
Statistics and Its Interface Volume 4 (2011) 11–17

Detection of rare items with TARGET

Guangzhe Fan
∗

and Mu Zhu

In our new information-based economy, the need to de-
tect a small number of relevant and useful items from a large
database arises very often. Standard classifiers such as de-
cision trees and neural networks are often used directly as
a detection algorithm. We argue that such an approach is
not optimal because these classifiers are almost always built
to optimize a criterion that is suitable only for classification
but not for detection. For detection of rare items, the mis-
classification rate and other closely associated criteria are
largely irrelevant; what matters is whether the algorithm
can rank the few useful items ahead of the rest, something
better measured by the area under the ROC curve or the
notion of the average precision (AP). We use the genetic
algorithm to build decision trees by optimizing the AP di-
rectly, and compare the performance of our algorithm with
a number of standard tree-based classifiers using both sim-
ulated and real data sets.

Keywords and phrases: Average precision, Classifica-
tion, Decision tree, Fraud detection, Genetic algorithm.

1. INTRODUCTION

Suppose we have a large collection of items, C, of which
only a fraction π (π � 1) is relevant to us. We are inter-
ested in computational tools to help us identify and single
out these items. The reason an item is considered relevant
depends on the context of a specific problem. For exam-
ple, insurance (credit card) companies are very interested in
detecting fraudulent claims (transactions). In such applica-
tions, the relevant items are the few fraudulent cases among
thousands or millions of transactions.

Typically, we have a training data set {(yi,xi)}n
i=1, where

xi ∈ Rd is a vector of predictors, yi = 1 if observation
i is relevant and yi = 0 if otherwise. Supervised learning
methods (e.g., classification trees, support vector machines,
neural networks) are used to build a predictive model us-
ing the training data. The model is then used to screen a
large number of new cases, and produces a relevance score
or an estimated probability for each case. The top-ranked
cases can then be passed onto further stages of investigation.
Figure 1 provides a schematic illustration of this process.

If it is decided that the top 50 cases should be investi-
gated further, we shall say that these 50 cases are the ones
∗Corresponding author.

Figure 1. Illustration of the typical modelling and prediction

process. Source: Zhu et al. [21].

“detected” by the algorithm, although, strictly speaking, the
algorithm really does not detect these cases per se; it merely
ranks them as being more likely than others to be what we
want.

The data structure and the types of supervised learning
methods often used here are similar to those encountered
in a standard two-class classification problem. However, the
underlying objective is very different. In particular, auto-
matic classification is of little interest. This is because fur-
ther investigation of the top-ranked candidates is almost
always necessary. For example, an insurance or credit card
company would seldom refuse a claim or terminate an ac-
count without confirming the suspected fraud. Therefore, we
are most interested in producing an effective ranking of all
the candidates so that any further investigation (often very
expensive) is least likely to be carried out in vain.

1.1 Performance evaluation

Clearly, misclassification rate is quite irrelevant for a
problem of this nature. For example, if class 1 consists of
only 5% of all cases, then an algorithm that simply classi-
fies everything into class 0 will have a misclassification rate
of only 0.05, but it is clearly not a useful algorithm (see,
e.g., [1]).

For detection problems, the most relevant evaluation cri-
terion here is whether the relevant items can be ranked

http://www.intlpress.com/SII/

ahead of the rest by the algorithm, something that can be
measured by, for example, the area under the receiver op-
erating characteristic (ROC) curve (simply AUC for “area
under the curve” below) (see, e.g., [16]), and/or the average
precision (simply AP below) (see, e.g., [7, 8, 15]). A brief
description of how the AP is defined and calculated, partic-
ularly for tree-based methods that often produce many tied
ranks, is given in Appendix A. For most readers, it suffices
to know that, if algorithm A has a larger AP than algo-
rithm B, then algorithm A can be regarded as the better
algorithm for ranking purposes.

1.2 Challenges and motivation

As mentioned earlier, standard classifiers such as classi-
fication trees [3], support vector machines (SVMs; e.g., [6]),
and neural networks (e.g., [19]) are often used directly as
detection algorithms. Here is why we believe such an ap-
proach is not fully optimal. Let f(x; θ) be a general clas-
sifier completely specified by a set of parameters which we
shall write simply as θ; θ is often chosen to minimize a cer-
tain loss function, e.g., the “hinge” loss for SVMs and the
exponential loss for AdaBoost (see, e.g., [13, Sections 10.6
and 12.3.2]). However, these commonly used loss functions
can all be viewed as continuous approximations to the mis-
classification rate [13, Section 10.6] and are, therefore, not
entirely appropriate for the detection problem. Certainly,
the key model parameter θ is never chosen to optimize the
AP or the AUC directly.

In practice, the AP and the AUC can be used to guide
the construction of these classifiers to a certain degree. For
example, if the underlying problem is one of detection rather
than classification, one would generally choose the tuning
parameters of an algorithm using the AP or the AUC (rather
than, e.g., the misclassification rate) as the guiding criterion.
For ranking problems, we think it is desirable to develop a
fully optimal approach which uses the AP or the AUC to
choose not only the tuning parameters but also the model
parameter θ.

This, however, is often difficult to achieve because the
AP and the AUC depend on how the items are ranked and
are, therefore, not generally smooth functions of θ. Recently,
there have been some attempts in the machine learning com-
munity to optimize the AUC directly (e.g., [5]). In this ar-
ticle, we present an algorithm to optimize the AP directly
over θ when f(x; θ) is restricted to be a decision tree. De-
veloping algorithms that directly optimize the AP without
requiring f(x; θ) to be a decision tree is part of our ongoing
research program.

2. TARGET

TARGET, which stands for “Tree Analysis with Ran-
domly Generated and Evolved Trees”, is first developed by
Gray and Fan [9, 12]. Here, we further develop TARGET
into an effective detection tool for identifying rare items.

It is well-known that the recursive partitioning algorithm
used by CART and other similar software for building deci-
sion trees is a greedy algorithm. At each stage the algorithm
searches for a locally optimal split to grow a tree but the
final product is not necessarily the best overall tree. Instead
of a greedy search algorithm, TARGET uses a stochastic
search algorithm known as the genetic algorithm (GA; [10])
to build the decision tree. Here we use the GA to optimize
the tree model with respect to the average precision criterion
to detect rare items, a task that is in principle not well-suited
for various greedy tree search algorithms. Another example
of using the GA for rare events is the paper by Weiss and
Hirsh [20]. They used the GA to optimize a rule-based ex-
pert system to predict rare events in categorical time-series
data.

Starting with a number of randomly generated candidates
(the initial population), the GA applies the Darwinian prin-
ciple of “the survival of the fittest” and gradually eliminates
the weaker (less optimal) candidates and allows the stronger
ones to survive and generate offspring. This goes on for a
number of generations until good solutions are produced in
the end. We use N to denote the population size, which
TARGET keeps fixed for all generations. Given a random
initial population of size N , a new generation of the same
size is produced with a number of genetic operations: elitism,
crossover, mutation, and transplant; details are given below.

2.1 Initialization

The initial population consists of N randomly created
decision trees. TARGET uses a default of N = 50. To ran-
domly generate a tree, we start with a single root node. With
probability psplit, the node is split and two child nodes are
created; otherwise, the node becomes a terminal node. If the
node is split, then a split rule, which includes a split vari-
able and a split set, is randomly chosen from all candidate
split rules and assigned to that node. The recursive node-
splitting process then continues with the child nodes until
no more splits are to be made. The node splitting probabil-
ity psplit is used to control the average tree size in the initial
forest. The default value used by TARGET is psplit = 0.5.
After a tree is randomly created, the training data are run
through the tree down to the terminal nodes. Since the split
rules are randomly assigned, some nodes may be empty or
have too few observations. These small or empty nodes are
pruned from the tree before the fitness of the tree is evalu-
ated. We shall say more about how the fitness is evaluated
below (Section 2.4).

2.2 Genetic operations

The N randomly initialized trees consist of the first gen-
eration in the evolutionary process. Given a current genera-
tion, the following genetic operations are performed, in the
order listed, to create a new generation.

12 G. Fan and M. Zhu

• Elitism: A fixed number (default = 0.1 × N) of trees
with the best fitness values in the current generation
are copied to the next generation.

• Crossover: Two parent trees are randomly selected
with probabilities proportional to their fitness val-
ues and a node is randomly chosen on each tree.
Then, either the two nodes are swapped (node swap
crossover) or the two sub-trees are swapped (subtree
swap crossover). The user can specify the probabilities
of the two types of swaps; the default used by TAR-
GET is to assign equal probabilities to the two types.
This results in two new trees or offspring. In node-swap
crossover, only the split rules are actually swapped.
Moreover, crossover is not performed if two root nodes
or two leaves are selected. A crossover rule is used to
determine which of the four trees involved in a crossover
operation (two parents and two offspring) are added to
the next generation. Possible rules include adding both
offspring, adding the better of the two offspring, adding
the best of the four, or adding the best two of the four.
The choice is left up to the user; the default used by
TARGET is to add the best of the four.

• Mutation: Mutation introduces new “genetic mate-
rial” and can help the genetic search process avoid get-
ting trapped at local optima. We randomly select a sin-
gle tree from the current population with probability
proportional to its fitness value and randomly perform
one of following four types of mutation:

(1) split set mutation — randomly select a node, keep
the same split variable there but change its split
set, randomly;

(2) split rule mutation — randomly select a node and
change the entire split rule, including both the
split variable and its split set;

(3) node swap mutation — randomly select two nodes
and swap their split rules; and

(4) subtree swap mutation — randomly select two
sub-trees within the tree and swap them.

The user can specify the probabilities for the four types
of mutation; the default used by TARGET is to assign
equal probabilities to the four types.

• Transplant: A number (default = 0.1×N) of new ran-
domly generated trees are added to the next generation.
This adds more “genetic material” to the evolutionary
process and provides additional opportunities for the
algorithm to avoid local optima.

Trees with larger fitness values are given higher proba-
bility of being selected for the genetic operations (with se-
lection probability proportional to the trees’ fitness values).
The user can specify different proportions of the new gen-
eration to be constructed by different genetic operations.
The default used by TARGET is as follows: 10% by elitism,
60% by crossover, 20% by mutation and another 10% by
transplant.

2.3 Termination

TARGET provides a convenient graphic interface that
allows the user to monitor the fitness values along the evo-
lutionary process. The user can stop the algorithm if there
is no improvement in the best tree over several generations.
Then the best tree of the final generation is used as the final
model.

2.4 The fitness function

Other than the ability to conduct a non-greedy search,
the biggest advantage of TARGET is perhaps its ability to
optimize almost any objective function. The fact that a cer-
tain objective function is not a smooth function of the model
parameter θ is inconsequential. For the detection of rare
items, it is easy to search for a decision tree to maximize
the average precision directly. In principle, we simply use
the AP as the fitness function. In reality, extra care must
be taken to avoid overfitting the training data. To do so, we
add a penalty proportional to the size of the tree. The final
fitness function used to evaluate a tree T can be written as

(1) fitness(T) = AP(T) − α|T |,

where |T | is the total number of terminal nodes.
The proportionality constant α can be regarded as a

tuning parameter of the algorithm and chosen empirically
by cross-validation. The default used by TARGET is α =
0.01π, where π is the fraction of rare items in the training
set. If π = 5%, this choice of α means an extra terminal
node is permissible only if it increases the AP of the corre-
sponding decision tree by more than 0.05%.

3. EXPERIMENTS

We now conduct a number of experiments using two sim-
ulated and two real data examples to evaluate the perfor-
mance of TARGET.

1. Simulation 1. In this simulation, x ∈ [0, 1]5 is gener-
ated uniformly inside the 5-dimensional unit cube. To
generate y, only the first two dimensions of x are used:
P (y = 1|x) is a piece-wise constant and increasing func-
tion of x1 + x2; see Figure 2. A total of n = 5, 000 ob-
servations are generated, of which roughly 15% belongs
to class 1. The experiments are repeated 5 times. Each
time, the observations are randomly split into a training
and a test set consisting of 2,500 observations each.

2. Simulation 2. In this simulation, we first simulate
from three 4-dimensional multivariate normal popula-
tions. A total of 4,000 samples from N (μ1,Σ1) are la-
beled as class 0; 700 samples from N (μ2,Σ2) and 300
samples from N (μ3,Σ3) are labeled as class 1, where

μ1 = (0.9, 0.5, 0.9, 0.5)T ,

μ2 = (0.1, 0.1, 0.3, 0.7)T ,

μ3 = (0.4, 0.0, 0.0, 0.2)T ;

Detection of rare items with TARGET 13

Figure 2. P (y = 1|x) as a function of x, used to generate data

for simulation 1.

Σ1 = Σ2 =

⎡
⎢⎢⎣

1.0 0.2 0.0 −0.5
0.2 1.0 0.6 −0.2
0.0 0.6 1.0 0.0

−0.5 −0.2 0.0 1.0

⎤
⎥⎥⎦ ;

and

Σ3 =

⎡
⎢⎢⎣

1.0 0.0 0.0 0.5
0.0 1.0 −0.5 0.2
0.0 −0.5 1.0 0.0
0.5 0.2 0.0 1.0

⎤
⎥⎥⎦ .

In other words, there are a total of 5,000 observations,
of which 20% belong to class 1. Then, 11 indepen-
dent noise features, uniformly generated from [0, 1], are
added to every observation. The experiments are re-
peated 5 times. Each time, the observations are ran-
domly split into a training and a test set consisting of
2,500 observations each.

3. Breast cancer data. This is the well-known
breast cancer data set from the UCI machine
learning repository (ftp://ftp.ics.uci.edu/pub/machine-
learning-databases/breast-cancer-wisconsin/). The raw
data set consists of 699 observations, each with 9 pre-
dictors. There are 16 observations with missing predic-
tors; these are not used, resulting in a total of 683 ob-
servations, of which 239 are cancer cases. We randomly
partition the data into 5 roughly equal-sized blocks,
and repeat the experiments 5 times, each time using
one block as the test set and the other 4 blocks as the
training set.

4. Insurance fraud data. This is an automobile insur-
ance fraud data set available from Pyle [17]. The data
set consists of 15,420 records of insurance claims made
between 1994 and 1996. For each record, there are 32
variables (such as the make of the car, the driver’s rat-
ing, the amount of the deductible on the policy, the
area of the accident, and so on) as well as an indica-
tor whether fraud is detected. There are altogether 923
records in the fraud category. Not all 32 variables are
used for prediction. The variable “policy number” is not
used and the variable “year” is only used to partition
the data into a training and a test set. Here, the ex-
periments are repeated twice. In the first experiment,
claims made in 1994 (a total of 6,142) are used as train-
ing data and claims made in 1995 and 1996 (a total of
9,278) are used as test data. In the second experiment,
claims made in 1995 (a total of 5,195) are used as train-
ing data and those made in 1996 (a total of 4,083) are
used as test data.

3.1 Performance evaluation

All experimental results are reported in Table 1. A wide
range of performance measures are reported, including AP,
AUC, sensitivity, specificity, misclassification rate, and the
Matthews correlation coefficient (MCC; [14]).

As we have argued earlier (Section 1), misclassification
error itself is not the most appropriate criterion for detec-
tion problems. Likewise, it is meaningless to look at sen-
sitivity and specificity separately, as improving one always
deteriorates the other. These measures are reported for com-
pleteness. Though MCC considers specificity and sensitivity
together, the AUC and the AP do so in a much more com-
prehensive, balanced and sophisticated manner because all
possible decision thresholds are considered; see [16] and Ap-
pendix A.

We also observe that AUC and AP are quite consis-
tent measures of ranking quality, while other measures such
as MCC, misclassification error, sensitivity and specificity,
which are based on a specific (and often arbitrary) decision
threshold, are not as informative for evaluating detection
algorithms.

3.2 Benchmark algorithms

We use two well-known algorithms as benchmarks:
CART [3] and Random Forest (RF) [2]. Both are tree-based
algorithms and hence appropriate benchmarks for TAR-
GET. The RF is also well-known to be a very powerful al-
gorithm whose predictive performance is generally difficult
to beat. The software we use to run these algorithms are the
rpart and randomForest packages from R [18].

For rpart, we choose the best cross-validated tree. For
randomForest, we use its default forest size of 500 trees.
Each tree casts a vote towards the class membership, and
the average votes across the entire forest is used to make
the final classification/ranking decision. For TARGET, we

14 G. Fan and M. Zhu

Table 1. Experimental results. See Section 3.3 for explanations of “CART-A” versus “CART-B” and “RF-A” versus “RF-B”.
See Section 3.4 for further explanations of the difference between how results from TARGET and those from CART and RF

are reported

AP AUC MCC Specificity Sensitivity Misclassification Tree size

Simulation 1 (15% class 1) – average of 5 repeated experiments

TARGET .304 .644 .206 .992 .086 .150 5
(.008) (.006) (.016) (.003) (.019) (.001) (.4)

CART-A .273 .590 .192 .983 .106 .154 8
CART-B .267 .588 .137 .787 .372 .277 7
RF-A .298 .654 .184 .988 .089 .152 —
RF-B .283 .648 .151 .707 .476 .329 —

Simulation 2 (20% class 1) – average of 5 repeated experiments

TARGET .486 .751 .347 .960 .287 .173 10
(.012) (.017) (.021) (.012) (.047) (.001) (2.3)

CART-A .441 .688 .327 .959 .272 .178 13
CART-B .399 .649 .255 .833 .423 .248 9
RF-A .545 .801 .289 .988 .154 .178 —
RF-B .497 .781 .345 .753 .651 .267 —

Breast Cancer Data (35% cancer) – average of 5 repeated experiments

TARGET .958 .972 .859 .947 .912 .066 5
(.012) (.007) (.015) (.007) (.022) (.002) (.31)

CART-A .901 .955 .887 .954 .940 .051 6
CART-B .923 .957 .893 .960 .935 .049 6
RF-A .985 .993 .935 .973 .967 .029 —
RF-B .983 .993 .936 .965 .984 .029 —

Insurance Fraud Data (6% fraud) – training with 1994 data, testing with 1995 and 1996 data

TARGET .139 .770 .046 .998 .013 .056 12
(.028) (.020) (.071) (.001) (.016) (.002) (4.2)

CART-A .109 .660 .090 .989 .056 .063 27
CART-B .102 .668 .109 .886 .270 .148 17
RF-A .120 .746 .008 .999 .000 .057 —
RF-B .127 .737 .168 .739 .591 .269 —

Insurance Fraud Data (6% fraud) – training with 1995 data, testing with 1996 data

TARGET .091 .692 .023 .979 .035 .070 15
(.012) (.074) (.018) (.012) (.024) (.010) (2.3)

CART-A .075 .494 .086 .987 .061 .062 24
CART-B .069 .495 .019 .759 .277 .265 18
RF-A .081 .652 N/A 1.000 .000 .052 —
RF-B .070 .600 .025 .754 .296 .270 —

evolve 500 generations each time and choose the penalty
parameter, α, using cross validation (see Section 2.4). For
rpart and TARGET, we also set a minimal node size of 5
observations for all experiments.

3.3 Unequal costs

For rare and unbalanced classification problems, it is com-
mon to use unequal costs for the two classes when fitting
conventional classifiers. We use two different cost schemes
to run rpart and randomForest. Scheme A assigns equal

costs to false positives and false negatives, while Scheme B
assigns unequal costs, taken to be inversely proportional to
the observed class proportions. For example, if the class ra-
tio is 1:9 in the training data, the ratio for the two misclas-
sification costs is set to be 9:1. This issue is irrelevant for
TARGET since it aims to optimize the AP.

To compute performance metrics that depend on making
actual classifications, such as MCC, sensitivity, specificity,
and misclassification error, the unequal costs are also used
to determine the decision threshold.

Detection of rare items with TARGET 15

3.4 Stability of TARGET

Recall that TARGET involves stochastic optimization,
i.e., each time we run TARGET, we will obtain slightly dif-
ferent results on the same data set. To better understand its
behavior, each experiment consisting of the same training-
test pair is repeated 5 times, and the mean test-set result
together with its standard deviation are recorded for each
criterion. For the two simulated and the breast cancer ex-
amples, Table 1 reports the average of these mean results
and standard deviations, averaged over 5 repetitions. We
can see that the performance of TARGET is quite stable
over multiple runs.

3.5 Results

Some of the main observations from Table 1 are as follows.
First, it is clear that TARGET generally performs well

in terms of the AP. This is reassuring, but perhaps not
too surprising, since TARGET aims to optimize the AP
directly. What’s surprising is that TARGET can almost
always achieve this kind of performance with a relatively
small tree! CART produces larger (and less effective) trees,
whereas RF uses a large number of trees and must pay a big
price in terms of model interpretability.

Second, we see that TARGET also performs well in terms
of the AUC, another measure of ranking quality. This is
particularly satisfying. Since none of the algorithms used
the AUC to fit their models, the AUC can be considered a
more objective performance evaluation metric than the AP.

Third, the advantage of TARGET appears to increase as
the problem becomes more unbalanced, e.g., the insurance
fraud data (6% fraud) versus the breast cancer data (35%
cancer).

Finally, it does not appear that assigning unequal mis-
classification costs can make CART or RF better detec-
tion/ranking algorithms.

4. CONCLUSION

We have argued that it is not optimal to use a stan-
dard classifier directly as a detection algorithm. A better
approach for constructing a classifier f(x; θ) to be used as a
detection algorithm is to use the average precision to choose
not only the tuning parameters but also the the model pa-
rameter θ. Experimental results using TARGET (which uses
the genetic algorithm to build decision trees that maximize
the AP directly) support this general argument. For fu-
ture research, we will consider using TARGET to optimize
other interesting, non-smooth objective functions such as
the AUC, building ensemble models using TARGET, and
optimizing the AP and/or AUC when f(x; θ) is not re-
stricted to be trees.

APPENDIX A. AVERAGE PRECISION

We shall only give a very brief summary of how the aver-
age precision is defined and computed. Out of the t× 100%

Figure 3. Illustration of a typical detection operation. A small

fraction π of the entire collection C is relevant. An algorithm

“detects” a fraction t from C and h(t) ≤ t is truly relevant.

Source: Zhu et al. [21].

top-ranked candidates, suppose h(t) ≤ t are truly relevant;
these are often called “hits” (as opposed to “misses”). Fig-
ure 3 provides a schematic illustration. Let r(t) = h(t)/π
and p(t) = h(t)/t; these quantities are respectively known
as the recall and the precision in the information retrieval
literature [e.g., 4, 11]. In practice, h(t) and hence r(t) and
p(t) all take values only at a finite number of points ti = i/n,
i = 0, 1, 2, ..., n. The formula for calculating the average pre-
cision is as follows:

AP =
n∑

i=1

p(ti)Δr(ti)(2)

where Δr(ti) = r(ti) − r(ti−1), and h(t0) = r(t0) = 0 by
definition.

Here is a concrete example. Table 2 summarizes the per-
formance of three hypothetical methods, A, B and P. Success
for a detection algorithm, again, means the relevant items
are ranked ahead of the rest. In this simple example, it is
easy to see that algorithm A is superior to algorithm B since
it detects the three hits earlier on. By (2), we get

AP(A) =
5∑

i=1

p(ti)Δr(ti) =
(

1
1

+
2
2

+
3
4

)
× 1

3
≈ 0.92,

and

AP(B) =
5∑

i=1

p(ti)Δr(ti) =
(

1
1

+
2
4

+
3
5

)
× 1

3
= 0.70,

which agrees with our intuition. Algorithm P is a perfect
algorithm since it ranks all the relevant items ahead of the
rest; it can be easily verified from (2) that such an algorithm
would have an average precision of 100%.

16 G. Fan and M. Zhu

Table 2. Three hypothetical algorithms A, B and P

Algorithm A Algorithm B Algorithm P
Ranked item (i) Hit p(ti) Δr(ti) Hit p(ti) Δr(ti) Hit p(ti) Δr(ti)

1 1 1/1 1/3 1 1/1 1/3 1 1/1 1/3
2 1 2/2 1/3 0 1/2 0 1 2/2 1/3
3 0 2/3 0 0 1/3 0 1 3/3 1/3
4 1 3/4 1/3 1 2/4 1/3 0 3/4 0
5 0 3/5 0 1 3/5 1/3 0 3/5 0

A.1 Handling of ties

The case of ties (i.e., several items receive the same rank
score) deserves special mention, because this happens quite
often for tree-based algorithms. If all tied items have the
same class label, this does not matter. Most often, how-
ever, some of the tied items will be “hits” and some will
be “misses”. It is not hard to see from the definition of AP
above that, if we always put “hits” ahead of “misses” among
the tied items, we will bias the AP upwards, and that, if
we always put “misses” ahead of “hits”, we will bias the
AP downwards. Therefore, the correct way to break ties is
to average over all possible permutations of the tied items.
This can be done analytically; see, e.g., the avgp function
from the lago package in R.

ACKNOWLEDGMENTS

This research is partially supported by the Natural
Sciences and Engineering Research Council (NSERC) of
Canada. We also thank the editor and two anonymous ref-
erees for their very useful comments, which have greatly
improved our paper.

Received 4 December 2009

REFERENCES
[1] Bolton, R. J. and Hand, D. J. (2002). Statistical fraud detec-

tion: A review. Statistical Science, 17(3), 235–255. MR1963313
[2] Breiman, L. (2001). Random forests. Machine Learning, 45(1),

5–32.
[3] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,

C. J. (1984). Classification and Regression Trees. Wadsworth.
MR0726392

[4] Buckland, M. and Gey, F. (1994). The relationship between
recall and precision. Journal of the American Society for Infor-
mation Science, 45(1), 12–19.

[5] Cortes, C. and Mohri, M. (2004). AUC optimization vs. er-
ror rate minimization. In S. Thrun, L. Saul, and B. Schölkopf,
editors, Advances in Neural Information Processing Systems 16.
MIT Press, Cambridge, MA.

[6] Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction
to Support Vector Machines and Other Kernel-based Learning
Methods. Cambridge University Press.

[7] Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas,

G. W., and Harshman, R. A. (1990). Indexing by latent se-
mantic analysis. Journal of the Society for Information Science,
41(6), 391–407.

[8] Dumais, S. T. (1991). Improving the retrieval of information from
external sources. Behavior Research Methods, Instruments and
Computers, 23(2), 229–236.

[9] Fan, G. and Gray, J. B. (2005). Regression tree analysis using
TARGET. Journal of Computational and Graphical Statistics,
14(3), 206–218. MR2137898

[10] Goldberg, D. E. (1989). Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley.

[11] Gordon, M. and Kochen, M. (1989). Recall-precision trade-off:
A derivation. Journal of the American Society for Information
Science, 40(3), 145–151.

[12] Gray, J. B. and Fan, G. (2008). Classification tree analysis using
TARGET. Computational Statistics and Data Analysis, 52(3),
1362–1372. MR2422741

[13] Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001).
The Elements of Statistical Learning: Data-mining, Inference and
Prediction. Springer-Verlag. MR1851606

[14] Matthews, B. W. (1975). Comparison of the predicted and ob-
served secondary structure of T4 phage lysozyme. Biochimica et
Biophysica Acta, 405, 442–451.

[15] Peng, F., Schuurmans, D., and Wang, S. (2003). Augmenting
näıve Bayes classifiers with statistical language models. Informa-
tion Retrieval, 7(3), 317–345.

[16] Pepe, M. S. (2003). The Statistical Evaluation of Medical
Tests for Classification and Prediction. Oxford University Press.
MR2260483

[17] Pyle, D. (1999). Data Preparation for Data Mining. Morgan
Kaufmann.

[18] R Development Core Team (2008). R: A language and en-
vironment for statistical computing. R Foundation for Statis-
tical Computing, Vienna, Austria. ISBN 3-900051-07-0; URL
http://www.R-project.org.

[19] Ripley, B. D. (1996). Pattern Recognition and Neural Networks.
Cambridge University Press. MR1438788

[20] Weiss, G. M. and Hirsh, H. (1998). Learning to predict rare
events in categorical time-series data. In Papers from the 1998
AAAI Workshop, Predicting the Future: AI Approaches to Time-
Series Problems, pages 83–90. AAAI Press.

[21] Zhu, M., Su, W., and Chipman, H. A. (2006). LAGO: A com-
putationally efficient approach for statistical detection. Techno-
metrics, 48, 193–205. MR2277674

Guangzhe Fan
Department of Statistics and Actuarial Science
University of Waterloo
200 University Avenue West
Waterloo, Ontario N2L 3G1
Canada
E-mail address: gfan@uwaterloo.ca

Mu Zhu
Department of Statistics and Actuarial Science
University of Waterloo
200 University Avenue West
Waterloo, Ontario N2L 3G1
Canada
E-mail address: m3zhu@uwaterloo.ca

Detection of rare items with TARGET 17

http://www.ams.org/mathscinet-getitem?mr=1963313
http://www.ams.org/mathscinet-getitem?mr=0726392
http://www.ams.org/mathscinet-getitem?mr=2137898
http://www.ams.org/mathscinet-getitem?mr=2422741
http://www.ams.org/mathscinet-getitem?mr=1851606
http://www.ams.org/mathscinet-getitem?mr=2260483
http://www.ams.org/mathscinet-getitem?mr=1438788
http://www.ams.org/mathscinet-getitem?mr=2277674
mailto:gfan@uwaterloo.ca
mailto:m3zhu@uwaterloo.ca

	Introduction
	Performance evaluation
	Challenges and motivation

	TARGET
	Initialization
	Genetic operations
	Termination
	The fitness function

	Experiments
	Performance evaluation
	Benchmark algorithms
	Unequal costs
	Stability of TARGET
	Results

	Conclusion
	Average precision
	Handling of ties

	Acknowledgments
	References
	Authors' addresses

