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Pearson’s chi-square test and the Cochran-Armitage
trend test are commonly used in the analysis of 2×J contin-
gency tables. When the J columns are nominal, Pearson’s
test should be considered. On the other hand, when the
J columns are ordinal and the ordering is well defined, the
trend test should be used. In practice, however, the columns
are often ordered but the ordering may not be uniquely de-
fined, especially the J categories may be ordered in multi-
ple ways according to several different factors. We assume
that the columns could be either singly or multi-ordered,
either being scientifically plausible, and consequently differ-
ent scores could be assigned to the columns by the different
ordering systems. Then the trend test, if applied, may lose
substantial power when the orderings are misspecified. To
guard against misspecifications of the scores for the columns,
we propose a robust test by combining strengths of both
Pearson’s test and the trend test. In the trend test, we al-
low several different score specifications according to differ-
ent ordering criteria and the scores are chosen to be robust
enough. Extensive simulation studies demonstrate the effi-
ciency robustness of the proposed approach. The proposed
method is applied to two data sets from the Genetic Associ-
ation Workshop 15 and an experiment on the use of sulfones
and streptomycin drugs in the treatment of leprosy.

Keywords and phrases: Efficiency robustness, Minimum
p-values, Ordered categorical data, Scoring, Trend tests,
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1. INTRODUCTION

In categorical data analysis, data are often summarized
in a 2×J contingency table with the rows corresponding to
two groups under comparison and the columns to J different
ordinal categories. In many biomedical studies, the ordering
of the J categories may not be uniquely defined and multiple
ordering systems may exist. Some motivating examples are
given below.

Example 1. In a genetic case-control association study,
one is interested in testing association between a disease
and a diallelic marker with three genotypes (J = 3). It is
usually postulated that one of the two alleles is the risk
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allele, so that an individual’s risk of having disease increases
with the number of the risk allele and as such, the Cochran-
Armitage’s trend test should be applied [22].

Example 2. Also in the genetic association study, but a
marker has three alleles. Then two of the three alleles may
be regarded as risk alleles, and a total of J = 6 genotypes
(combinations of two alleles) can be naturally ordered by
the number of either alleles if they have additive effects on
the disease. A trend test assigning proper scores to the two
orderings for two risk alleles can be used to test for genotype-
disease association and use of only one score in the trend test
may lead to power loss since only the partial ordering with
respect to one specific allele is used [4].

Example 3. In a two-locus case-control genetics associa-
tion study, ordering of the loci may only be well defined
marginally according to the genetic models at each locus but
the interactions between the loci may be difficult to char-
acterize. For example, if the two marker loci are diallelic
(hence, there are totally = 9 genotype combinations), then
two different orderings with respect to the two risk alleles
can be assigned to the 9 columns. By using the two scoring
systems, the between-locus interaction may be appropriately
defined and then the trend test with the marginal scores and
interaction terms can be applied.

Example 4. This example is similar to Example 3, but not
in the genetics context. In studying association of smoking
status and alcohol consumption to breast cancer, the smok-
ing status is recorded as none (S0), less than a pack/day
(S1) and more than a pack/day (S2) and the drinking sta-
tus is recorded as none (N0), social drinker (N1), moder-
ate drinking (N2) and heavy drinking (N3). There are 12
different combinations of smoking and drinking behaviors
(J = 12). The cancer and cancer-free subjects are classified
into these 12 categories to form a 2 × 12 table. When ap-
plying a trend test to it, ordered scores have to be assigned
to each of the 12 columns. It is easier to assign increasing
scores to smoking or drinking marginally, but it might not
be easy to assign increasing scores jointly on the two risk
factors (e.g., if S0 + N2 < S1 + N1?). In other words, wrong
scores are most likely to be assigned jointly than marginally.
We also call this 2×12 table as a multi-ordered contingency
table, because two orderings for smoking and drinking are
involved.
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For a general multi-ordered contingency table, similar to
the method of Czika and Weir [4], we can assign proper
scores to all K possible linear independent orderings to ob-
tain the trend test with a J ×K score matrix. We still refer
to this extended test as a trend test. The trend test asymp-
totically follows a chi-square distribution with K degree of
freedoms (df) under the null hypothesis of no association.
Obviously, the smaller the K, the more efficiency the trend
test would achieve. When J is large and K is small, Pear-
son’s test, with a larger degree of freedom, is usually less
powerful compared to the trend test. Notice that if one as-
signs K = J − 1 linearly independent score vectors to the
J categories, the trend test turns out to be the Pearson’s
chi-square test and consequently the choice of scores is ir-
relevant. But in practice, K is usually much less than J −1.

All test statistics that we consider here have the correct
sizes under the null hypothesis H0, because they all have
asymptotic chi-squared distributions with different degrees
of freedom. Hence our goal is to compare their efficiency
and robustness under the alternative hypothesis H1 due to
model uncertainty. A model refers to a parametric distri-
bution under which the observed data are generated. If the
model is correctly specified (e.g., the normal distribution in
the classical two-sample problem), an asymptotically opti-
mum test can be applied (e.g., the T-test). If the actual
distribution underlying the data is Cauchy distribution, the
T-test has no power to detect a location shift (or it is not
efficient). The power is used as a function of the sample size,
while the efficiency is used in terms of a local H1. Hence the
T-test is not robust when the true model is misspecified. In
fact, a more robust test is Wilcoxon rank test, which is less
powerful than the T-test under the normal distribution, but
retains high power when the distribution is Cauchy. Thus, it
is much less sensitive to the misspecification of an underlying
distribution than the T-test. The efficiency and robustness
are a trade-off. We use the term efficiency robust test to refer
to a test which seeks a balance between the efficiency and
robustness [6]. A similar idea to efficiency robust tests in
estimation is a minimax estimator. However, the efficiency
robust test is used for hypothesis testing.

The power of the trend test is quite sensitive to the
choices of scores and is therefore not robust to the misspec-
ification of the scores (models) [8], the trade-off between
efficiency and robustness for the trend test has been a re-
cent debate in the literature [11, 23, 28]. When the model
is known, scores are known. When the model is uncertain,
scores are still needed to be specified in order to use the
trend test, but subject to errors, which would affect the
power performance of the trend test. In genetic case-control
association studies, the scores are determined by the under-
lying mode of inheritance (i.e., the genetic model). For a
single locus study, common genetic models include the re-
cessive, additive, multiplicative and dominant models. The
overdominant and underdominant models are less common
but are also possible. The definitions of different genetic

models are given later. For a multi-locus study, however,
mode of inheritance becomes much more complicated when
genetic interactions exist [16, 20, 27]. The true genetic model
is usually unknown in practice, which is particularly true
for many common and complex diseases as those studied by
Wellcome Trust Case-Control Consortium (WTCCC) [26] in
which a robust test to combine the strength of Pearson’s test
and the 1-df trend test for analysis of a 2×3 contingency ta-
ble in genome-wide scans was proposed. Here the robustness
refers to the power of a test being not largely affected even
if the scoring vector or matrix is incorrectly specified. The
robust test of WTCCC [26], referred to as Min2 by Joo et
al. [13], takes the minimum of the p-values of Pearson’s test
and the trend test with the scores locally optimal for the
additive model. Joo et al. [13] used this minimum p-value
to rank about 400,000 genetic markers (SNPs) after qual-
ity control. The top ranked SNPs can be used for further
focused analysis. Joo et al. [13] derived the asymptotic null
distribution of Min2 for 2 × 3 tables, and studied some of
its properties for genome-wide association studies.

For general J and K < J−1, similar to Joo et al. [13], we
propose to combine the (J − 1)-df Pearson’s chi-square test
and the K-df trend test by taking the minimum of their p-
values, hereafter referred to as Min2 test. The scores (vector
or matrix) of the trend test may be subject to misspecifi-
cation yet are chosen to be robust enough. For example,
in genetic association analysis, an additive score (equally
spaced) for each risk allele can be used if the underlying ge-
netic model is unknown [22]. The proposed method is shown
to have both the robustness of the Pearson’s test and the ef-
ficiency of the trend test. As a special case, our robust test
can also be applied to a singly ordered contingency table
(K = 1). Moreover, our approach extends the Min2 test of
Joo et al. [13] and can be used in multi-locus association
analysis with interactions.

The rest of this article is organized as follows. In Sec-
tion 2, we introduce the proposed Min2 test for ordered
2 × J contingency tables and study its properties. In
Section 3, we evaluate the performance of the proposed
test for two-locus genetic association studies via simula-
tions. In Section 4, we apply our method to two sub-
sets of Genetic Analysis Workshop 15 (GAW15) data set
(http://www.gaworkshop.org/index.html) and an experi-
ment on the use of sulfones and streptomycin drugs in the
treatment of leprosy. Some concluding remarks are given in
Section 5.

2. METHODS

2.1 Choice of scores

Consider a general 2 × J contingency table with a bi-
nary outcome and J exposures. Without loss of generality,
we consider data from a case-control design, but the devel-
oped methods are readily applicable to prospective or cross-
sectional studies. Data including the underlying probabili-
ties and cell counts are displayed in Table 1, where y = 1
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Table 1. Probabilities and observed counts of a 2 × J
contingency table

Probabilities (Observed counts)

x1 x2 · · · xJ

y = 1 p1(r1) p2(r2) · · · pJ(rJ) (R)
y = 0 q1(s1) q2(s2) · · · qJ(sJ) (S)

Total (n1) (n2) · · · (nJ) (N)

or 0 stands for the case or control group and ri(si) is the
observed count in the case (control) group, i = 1, . . . , J .
Denote row margins by R and S and column margins ni,
i = 1, . . . , J .

There might be different ordering methods for the J cate-
gories. For example, in genetic case-control association stud-
ies with I alleles, among which there are K ≤ I − 1 risk
alleles. The J = I(I + 1)/2 genotypes may be ordered by
the number (or presence/absence) of any of the K risk al-
leles. Coding of these orderings depends on the underlying
genetic model. Recessive, additive/multiplicative and domi-
nant models are four commonly used genetic models. Under
a recessive model, traits are only expressed if an individual
has two risk alleles while under a dominant model, traits
are expressed if an individual has at leat one risk allele.
An individual’s risk of expressing the trait increases with
the number of risk alleles under an additive or multiplica-
tive models. For example, when I = 2 (J = 3), the scores
(0,0,1), (0,1/2,1), and (0,1,1) are used for the recessive, ad-
ditive and dominant models, respectively [22, 7, 30]. When
I = 3 (J = 6), we can assign two sets of scores according to
the two risk alleles. Specifically, if the three alleles are A1,
A2 and A3 and among which A1 and A2 are the risk alleles,
then the 6 possible genotypes (A1A1, A1A2, A1A3, A2A2,
A2A3, A3A3) can be scored twice by the allele A1 and A2, re-
spectively. For example, if both the risk alleles obey additive
model, then we assign two sets of scores (1, 0.5, 0.5, 0, 0, 0)
and (0, 0.5, 0, 1, 0.5, 0) to the 6 genotypes by one half of the
number of A1 and A2, respectively. If, on the other hand, A1

is dominant and A2 is recessive, then the two sets of scores
are (1, 1, 1, 0, 0, 0) and (0, 0, 0, 1, 0, 0).

A relevant but different example is the score specification
in two-locus association analysis. Two-locus models with dif-
ferent interaction mechanisms are of great importance and
were discussed in literature [16, 20, 27]. There are mainly
two classes of two-locus models, namely, epistasis models
and heterogeneity models [24]. All models here assume that
the two loci are diallelic and unlinked. Let the two loci be
diallelic and the alleles be A/a and B/b and A and B are
risk alleles. Hence, there are J = 9 genotype combinations
(AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb,
aabb). We consider seven two-locus models. These two-locus
models are summarized in Table 2 in terms of penetrance
(penetrance is defined as the possibility of an individual be-
ing a case given a certain genotype), defined as follows.

Table 2. Penetrance tables for two disease loci (g < f)

D ∩ D D ∩ R R ∩ R
BB Bb bb BB Bb bb BB Bb bb

AA f f g f g g f g g
Aa f f g f g g g g g
aa g g g g g g g g g

D ∪ D D ∪ R R ∪ R
AA f f f f f f f f f
Aa f f f f f f f g g
aa f f g f g g f g g

threshold
AA g g g
Aa g g f
aa g f f

The epistasis models include the intersection of domi-
nant and dominant (D ∩ D): the intersection of recessive
and dominant (D ∩ R), the intersection of recessive and re-
cessive (R ∩ R). For the D ∩ D model, a dominant disease
allele must be present at both loci in order to contract the
disease. Consequently, only those genotypes containing the
two risk alleles will have the disease. This model has a good
application in determining the color of the flowers produced
by certain strains of pea plants [25]. For the D ∩ R model,
the disease allele is dominant at locus 1 and recessive at lo-
cus 2. Therefore, the only vulnerable genotypes are AABB
and AaBB. People can find an example of this model from
the plumage color of chickens [15]. For the third epistasis
model, traits manifest itself only if a recessive allele exists
at both loci. Thus only individuals with genotype AABB
are at risk.

The heterogeneity models include the union of dominant
and dominant (D∪D), the union of dominant and recessive
(D ∪ R) and the union of recessive and recessive (R ∪ R).
The D ∪ D model requires that at least one risk allele is
at either locus 1 or locus 2. Thus, all genotypes are at risk
except aabb. We can find the genetic model in the animal
study for the control of leg feathers on chickens [15]. For the
D ∪ R model, traits are determined by either a dominant
form of the disease allele at the first loci or a recessive form
at the second. For the R ∪ R model, those with a recessive
allele at one of the two loci are at risk. The application of
this genetic model can also be found in Lerner et al. [15].

Another commonly used interaction model is the thresh-
old interaction model [18]. In a threshold model, trait mani-
fests itself only when the total number of risk alleles at these
two loci is greater than 1.

We show in details the scoring method for these models
in what follows. For the nine genotypes, one can assign two
sets of scores according to the marginal genetic model and
one more score defined from the two scores to characterize
the between-locus interaction. For example, suppose the two
loci are both marginally dominant, then we can assign scores
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(1, 1, 1, 1, 1, 1, 0, 0, 0) and (1, 1, 0, 1, 1, 0, 1, 1, 0) to the 9 geno-
types based on the dominant model for each locus. A third
score (1, 1, 0, 1, 1, 0, 0, 0, 0), which is the element-wise inter-
section (minimum), can be used to represent the epistasis
model or (1, 1, 1, 1, 1, 1, 1, 1, 0), which the element-wise union
(maximum), can be used to represent heterogeneity interac-
tion. Formally, score matrices for the aforementioned epista-
sis and heterogeneity interaction models are summarized in
(1)–(7), in which the 9 rows represent the genotypes and the
first two columns of each matrix are the marginal scores of
the two loci and the third column is the minimum/maximum
of the first two columns for epistasis/heterogeneity model,
representing the between-locus interaction.

(1) xD∩D =

⎛
⎝ 1 1 1 1 1 1 0 0 0

1 1 0 1 1 0 1 1 0
1 1 0 1 1 0 0 0 0

⎞
⎠

T

(2) xD∩R =

⎛
⎝ 1 1 1 1 1 1 0 0 0

1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 0 0

⎞
⎠

T

(3) xR∩R =

⎛
⎝ 1 1 1 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0

⎞
⎠

T

(4) xD∪D =

⎛
⎝ 1 1 1 1 1 1 0 0 0

1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 0

⎞
⎠

T

(5) xD∪R =

⎛
⎝ 1 1 1 1 1 1 0 0 0

1 0 0 1 0 0 1 0 0
1 1 1 1 1 1 1 0 0

⎞
⎠

T

(6) xR∪R =

⎛
⎝ 1 1 1 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0
1 1 1 1 0 0 1 0 0

⎞
⎠

T

(7)

xThres =

⎛
⎝ 1 1 1 0.5 0.5 0.5 0 0 0

1 0.5 0 1 0.5 0 1 0.5 0
1 1 0 1 0 0 0 0 0

⎞
⎠

T

,

where the first two rows are additive scores for the two loci
and each entry of the last column is 1 if the number of risk
alleles A and B in the two-locus genotype is greater than 2
(i.e., sum of the scores in the first two columns exceeds 1),
otherwise it is 0.

Note that there are many other possible two-locus models
underlying the case-control data. Because interaction mech-
anism may be so complicated that no simple scores can
model it. A common approach in genetic study is to use
the doubly additive model by assuming additive model for
each locus, namely, the score matrix defined by A and B is
taken to be

(8) xa =
(

1 1 1 0.5 0.5 0.5 0 0 0
1 0.5 0 1 0.5 0 1 0.5 0

)T

This model is the “multiplicative model within and between
loci” defined in Marchini et al. [18]. This set of scores is a
robust choice when the underlying two-locus model is un-
known and we will use the trend test with this set of scores
as our trend test in constructing Min2 test.

For the analysis of a general 2×J contingency table, some
guidelines of choices of scores in practice were suggested by
Graubard and Korn [8]: (i) Use natural column scores which
are based on substantive meaning of column categories; (ii)
Use equally spaced column scores; and (iii) Always check the
mid-rank scores if it is appropriate. In any case, the trend
test is subject to misspecification of the scores and may be
consequently less robust.

2.2 The trend test

For K different linearly independent scoring of the J cat-
egories, we have a J × K (1 ≤ K ≤ J − 1) score matrix
which is denoted as x = (x̃1, . . . , x̃J)T with x̃j being the
K × 1 score vector assigned to the j-th category. Elements
of x are normalized to lie in the interval [0, 1] in this article.
The score matrix x is of full rank K because of the indepen-
dency among the K sets of scores. Denote the jth category
by Ej and pj = Pr(y = 1|Ej). Then the logistic regression
model has the form

log
(

pj

1 − pj

)
= α + βT x̃j ,

where α is the baseline log odds, and β is the log odds ratio.
The above prospective logistic regression model can also be
used to fit a retrospective study [21].

Denote φ = R/N , and

r = (r1, . . . , rJ)T , s = (s1, . . . , sJ )T , n = (n1, . . . , nJ)T .

The likelihood function L(α, β) is proportional to

J∏
j=1

p
rj

j (1 − pj)sj .

The score test for H0 : β = 0 can be written as

(9) T1(x) = UT {var(U)}−1
U,

where U = xT {(1 − φ)r − φs} and

var(U) = {R(N − R)/N3}xT
{
Ndiag(n) − nnT

}
x.
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The score statistic T1(x) in (9) is called the trend test with
scores x. When the scores x are fixed (prespecified), T1(x)
asymptotically follows a K-df chi-square distribution under
H0.

The robust tests can be derived from the trend test
[6]. For example, the MAX test [28] can be written as
MAX = maxx T1(x). Pearson’s test, can also be obtained
from the trend test when K = 1 and the scores are data-
driven, namely x̂ = (r1/n1, . . . , rJ/nJ)T , then T1(x̂) is iden-
tical to Pearson’s test which takes the form [31]

T2 =
J∑

i=1

(ri − niR/N)2

niR/N
+

J∑
i=1

(si − niS/N)2

niS/N
.

Under H0, T2 follows asymptotically a chi-square distribu-
tion with J − 1 df. When J = 3 and K = 1, T1(x) becomes
the trend test of Sasieni [22].

2.3 The proposed robust test

Let x be a prespecified J × K score matrix and the cor-
responding trend test be T1(x). This test is most powerful
if the scores are correctly specified. But, as what we have
argued before, x is subject to misspecification and therefore
T1(x) may lose power. Our strategy is to compensate for the
power loss by testing the hypothesis using both the Pear-
son’s test and the trend test with some scores that are repre-
sentative in practice (for example, additive scores for genetic
association analysis, as discussed in Section 2.1). Denote p-
values of T1(x) and T2 by P1 and P2, respectively. Here we
assume that the trend test follows a K-df chi-square distri-
bution asymptotically. The robust test that we propose, also
denoted by Min2, is given by

(10) Min2 = min (P1, P2) ,

where 1 ≤ K ≤ J − 1 and J ≥ 3. The null hypothesis is
rejected when a smaller Min2 is observed. When K = 1
and J = 3, Min2 reduces to the special case considered in
WTCCC [26] and Joo et al. [13]. Here, we not only extend
their robust test from a 2× 3 table to a general 2× J table
but also allow the trend test with general degrees of freedom
other than 1.

Denote the random variable with a chi-square distribu-
tion with f df by χ2

f . Let F1(·) and F2(·) be the cumulative
distribution functions of χ2

K and χ2
J−1, respectively. Then

P1 = 1 − F1 (T1(x)) and P2 = 1 − F2(T2).
Let Y1 = T1(x)/T2 and Y2 = T2. Then, from Hogg and

Craig [9] (Example 5, p. 138), Y1 and Y2 are asymptotically
independent and Y1 asymptotically has a beta distribution
Beta(K/2, (J − 1 − K)/2) under H0. A simple proof for
K = 1 was also given in Zheng et al. [28]. The joint density
function of (Y1, Y2), fY1,Y2(y1, y2), can be written as

fY1,Y2(y1, y2) = Cy
K−2

2
1 y

J−3
2

2 (1 − y1)
J−4

2 e−
y2
2 ,

where C = Γ(K+J−2
2 )/{2 J−1

2 Γ(K
2 )Γ(J−1

2 )Γ(J−2
2 )} and 0 ≤

y1 ≤ 1, y2 > 0. By a transformation, the joint density of
T1 = T1(x) and T2, denoted by fT1,T2(t1, t2), can be written
as

fT1,T2(t1, t2) = Ct
K−2

2
1 t

1−K
2

2 (t2 − t1)
J−4

2 e−
t2
2 ,

with 0 ≤ t1 ≤ t2. For a given c > 0, noticing that F−1
1 (1 −

c) ≤ F−1
2 (1 − c), then under the null

PrH0(Min2 > c) = PrH0 (P1 > c, P2 > c)
= PrH0 (1 − F1(T1) > c, 1 − F2(T2) > c)

= PrH0

(
T1 <F−1

1 (1 − c), T2 <F−1
2 (1 − c)

)

=

F−1
1 (1−c)∫

0

F−1
2 (1−c)∫

t1

fT1,T2(t1, t2)dt1dt2.

When Min2 = t is observed, the p-value of Min2 can be
obtained using the following formula:

pMin2 = pMin2(t) = PrH0(Min2 ≤ t)(11)

= 1 −
F−1

1 (1−t)∫
0

F−1
2 (1−t)∫
t1

fT1,T2(t1, t2)dt1dt2.

The above equations can be used to determine threshold
values and p-values of the Min2 test. As an example, for a
2 × 6 table, the analytical threshold is 0.0306 when signif-
icance level is α = 0.05. Therefore the threshold 0.025, if
the Bonferroni correction is applied, is obviously too con-
servative. On the other hand, if Min2 = 0.05 is observed
for a 2 × 6 table, the p-value of it is then 0.0664 from the
asymptotic distribution.

Note that the asymptotic null distribution of Min2 does
not depend on the parameters of the contingency table.
In genetic association studies, these parameters include al-
lele frequency, relative risks, and penetrances. Furthermore,
∂pMin2/∂t > 0 (see Appendix). In genetic association stud-
ies, the above results imply that the asymptotic null distri-
bution of Min2 is independent of the allele frequency of the
marker of interest, and that the p-value of Min2 and the
value of Min2 can both be used to rank SNPs in genome-
wide association studies, which would result in the same
ranking orders. The importance of this property in genome-
wide scans is discussed in Li et al. [17].

In applications, sparse categorical data are likely ob-
tained, e.g., genetic association studies with a minor allele
frequency. It is known that the asymptotic null distribution
of Pearson’s test is sensitive to small or even zero cell counts.
Thus it is expected that the asymptotic distribution of Min2
would also be affected. If small cell or empty cell counts are
observed in the data, p-value of Min2 can be obtained by
permutation methods. Some of our numerical results pre-
sented later are obtained by the permutation method.
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Table 3. Empirical power comparison among Trend, Pearson’s and Min2 tests for β1 = β2 = 0.2

β3 Test Null D ∪ D R ∪ R D ∪ R D ∩ D R ∩ R D ∩ R Threshold

0.1 Trend 0.051 0.888 0.381 0.805 0.912 0.214 0.570 0.599
Pearson 0.045 0.801 0.447 0.733 0.841 0.229 0.506 0.378
Min2 0.048 0.877 0.452 0.801 0.903 0.240 0.577 0.537

0 Trend 0.050 0.731 0.198 0.500 0.725 0.197 0.491 0.432
Pearson 0.049 0.585 0.205 0.404 0.581 0.203 0.393 0.244
Min2 0.049 0.705 0.222 0.485 0.695 0.217 0.475 0.376

−0.1 Trend 0.052 0.483 0.088 0.200 0.455 0.176 0.427 0.295
Pearson 0.048 0.361 0.083 0.157 0.340 0.192 0.328 0.176
Min2 0.047 0.458 0.089 0.190 0.428 0.199 0.408 0.256

Table 4. Empirical power comparison among Trend, Pearson’s and Min2 tests for β1 = β2 = 0

β3 Test Null D ∪ D R ∪ R D ∪ R D ∩ D R ∩ R D ∩ R Threshold

0.4 Trend 0.051 0.650 0.565 0.922 0.789 0.052 0.156 0.316
Pearson 0.047 0.750 0.700 0.904 0.841 0.069 0.232 0.404
Min2 0.046 0.748 0.695 0.932 0.853 0.064 0.218 0.395

−0.4 Trend 0.046 0.774 0.431 0.936 0.690 0.054 0.110 0.215
Pearson 0.048 0.821 0.595 0.910 0.773 0.066 0.180 0.307
Min2 0.048 0.837 0.578 0.942 0.780 0.065 0.160 0.286

3. SIMULATION STUDIES

In this section, we present simulation results in terms
of two-locus genetic case-control association analysis. We
compare power of the Pearson’s test, the trend test T1(xa)
with additive scores xa in equation (8) and the Min2 test.
We denote the markers of interest by G and H. The alleles
of marker G are A and a and those of marker H are B and
b. We use Gi(Hi) to represent the genotypes AA, Aa and
aa (BB, Bb and bb). Therefore, there are up to 9 genotypes
GiHj with Pr(GiHj) = gij , i, j = 1, 2, 3. Alleles A and B
are assumed to be the risk alleles.

We use two-locus genetic models in (1)-(7) to generate
data. Let the allele frequencies be p1, p2 for allele A and B.
We assume Hardy-Weinberg equilibrium proportions hold in
the population and the two markers are not in linkage dis-
equilibrium in the population so that gij = Pr(Gi)Pr(Hj)
with Pr(G1) = p2

1, P r(G2) = 2p1(1 − p1), P r(G3) = (1 −
p1)2 and Pr(H1) = p2

2, P r(H2) = 2p2(1 − p2), P r(H3) =
(1 − p2)2. Let k = Pr(case) be the disease prevalence and
fij = Pr(case|Gi, Hj) be the penetrance for i, j = 1, 2, 3.

Let y = 1 and y = 0 for case and control individuals
respectively. For a given score matrix x, we use a logistic
regression model

fij = Pr(y = 1|GiHj)

=
exp (α0 + x̃l1β1 + x̃l2β2 + x̃l3β3)

1 + exp (α0 + x̃l1β1 + x̃l2β2 + x̃l3β3)

where l = j +3(i−1), x̃l1, x̃l2 correspond to marginal model
and x̃l3 to interaction model; coefficients β1 and β2 repre-
sent the marginal effect with respect to the two markers of

interest and β3 reflects the interaction effect. Using Bayes
formula, we have

Pr(GiHj |y = 1) =
Pr(y = 1|GiHj)gij

k
,

Pr(GiHj |y = 0) =
Pr(y = 0|GiHj)gij

1 − k
.

Data of 1,000 cases and 1,000 controls are generated from
these two distributions using the scores in equations (1)–(7).

For power comparison, allele frequencies of A and B are
both set to be 0.3 and the significance level is 0.05. Re-
sults for other choices of allele frequencies are similar and
are not reported here. We consider two settings: (a) Both
marginal and interaction effects exist. Under this premise,
we take β1 = β2 = 0.2 and β3 equals to 0.1, 0 and −0.1
allowing that alleles could have predisposing or protective
effects to disease through different interactions; (b) Only in-
teraction effects exist. In this setting, we did simulation for
β1 = β2 = 0 and β3 = 0.4 or β3 = −0.4. All simulations are
conducted with 10,000 replicates. The powers of Pearson’s
test, trend test with score matrix xa and their corresponding
Min2 are reported in Tables 3–4. In these tables, the first
column (Null) are the type I errors under the null model
(β1 = β2 = β3 = 0).

In Table 3, Pearson’s test is better than the trend test
only under the R∩R or R∪R model, while the trend test has
better performance under the D-related models. All results
show that the Min2 is always more powerful than at least one
of the Pearson’s test and trend test and its power is close to
the more powerful one. For example, when β3 = 0 in Table
3, the maximal relative power gain of Min2 over Pearson
or trend test is 54% and the maximal relative power loss of
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Table 5. Two-locus distribution of genotypes of rs2277726
and rs4414555

Genotype 00 01 02 10 11 12 20 21 22

Case 5 3 2 15 42 37 84 172 99
Control 1 2 2 32 54 33 59 160 117

Table 6. Two-locus distribution of genotypes of rs585491 and
rs4245254

Genotype 00 01 02 10 11 12 20 21 22

Case 17 67 53 42 119 79 17 34 31
Control 17 51 50 47 110 66 25 47 47

Min2 is only 13%. When there exists interaction (β3 = 0.1),
the maximal relative power gain is 42% and maximal relative
power loss is 10%.

Table 4 shows results for the situation when the main
effects are absent (β1 = β2 = 0). From this table, the Pear-
son’s test is generally more powerful than the additive trend
test except, for example, the D ∪ R model when β3 = 0.4.
Similar to results in Table 3, the power of Min2 is close to or
greater than the larger one between the Pearson’s test and
the trend test and hence shows robust efficiency.

In summary, Min2 has neither uniformly the worst nor
the best power performance among the three tests across the
seven models. When Min2 loses power compared with the
Pearson’s test and the trend test, it loses little; when it gains
power it gains much. These features of Min2 demonstrate its
efficiency and its robustness across various genetic models.

4. ILLUSTRATION

4.1 Two-locus interaction examples

We first apply Min2 test to two two-locus subsets from
Problem 2 of the GAW15, which studies the genetic causes
of rheumatoid arthritis. There are 459 cases and 460 con-
trols genotyped at 2719 SNPs. The first subset is for SNPs
rs2277726 and rs4414555 and the second one is for SNPs
rs585491 and rs4245254. These two pairs of SNPs are ran-
domly chosen from all 2719 SNPs to be in linkage equilib-
rium. We denote “0”,“1” and “2” the three genotypes of
each locus, thus nine combined genotypes can be expressed
as “00”, “01”, “02”, . . ., “22”. We analyze these two data
sets to illustrate our approach. Distributions of genotype fre-
quencies of these two groups of SNPs are displayed in two
2 × 9 contingency tables (Tables 5 and 6).

For the first data set, if we use Pearson’s test and trend
test for each locus as in Joo et al. [13], i.e., marginal one-
locus model, both tests are not significant at significance
level 0.05 for SNPs rs2277726 (p-values of Pearson’s test and
trend test are 0.077 and 0.308 respectively) and rs4414555
(p-values of Pearson’s test and trend test are 0.494 and 0.235
respectively). For the two-locus analysis, we choose to use

Table 7. Change in clinical condition by degree of infiltration

Degree of Infiltration
Clinical Change High Low

Worse 1 11
Stationary 13 53
Slight improvement 16 42
Moderate improvement 15 27
Marked improvement 7 11

the additive score matrix for the trend test, i.e., the score
matrix xa. The Min2 test is constructed based on the trend
test with score xa and the Pearson’s test. As Pearson’s test
may be invalid in the situation that some cell counts are very
small, we use permutation to calculate p-values by randomly
switching “case” or “control” labels with all margins being
fixed. When two-locus model is considered, p-values of Pear-
son’s test and trend test for the first data set are reported
as 0.030, 0.287 respectively. It shows that the Pearson’s test
is significant at level 0.05 but not for the trend test. For the
second data set, p-values of Pearson’s test and the trend test
for SNP rs585491 are 0.012 and 0.008 respectively that both
show significance at level 0.05; p-values of Pearson’s test and
the trend test for SNP rs4245254 are 0.507 and 0.540 respec-
tively that both show no significance at level 0.05. P-values
of Pearson’s test and the trend test under two-locus model
are reported as 0.203, 0.026. Now the trend test is significant
but not the Pearson’s test.

In practice, one cannot determine a priori which test to
use, so one may apply both tests and correct for multiple
testing by Bonferroni correction. The corrected p-values (of
p-values less than 0.05) for the first and second data sets
are 2 × 0.030 = 0.060 and 2 × 0.026 = 0.052, respectively.
Both corrected p-values are not significant at 0.05 level. On
the other hand, both the p-values of the Min2 test for the
two data sets are 0.046. These two examples show that Min2
(with score xa) have p-values that is very close to the min-
imum of the p-values of the Pearson’s test and the trend
tests and could be significant when Pearson’s test or trend
test is not.

4.2 Example from clinical treatment

We also illustrated the efficiency robustness of the Min2
test by a singly-ordered contingency table. Table 7 refers
to the experiment on the use of sulfones and streptomycin
drugs in the treatment of leprosy [1]. The degree of infiltra-
tion at the start of the experiment measures a type of skin
damage. The response is the change in the overall clinical
condition of the patient after 48 weeks of treatment. Table
7 could be viewed as 2 × 5 contingency table and we can
define orderings for different clinic changes. We reanalyze
this data here with Pearson’s test and the trend test with
scores (following that in Graubard and Korn [8]) listed in
Table 8. Min2 is constructed based on the trend test with
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Table 8. Alternative scoring systems for column categories
with exact one-sided p-values. All p-values are obtained based

on permutations

Clinical change by degree of infiltration
1 2 3 4 5

Mid ranks∗ 6 45 107 157 187
Standardized −1.25 −0.73 0.09 0.75 1.15

P-value Trend: 0.010, Pearson: 0.142, Min2: 0.016

Equal space −1 0 1 2 3
Standardized −1.26 −0.63 0 0.63 1.26

P-value Trend: 0.008, Pearson: 0.141, Min2: 0.016

Un-equal space 1 2 3 4 99
Standardized −0.90 −0.58 −0.26 0.06 1.67

P-value Trend: 0.160, Pearson: 0.141, Min2: 0.016

an equally spaced score and Pearson’s test. We compute p-
values using 10,000 permutations by fixing all the margins.
Results in Table 8 show that, as expected, the trend test is
sensitive to the choices of scores and different scores may
lead to quite different conclusions. For example, the trend
test is significant except that one uses the un-equal space
score in Table 8. Min2 and Pearson’s test are more robust
to the score choices. Pearson’s test is not significant while
Min2 is significant for this data set at level 0.05. On the
other hand, if the trend test is significant, Min2 has much
smaller p-value than Pearson’s test, indicating an improve-
ment of Pearson’s test due to incorporating the linear trend
of the categories.

5. DISCUSSION

In this article, we propose a robust test, Min2, to a multi-
ordered 2×J ordered contingency table. Our results general-
ize those of WTCCC [26] and Joo et al. [13], which only con-
sidered a 2× 3 table with only one score vector (a singly or-
dered contingency table) for case-control genetic association
studies. In Joo et al. [13], Min2 is based on two chi-square
tests with 1 degree of freedom and 2 degrees of freedom re-
spectively. Our test allows chi-square tests with more general
degrees of freedom by allowing different score specifications
when the categories can be ordered in multiple ways.

One important application of our method is to test a two-
locus association when the genotypes are ordered according
to the two risk alleles on the two loci. We demonstrate the
robustness of our proposed test by simulating two-locus ge-
netic association studies, in which the Min2 is constructed
from the Pearson’s test and the additive trend test. The ad-
ditive trend test is presumably powerful when the two-locus
interaction is absent, but when an interaction exists, the
Pearson’s test in Min2 can compensate for the power loss of
the additive trend test.

When the true model is unknown while a family of scien-
tifically plausible models is available, Min2 is never the least

powerful test while the trend test and Pearson’s test could
be the least powerful test under certain models. The trend
test can gain power over the Pearson’s test if the score is
correctly specified, but lose much if it is not. The proposed
Min2 test, however, combines their strengths and is always
robust and efficient. When the score matrix is correct or
closely so, Min2 behaves similarly to the trend test; when
the score matrix is far from correct, Min2 is much closer to
Pearson’s test in power. Notably, Bonferroni correction can
be used to correct for multiple testing when Pearson’s test
and the trend test are both applied, but it is too conserva-
tive due to relatedness of the two tests. The proposed Min2
test incorporates their correlation and is more powerful than
applying the Bonferroni correction method.

In practice, it is difficult to define the orderings precisely,
especially for multi-locus interaction models. In two-locus
genetic association analysis, we proposed to use the addi-
tive scores in Min2 because the additive was shown to be
more robust than recessive or dominant models and widely
used in practice. For a general contingency table when the
scores of ordered categories are difficult to determine, we
proposed to use equally spaced scores. These choices may
incur substantial power loss in the trend test if they are far
from the true underlying model. Fortunately, however, the
Pearson’s test picks the power when the scores are incor-
rectly specified in the trend test.

Similar to a single-locus study, it is also promising to
consider an adaptive score in the trend test as in Zheng
and Ng [29]. This adaptive procedure will need an analogue
of the Hardy-Weinberg disequilibrium test to determine the
two-locus interaction models which is still not available in
the literature. Besides, ICPT proposed by Song et al. [24]
has a wide application for testing association by considering
monotone penetrances along the genotypes. However it is
not easy to find its asymptotic distribution. Besides moti-
vated by the idea of Min2, it might be interesting to con-
struct the test as the minimum of the Pearson’s test, trend
test and ICPT. As one of the referees pointed out, the sum
test statistic is another choice to combine the Pearson’s test
and the trend test [10]. We will investigate these issues in
future.

The proposed robust methods are useful in initial ex-
ploratory analysis, where a large number of ordered tables
with a lot of uncertainty about the underlying distributions
need to be examined and tested. The genome-wide scan con-
ducted by the WTCCC is a good example of applying the
proposed robust tests. Although we focused on the appli-
cations of our proposed methods to genetic epidemiology
studies, the proposed robust tests, as shown by one exam-
ple, can be generally applied to the analysis of any ordered
2 × J contingency tables.
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APPENDIX

By the properties of derivation of inverse function and
compound function, we have that ∂pMin2/∂t is proportional
to

g1(t) ×
F−1

2 (1−t)∫
F−1

1 (1−t)

(t2 − F−1
1 (1 − t))

J−4
2

t
K−1

2
2 et2/2

dt2

+ g2(t) ×
F−1

1 (1−t)∫
0

(F−1
2 (1 − t) − t1)

J−4
2

t
2−K

2
1

dt1,

where f1(·) and f2(·) are the density functions of chi-square
distributions with K df and J − 1 df, respectively, and
g1(t) = [F−1

1 (1 − t)]
K−2

2 /f1(F−1
1 (1 − t)), g2(t) = [F−1

2 (1 −
t)]

1−K
2 /{eF−1

2 (1−t)/2f2(F−1
2 (1 − t))}. For a given c, F−1

l (·)
is an increasing function of integer l, so ∂pMin2/∂t > 0 for
any t ∈ [0, 1], which proves that pMin2 is a strictly increasing
function of the Min2 statistic t.
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