
1≤k<k′≤K

τ
(j)
k,k′(θ+

k,k′,j + θ−k,k′,j)

subject to ξi,k ≥ bk + wT
k xi + 1, ξi,k ≥ 0,

for all 1 ≤ i ≤ n, 1 ≤ k ≤ K;
K∑

k=1

bk = 0,

K∑
k=1

wk,j = 0,

for all 1 ≤ j ≤ p;

θ+
k,k′,j − θ−k,k′,j = wk,j − wk′,j ,

θ+
k,k′,j ≥ 0, θ−k,k′,j ≥ 0,

for all 1 ≤ k < k′ ≤ K, 1 ≤ j ≤ p

where Θ = {θ+
k,k′,j , θ

−
k,k′,j : 1 ≤ k < k′ ≤ K, 1 ≤ j ≤ p}

and ξ = (ξi,k)n×K . In this article, objective function (7) was
solved by the mathematical programming language AMPL
with linear programming package CPLEX.

3. SIMULATION STUDY

In this section, we illustrate the performance of the pro-
posed class-specific variable selection method on two syn-
thetic examples with four and five classes, respectively. We
compare eight different MSVM methods, coupled with: the
�2 penalty (“L2”, equation (2)), the �1 penalty (“L1”, equa-
tion (3) but setting all τk,j = 1) and its adaptive coun-
terpart (“AL1”, equation (3)), the supnorm penalty (“SN”,
equation (4) but setting all τk,j = 1) and its two adap-
tive counterparts (“ASN-I” and “ASN-II”, equation (4) with
two types of adaptive weights), the proposed pairwise fu-
sion penalty (“PF”, equation (5) but setting all τ

(j)
k,k′ = 1)

and its adaptive counterpart (“APF”, equation (5)). In each
simulation, 200 training observations, 200 validation obser-
vations and 10,000 test observations are generated. The tun-
ing parameter λ is selected on the validation set via a grid
{2−15, 2−14, . . . , 215}. We repeat this procedure 100 times
for each simulation and record the average test error rates
as compared to the true class labels, and average selection
rate for both informative and noninformative variables.

Example 1

In this simulation, there are four classes and p = 102
variables, with the first two variables being informative
and the remaining ones noninformative. The variables were
generated according to the following mechanism: the two
informative variables x1 and x2 are independently uni-
formly distributed in [−1, 1], whereas the remaining 100
noninformative variables i.i.d. follow N(0, 82). Denote x =
(x1, . . . , x102), then we define the decision function for the
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k-th class as follows

fk(x) =

⎧⎪⎪⎨
⎪⎪⎩

10x1 + 5x2, if k = 1;
5x2, if k = 2;
−5x2, if k = 3;
−10x1 − 5x2, if k = 4.

and we assign x to class k with a probability proportional
to exp{fk(x)}. In this example, x1 is unimportant for dis-
criminating between classes 2 and 3 and x2 is unimportant
for discriminating between classes 1 and 2, as well as classes
3 and 4.

Example 2

In this example, a five-class scenario is considered. There
are a total of p = 103 variables with the first three informa-
tive and the other 100 noninformative. Similar to Example
1, the informative variables are independently uniformly dis-
tributed in [−1, 1], whereas the 100 noninformative variables
i.i.d. follow N(0, 82). We define the decision function for the
k-th class as

fk(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4x1 − 10x2 + 6x3, if k = 1;
4x1 + x3, if k = 2;
−x1 + x3, if k = 3;
−x1 − 4x3, if k = 4;
−6x1 + 10x2 − 4x3, if k = 5.

and assign x to class k with a probability proportional to
exp{fk(x)}. Notice that x1 is unimportant for discriminat-
ing between classes 1 and 2 and classes 3 and 4; x2 is unim-
portant for classes 2, 3 and 4; and x3 is unimportant for
classes 2 and 3 and classes 4 and 5.

For each example, the Bayes error of each replicated
data is computed as a benchmark for all competing models.
The prediction and variable selection results are summa-
rized in Table 1. The results were averaged over 100 replica-
tion, where the corresponding standard deviations are in the
parentheses. We can see that, for every method, the adap-
tive penalty has significant effect to reduce the error rate and
to reduce the number of incorrectly selected noninformative
variables. Comparing all methods with adaptive penalties,
the proposed AFP method achieves the lowest error rate
and the least number of incorrectly selected noninformative
variables in both examples, although the advantage is not
significant.

If a variable can not discriminate a pair of classes, and
the corresponding estimated coefficients are also the same,
we consider this as a correct “fusion”. Table 2 summarizes
these results. Specifically, each row in the table gives the
proportion of correctly fused variables (averaged over 100
replications) that are noninformative for separating the cor-
responding pair of classes (indicated in column “Pair”). For
example, the second row shows that on average 62% of the
first two informative variables are correctly fused for classes
1 and 2 by the AFP method. It is clear that APF dominates

Table 1. Simulation results for Example 1. “Error rate” is the
proportion of mis-classified samples in the test data set.

“Info” is the number of selected informative variables (out of
2 for Example 1 and out of 3 for Example 2). “Noninfo” is the
number of noninformative variables (out of 100). All results
are averaged over 100 replications and their corresponding

standard deviations are recorded in the parentheses

Example Method Error rate (%) Info Noninfo

1

Bayes error 13.0 (–) – –
L2 54.5 (3.99) 2.0 (0.00) 100.0 (0.00)
L1 51.1 (2.86) 2.0 (0.00) 99.9 (0.36)
SN 50.1 (2.72) 2.0 (0.00) 99.8 (0.55)
PF 51.3 (2.85) 2.0 (0.00) 99.9 (0.48)
AL1 17.9 (3.27) 2.0 (0.00) 4.4 (5.56)

ASN-I 15.0 (1.59) 2.0 (0.00) 1.2 (1.95)
ASN-II 16.8 (3.15) 2.0 (0.00) 0.9 (2.44)
APF 14.0 (1.00) 2.0 (0.00) 0.1 (0.31)

2

Bayes error 13.8 (–) – –
L2 56.6 (3.68) 3.0 (0.00) 100.0 (0.00)
L1 54.5 (4.11) 2.8 (0.72) 94.1 (23.80)
SN 54.8 (4.13) 2.8 (0.72) 94.0 (24.00)
PF 54.7 (3.89) 2.8 (0.72) 94.0 (24.00)
AL1 20.9 (3.10) 3.0 (0.28) 7.4 (8.27)

ASN-I 21.7 (2.23) 3.0 (0.00) 4.1 (6.36)
ASN-II 19.3 (3.01) 3.0 (0.14) 3.4 (5.00)
APF 18.8 (4.00) 3.0 (0.14) 0.2 (0.72)

other methods in terms of correctly fusing the coefficients of
nondiscriminable classes. It should also be pointed out that
although AL1 and ASN-I correctly fuse some coefficients of
nondiscriminable classes, e.g., in the first row (AL1) as well
as in the second and third rows (ASN-I), the result is an
artifact. In Example 1, the coefficients of classes 2 and 3
for variable 1 are all equal to zero, which happens to be the
value that the �1 penalty shrinks to. The same reasoning ap-
plies to classes 2, 3 and 4 for variable 2 in Example 2 (rows
6–8, column “AL1”). On the other hand, in Example 1, al-
though classes 1 and 2 (as well as classes 3 and 4) have the
same coefficient for variable 2, the L1 method fails to fuse
them, since their coefficients are different from zero. In con-
trast to AL1, ASN-I tends to encourage the coefficients with
large magnitudes to have some identical values. In Example
1, for instance, the coefficients of classes 1 and 2 (as well as
those of classes 3 and 4) for variable 2 have the same value
with large magnitude, thus they are identified by ASN-I. On
the other hand, it fails to fuse classes 2 and 3 for variable 1,
since their coefficients are close to zero. However, the APF
method identifies the structure correctly in both situations.

4. REAL DATA ANALYSIS

4.1 Microarray example

In this example, we apply the proposed pairwise fusion
SVM method to conduct class-specific variable selection on a
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Table 2. Results of class-specific variable selection for nondiscriminable class pairs

Example Variable Pair L2 L1 AL1 SN ASN-I ASN-II PF APF

1
1 2/3 0.00 0.02 0.28 0.00 0.00 0.00 0.02 0.28

2
1/2 0.00 0.00 0.00 0.38 0.92 0.00 0.24 0.62
3/4 0.00 0.00 0.00 0.38 0.92 0.00 0.32 0.74

2

1
1/2 0.00 0.06 0.02 0.14 0.48 0.02 0.16 0.72
3/4 0.00 0.14 0.78 0.06 0.00 0.02 0.14 0.88

2
2/3 0.00 0.12 0.72 0.06 0.00 0.00 0.08 0.72
2/4 0.00 0.08 0.36 0.06 0.00 0.00 0.06 0.34
3/4 0.00 0.08 0.54 0.06 0.00 0.00 0.08 0.52

3
2/3 0.00 0.20 1.00 0.06 0.00 0.00 0.14 0.86
4/5 0.00 0.06 0.02 0.12 0.44 0.00 0.18 0.74

microarray dataset of small round blue cell tumors (SRBCT)
of childhood cancer [8]. This dataset contains the expression
profiles of 2,308 genes obtained and 83 tissue samples. These
subjects are classified into four tumor subtypes: Ewing fam-
ily of tumors (EWS), rhabdomyosarcoma (RMS), neuroblas-
toma (NB) and Burkitt lymphoma (BL). We preprocessed
the data by selecting a subset of 500 genes according to their
marginal relevance criterion [4, 22]:

Rj =
∑n

i=1

∑K
k=1 I(yi = k)(μk,j − μj)2∑n

i=1

∑K
k=1 I(yi = k)(xi,j − μk,j)2

(8)

where μk,j is the mean of all samples in class k and variable
j and μj is the mean of all samples in variable j. The term
on the numerator reflects the between-class distance and the
term on the denominator reflects the within-class distance.
Therefore, this criterion gives large values to those genes
expressing heterogeneously across the classes and homoge-
nously within the classes. The top 500 genes are collected
and the new data are centered and scaled along each vari-
able before classification. The total 83 samples are randomly
split into a training set (2/3 of all samples) and a test set
(1/3 of the samples) and this procedure was repeated 100
times.

All MSVM methods with different penalties are applied
to the 100 training/test sets. The tuning parameter λ of each
MSVM method is selected by five-fold cross validation on
each training set. The test errors and the number of selected
genes over 100 replications are averaged (by median) and
listed in Table 3. All the compared methods produce zero
error rates and select similar number of genes.

To evaluate the class-specific variable selection, we pick
one out of 100 replications and illustrate the estimation of
the APF method using a heatmap in Figure 1. In this fig-
ure, the rows correspond to the genes selected by the APF
method and the column to the six pairs formed from the four
subtypes. A black (white) spot indicates that the estimated
coefficients of the corresponding gene for the two subtypes
are different (identical). For example, gene “1358266” can
not discriminate subtypes EWS, NB and BL, but it can dis-
criminate them from subtype RMS. We can see that APF

Table 3. Classification and variable selection results of
SRBCT data set. The numbers in the table are the medians

of 100 rounds of random splits and the numbers in the
parentheses are the corresponding median absolute deviations

Method Test error (%) Selected genes (#)

AL1 0 (0) 46.5 (13.46)
ASN-I 0 (0) 51.5 (12.11)
ASN-II 0 (0) 42.0 (11.59)
APF 0 (0) 38.0 (10.07)

provides a more informative way for describing the functions
of a gene with respect to discriminating different tumor sub-
types.

4.2 Web mining example

The data set comes from the World Wide Knowledge
Base project at Carnegie Mellon University. It was collected
in 1997 and includes webpages from websites at computer
science departments in the following four universities: Cor-
nell, Texas, Washington, and Wisconsin. The webpages were
manually classified into seven categories, but in this exam-
ple, only 1,396 webpages corresponding to the four largest
categories were used: student (544 webpages), faculty (374
webpages), course (310 webpages) and project (168 web-
pages). The original data set was preprocessed by Cardoso-
Cachopo [2] following the following steps: (1) Substituting
space for tab, newline, and return characters; (2) Keeping
only letters (that is, turning punctuation, numbers, etc. into
spaces) and turning all letters to lowercase; (3) Removing
words less than 3 characters long and removing the 524
smart stopwords; (4) Substituting a single space for mul-
tiple spaces; (5) Stemming the documents by applying a
stemmer algorithm [13] to the remaining text.

The log-entropy weighting method [5] was used to calcu-
late the term-document matrix X = (xi,j)n×p, with n and
p denoting the number of webpages and distinct terms, re-
spectively. Let fi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ p be the number
of times the j-th term appears in the i-th webpage and let
pi,j = fi,j/

∑n
i=1 fi,j . Then, the log-entropy weight of the
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Figure 1. Results of class-specific variable selection for the APF method on the SRBCT data. Each row corresponds to a gene
(denoted by its ID). Each column corresponds to a pair of tumor subtypes; for example, “EWS/NB” indicates subtypes EWS

and NB. A black (white) spot indicates that the estimated coefficients of the corresponding gene for the two subtypes are
different (identical).

j-th term is defined as

ej = 1 +
n∑

i=1

pi,j log(pi,j)/ log(n) .

Finally, the term-document matrix X is defined as

xi,j = ej log(1 + fi,j) , 1 ≤ i ≤ n , 1 ≤ j ≤ p ,

and it is normalized along each column. The data are further
cleaned by extracting n = 1, 396 documents from the four
largest categories and keep only top p = 100 terms with the
highest log-entropy weights out of a total of 4,800 terms.
Before doing the analysis for this paper, the cleaned data
has been used to explore the word networks using graphical
models [6]. Similar to the SRBCT example, all documents
in the cleaned web mining data set were randomly split into
a training set and a test set and this procedure was repeated
100 times.

Table 4 shows the prediction and variable selection results
from different MSVM methods. The results are averaged

Table 4. Classification and variable selection results of web
mining data set using top 100 terms. The numbers in the

table are the medians of 100 rounds of random splits and the
numbers in the parentheses are the corresponding median

absolute deviations

Method Test error (%) Selected terms (#)

AL1 21.0 (1.65) 90.5 (7.06)
ASN-I 20.8 (1.47) 89.0 (7.24)
ASN-II 20.9 (1.58) 87.0 (6.62)
APF 20.8 (1.54) 93.5 (7.41)

(by median) over 100 replications. Again, all these methods
produce similar test error rates and select similar number
of variables (terms). Figure 2 illustrates the results of class-
specific variable selection from one out of 100 replications.
We can see that many terms only contribute to discriminate
a set of topics. For example, the term “system” can discrim-
inate the topics “faculty”, “student” and “project”, but it
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Figure 2. Results of class-specific variable selection for the APF method on the web mining data. Each row corresponds to a
term and each column corresponds to a pair of topics. A black (white) spot indicates that the the corresponding terms is

discriminable (nondiscriminable) for the associated two topics.

can discriminate them from the topic “course”. Therefore,
class-specific variable selection provides better interpreta-
tion and it helps deeper understand the structure of the
data.

5. CONCLUSION

This paper develops a method for simultaneously clas-
sifying high-dimensional data and selecting informative
variables, by employing a penalized multicategory support
vector machine framework. In particular, the proposed
method penalizes the difference between the coefficients for

each pair of classes and for each variable, which allows one
to identify and remove unimportant variables for selected
subsets of classes. This allows one to gain more insight into
the function of particular variables and potentially discover
heterogeneous structures that other available methods are
unable to capture.
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