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Group variable selection via a hierarchical lasso
and its oracle property

Nengfeng Zhou and Ji Zhu
∗

In many engineering and scientific applications, predic-
tion variables are grouped, for example, in biological ap-
plications where assayed genes or proteins can be grouped
by biological roles or biological pathways. Common statisti-
cal analysis methods such as ANOVA, factor analysis, and
functional modeling with basis sets also exhibit natural vari-
able groupings. Existing successful group variable selection
methods have the limitation of selecting variables in an “all-
in-all-out” fashion, i.e., when one variable in a group is se-
lected, all other variables in the same group are also selected
[1, 23, 25]. In many real problems, however, we may want
to keep the flexibility of selecting variables within a group,
such as in gene-set selection. In this paper, we develop a
new group variable selection method that not only removes
unimportant groups effectively, but also keeps the flexibility
of selecting variables within a group. We also show that the
new method offers the potential for achieving the theoretical
“oracle” property [6, 7].

Keywords and phrases: Group selection, Lasso, Oracle
property, Regularization, Variable selection.

1. INTRODUCTION

Consider the usual regression situation: we have train-
ing data, (x1, y1), . . . , (xi, yi), . . . , (xn, yn), where xi =
(xi1, . . . , xip) are the predictors and yi is the response. To
model the response y in terms of the predictors x1, . . . , xp,
one may consider the linear model:

y = β0 + β1x1 + · · · + βpxp + ε,(1)

where ε is the error term. In many important practical prob-
lems, however, prediction variables are “grouped.” For ex-
ample, in ANOVA factor analysis, a factor may have several
levels and can be expressed via several dummy variables,
then the dummy variables corresponding to the same factor
form a natural “group.” Similarly, in additive models, each
original prediction variable may be expanded into different
order polynomials or a set of basis functions, then these
polynomials (or basis functions) corresponding to the same
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original prediction variable form a natural “group.” Another
example is in biological applications, where assayed genes
or proteins can be grouped by biological roles (or biological
pathways).

For the rest of the paper, we assume that the prediction
variables can be divided into K groups and the kth group
contains pk variables. Specifically, the linear model (1) is
now written as

yi = β0 +
K∑

k=1

pk∑
j=1

βkjxi,kj + εi.(2)

And we are interested in finding out which variables, es-
pecially which “groups,” have an important effect on the
response. For example, (x11, . . . , x1p1), (x21, . . . , x2p2), . . . ,
(xK1, . . . , xKpK

) may represent different biological path-
ways, y may represent a certain phenotype and we are inter-
ested in deciphering which and how these biological path-
ways “work together” to affect the phenotype.

There are two important challenges in this problem:
prediction accuracy and interpretation. We would like our
model to accurately predict on future data. Prediction ac-
curacy can often be improved by shrinking the regression
coefficients. Shrinkage sacrifices some bias to reduce the vari-
ance of the predicted value and hence may improve the over-
all prediction accuracy. Interpretability is often realized via
variable selection. With a large number of prediction vari-
ables, we often would like to determine a smaller subset that
exhibits the strongest effects.

Variable selection has been studied extensively in the lit-
erature [2, 6, 8, 9, 12, 18, 22, 27]. In particular, lasso [18]
has gained much attention in recent years. The lasso crite-
rion penalizes the L1-norm of the regression coefficients to
achieve a sparse model:

max
β0,βkj

−1
2

n∑
i=1

(
yi − β0 −

K∑
k=1

pk∑
j=1

βkjxi,kj

)2

− λ

K∑
k=1

pk∑
j=1

|βkj |,

(3)

where λ ≥ 0 is a tuning parameter. Note that by location
transformation, we can always assume that the predictors
and the response have mean 0, so we can ignore the intercept
in equation (3).

Due to the singularity at βkj = 0, the L1-norm penalty
can shrink some of the fitted coefficients to be exact zero
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when making the tuning parameter sufficiently large. How-
ever, lasso and other methods above are for the case
when the candidate variables can be treated individually
or “flatly.” When variables are grouped, ignoring the group
structure and directly applying lasso as in (3) may be sub-
optimal. For example, suppose the kth group is unimpor-
tant, then lasso tends to make individual estimated coeffi-
cients in the kth group to be zero, rather than the whole
group to be zero, i.e., lasso tends to make selection based on
the strength of individual variables rather than the strength
of the group, often resulting in selecting more groups than
necessary.

Group variable selection has been addressed in some lit-
erature [1, 23, 25]. In [1], the authors proposed to use a
blockwise additive penalty in the setting of wavelet approx-
imations. To increase the estimation precision, empirical
wavelet coefficients were thresholded or shrunken in blocks
(or groups) rather than individually.

In [23] and [25], Lasso model (3) is extended for group
variable selection. In [23], the authors chose to penalize
the L2-norm of the coefficients within each group, i.e.,∑K

k=1 ‖βk‖2, where

‖βk‖2 =
√

β2
k1 + · · · + β2

kpk
.(4)

Due to the singularity of ‖βk‖2 at βk = 0, appropriately
tuning λ can set the whole coefficient vector βk = 0, hence
the kth group is removed from the fitted model. We note
that in the setting of wavelet analysis, this method reduces
to that in [1].

Instead of using the L2-norm penalty, in [25], the authors
suggested using the L∞-norm penalty, i.e.,

∑K
k=1 ‖βk‖∞,

where

‖βk‖∞ = max(|βk1|, |βk2|, . . . , |βkpk
|).(5)

Similar to the L2-norm, the L∞-norm of βk is also sin-
gular when βk = 0; hence when λ is appropriately
tuned, the L∞-norm can also effectively remove unimpor-
tant groups.

However, there are some possible limitations with these
methods: Both the L2-norm penalty and the L∞-norm
penalty select variables in an “all-in-all-out” fashion, i.e.,
when one variable in a group is selected, all other variables
in the same group are also selected. The reason is that both
‖βk‖2 and ‖βk‖∞ are singular only when the whole vector
βk = 0. Once a component of βk is non-zero, the two norm
functions are no longer singular. This can also be heuristi-
cally understood as the following: for the L2-norm (4), it is
the ridge penalty that is under the square root; since the
ridge penalty can not do variable selection (as in ridge re-
gression), once the L2-norm is non-zero (or the correspond-
ing group is selected), all components will be non-zero. For
the L∞-norm (5), if the “max(·)” is non-zero, there is no
increase in the penalty for letting all the individual com-
ponents move away from zero. Hence if one variable in a

group is selected, all other variables are also automatically
selected.

In many important real problems, however, we may want
to keep the flexibility of selecting variables within a group.
For example, in the gene-set selection problem, a biological
pathway may be related to a certain biological process, but
it does not necessarily mean all the genes in the pathway
are all related to the biological process. We may want to
not only remove unimportant pathways effectively, but also
identify important genes within important pathways.

For the L∞-norm penalty, another possible limitation is
that the estimated coefficients within a group tend to have
the same magnitude, i.e. |βk1| = |βk2| = · · · = |βkpk

|; and
this may cause some serious bias, which jeopardizes the pre-
diction accuracy.

In this paper, we propose an extension of lasso for group
variable selection, which we call hierarchical lasso (HLasso).
Our method not only removes unimportant groups effec-
tively, but also keeps the flexibility of selecting variables
within a group. Furthermore, asymptotic studies motivate
us to improve our model and show that when the tuning
parameter is appropriately chosen, the improved model has
the oracle property [6, 7], i.e., it performs as well as if the
correct underlying model were given in advance. Such a the-
oretical property has not been previously studied for group
variable selection at both the group level and within the
group level.

The rest of the paper is organized as follows. In Section 2,
we introduce our new method: the hierarchical lasso. We
propose an algorithm to compute the solution for the hier-
archical lasso in Section 3. In Sections 4 and 5, we study
the asymptotic behavior of the hierarchical lasso and pro-
pose an improvement for the hierarchical lasso. Numerical
results are in Sections 6 and 7, and we conclude the paper
with Section 8.

2. HIERARCHICAL LASSO

In this section, we extend the lasso method for group vari-
able selection so that we can effectively remove unimportant
variables at both the group level and within the group level.

We reparameterize βkj as

βkj = dkαkj , k = 1, . . . , K; j = 1, . . . , pk,(6)

where dk ≥ 0 (for identifiability reasons). This decompo-
sition reflects the information that βkj , j = 1, . . . , pk, all
belong to the kh group, by treating each βkj hierarchi-
cally. dk is at the first level of the hierarchy, controlling
βkj , j = 1, . . . , pk, as a group; αkj ’s are at the second level
of the hierarchy, reflecting differences within the kth group.
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For the purpose of variable selection, we consider the fol-
lowing penalized least squares criterion:

max
dk,αkj

− 1
2

n∑
i=1

(
yi −

K∑
k=1

dk

pk∑
j=1

αkjxi,kj

)2

(7)

− λ1 ·
K∑

k=1

dk − λ2 ·
K∑

k=1

pk∑
j=1

|αkj |

subject to dk ≥ 0, k = 1, . . . ,K,

where λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters. λ1 controls
the estimates at the group level, and it can effectively remove
unimportant groups: if dk is shrunken to zero, all βkj in the
kth group will be equal to zero. λ2 controls the estimates
at the variable-specific level: if dk is not equal to zero, some
of the αkj hence some of the βkj , j = 1, . . . , pk, still have
the possibility of being zero; in this sense, the hierarchical
penalty keeps the flexibility of the L1-norm penalty.

One may complain that such a hierarchical penalty may
be more complicated to tune in practice, however, it turns
out that the two tuning parameters λ1 and λ2 in (7) can be
simplified into one. Specifically, let λ = λ1 ·λ2, we can show
that (7) is equivalent to

max
dk,αkj

− 1
2

n∑
i=1

(
yi −

K∑
k=1

dk

pk∑
j=1

αkjxi,kj

)2

(8)

−
K∑

k=1

dk − λ

K∑
k=1

pk∑
j=1

|αkj |

subject to dk ≥ 0, k = 1, . . . , K.

Lemma 1. Let (d̂
∗
, α̂∗) be a local maximizer of (7), then

there exists a local maximizer (d̂
�
, α̂�) of (8) such that

d̂∗kα̂∗
kj = d̂�

kα̂�
kj. Similarly, if (d̂

�
, α̂�) is a local maximizer

of (8), there exists a local maximizer (d̂
∗
, α̂∗) of (7) such

that d̂∗kα̂∗
kj = d̂�

kα̂�
kj.

The proof is in the Appendix. This lemma indicates that
the final fitted models from (7) and (8) are the same, al-
though they may provide different dk and αkj . This also
implies that in practice, we do not need to tune λ1 and λ2

separately; we only need to tune one parameter λ = λ1 · λ2

as in (8).

3. ALGORITHM

To estimate the dk and αkj in (8), we can use an iterative
approach, i.e., we first fix dk and estimate αkj , then we
fix αkj and estimate dk, and we iterate between these two
steps until the solution converges. Since at each step, the
value of the objective function (8) decreases, the solution is
guaranteed to converge.

When dk is fixed, (8) becomes a lasso problem, hence we
can use either the LAR/LASSO algorithm [4] or a quadratic

programming package to efficiently solve for αkj . When αkj

is fixed, (8) becomes a non-negative garrote problem. Again,
we can use either an efficient solution path algorithm or a
quadratic programming package to solve for dk. In summary,
the algorithm proceeds as follows:

1. (Standardization) Center y. Center and normalize xkj .
2. (Initialization) Initialize d

(0)
k and α

(0)
kj with some plau-

sible values. For example, we can set d
(0)
k = 1 and use

the least squares estimates or the simple regression es-
timates by regressing the response y on each of the xkj

for α
(0)
kj . Let β

(0)
kj = d

(0)
k α

(0)
kj and m = 1.

3. (Update αkj) Let

x̃i,kj = d
(m−1)
k xi,kj , k = 1, . . . ,K; j = 1, . . . , pk,

then

α
(m)
kj = arg max

αkj

{
− 1

2

n∑
i=1

(
yi −

K∑
k=1

pk∑
j=1

αkj x̃i,kj

)2

− λ
K∑

k=1

pk∑
j=1

|αkj |
}

.

4. (Update dk) Let

x̃i,k =
pk∑

j=1

α
(m)
kj xi,kj , k = 1, . . . ,K,

then

d
(m)
k = arg max

dk≥0

{
− 1

2

n∑
i=1

(
yi −

K∑
k=1

dkx̃i,k

)2

−
K∑

k=1

dk

}
.

5. (Update βkj) Let

β
(m)
kj = d

(m)
k α

(m)
kj .

6. If ‖β(m)
kj −β

(m−1)
kj ‖ is small enough, stop the algorithm.

Otherwise, let m ← m + 1 and go back to Step 3.

3.1 Orthogonal case

To gain more insight into the hierarchical penalty, we
have also studied the algorithm in the orthogonal design
case. This can be useful, for example, in the wavelet setting,
where each xkj corresponds to a wavelet basis function, dif-
ferent k may correspond to different “frequency” scales, and
different j with the same k correspond to different “time” lo-
cations. Specifically, suppose xT

kjxkj = 1 and xT

kjxk′j′ = 0
if k �= k′ or j �= j′, then Step 3 and Step 4 in the above
algorithm have closed form solutions.

Let β̂ols
kj = xT

kjy be the ordinary least squares solution
when xkj are orthonormal to each other.

3. When dk is fixed,
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α
(m)
kj = I(d(m−1)

k > 0) · sgn(β̂ols
kj )(9)

·
( |β̂ols

kj |
d
(m−1)
k

− λ

(d(m−1)
k )2

)
+

.

4. When αkj is fixed,

d
(m)
k = I(∃j, α

(m)
kj �= 0)

(10)

·
(

pk∑
j=1

(α(m)
kj )2∑pk

j=1(α
(m)
kj )2

β̂ols
kj

α
(m)
kj

− 1∑pk

j=1(α
(m)
kj )2

)
+

.

Equations (9) and (10) show that both d
(m)
k and α

(m)
kj are

soft-thresholding estimates. Here we provide some intuitive
explanation.

We first look at α
(m)
kj in equation (9). If d

(m−1)
k = 0, it is

natural to estimate all αkj to be zero because of the penalty
on αkj . If d

(m−1)
k > 0, then from our reparametrization,

we have αkj = βkj/d
(m−1)
k , j = 1, . . . , pk. Plugging in β̂ols

kj

for βkj , we obtain α̃kj = β̂ols
kj /d

(m−1)
k . Equation (9) shrinks

α̃kj , and the amount of shrinkage is inversely proportional
to (d(m−1)

k )2. So when d
(m−1)
k is large, which indicates the

kth group is important, the amount of shrinkage is small,
while when d

(m−1)
k is small, which indicates the kth group

is less important, the amount of shrinkage is large.
Now considering d

(m)
k in equation (10). If all α

(m)
kj are

zero, it is natural to estimate d
(m)
k also to be zero because

of the penalty on dk. If not all α
(m)
kj are 0, say α

(m)
kj1

, . . . , α
(m)
kjr

are not zero, then we have dk = βkjs/α
(m)
kjs

, 1 ≤ s ≤ r. Again,
plugging in β̂ols

kjs
for βkjs , we obtain r estimates for dk: d̃k =

β̂ols
kjs

/α
(m)
kjs

, 1 ≤ s ≤ r. A natural estimate for dk is then a
weighted average of the d̃k, and equation (10) provides such
a (shrunken) average, with weights proportional to (α(m)

kj )2.

4. ASYMPTOTIC THEORY

In this section, we explore the asymptotic behavior of the
hierarchical lasso method.

The hierarchical lasso criterion (8) uses dk and αkj . We
first show that it can also be written in an equivalent form
using the original regression coefficients βkj .

Theorem 1. If (d̂, α̂) is a local maximizer of (8), then β̂,
where β̂kj = d̂kα̂kj, is a local maximizer of

max
βkj

{
− 1

2

n∑
i=1

(
yi −

K∑
k=1

pk∑
j=1

xi,kjβkj

)2

(11)

− 2
√

λ ·
K∑

k=1

√
|βk1| + |βk2| + · · · + |βkpk

|
}

.

On the other hand, if β̂ is a local maximizer of (11), then
we define (d̂, α̂), where d̂k = 0, α̂k = 0 if ‖β̂k‖1 = 0, and

d̂k =
√

λ‖β̂k‖1, α̂k = β̂k√
λ‖β̂k‖1

if ‖β̂k‖1 �= 0. Then the so-

defined (d̂, α̂) is a local maximizer of (8).

Note that the penalty term in (11) is similar to the L2-
norm penalty (4), except that under each square root, we
now penalize the L1-norm of βk, rather than the sum of
squares. However, unlike the L2-norm, which is singular only
at the point βk = 0, (i.e., the whole vector is equal to 0),
the square root of the L1-norm is singular at βkj = 0 no
matter what are the values of other βkj ’s. This explains,
from a different perspective, why the hierarchical lasso can
remove not only groups, but also variables within a group
even when the group is selected. Equation (11) also implies
that the hierarchical lasso belongs to the “CAP” family [25].

We study the asymptotic properties allowing the total
number of variables Pn, as well as the number of groups Kn

and the number of variables within each group pnk, to go to
∞, where Pn =

∑Kn

k=1 pnk. Note that we add a subscript “n”
to K and pk to denote that these quantities can change with
n. Accordingly, β, yi and xi,kj are also changed to βn, yni

and xni,kj . We write 2
√

λ in (11) as nλn, and the criterion
(11) is re-written as

max
βn,kj

{
− 1

2

n∑
i=1

(
yni −

Kn∑
k=1

pnk∑
j=1

xni,kjβn,kj

)2

(12)

− nλn ·
Kn∑
k=1

√
|βn,k1| + · · · + |βn,kpnk

|
}

.

Our asymptotic analysis in this section is based on the cri-
terion (12).

Let β0
n = (β0

An
,β0

Bn
,β0

Cn
)

T

be the underlying true pa-
rameters, where

(13)

An = {(k, j) : β0
n,kj �= 0},

Bn = {(k, j) : β0
n,kj = 0,β0

nk �= 0},
Cn = {(k, j) : β0

nk = 0},
Dn = Bn ∪ Cn.

Note that An contains the indices of coefficients which are
truly non-zero, Cn contains the indices where the whole
“groups” are truly zero, and Bn contains the indices of zero
coefficients, but they belong to some non-zero groups. So
An, Bn and Cn are disjoint and they partition all the in-
dices. We have the following theorem.

Theorem 2. If
√

nλn = O(1), then there exists a root-
(n/Pn) consistent local maximizer β̂n = (β̂An

, β̂Bn
, β̂Cn

)
T

of
(12), and if also Pnn−3/4/λn → 0 as n → ∞, then Pr(β̂Cn

=
0) → 1.
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Theorem 2 implies that the hierarchical lasso method can
effectively remove unimportant groups. For the above root-
(n/Pn) consistent estimate, however, if Bn �= ∅ (empty set),
then Pr(β̂Bn

= 0) → 1 is not always true. This means that
although the hierarchical lasso method can effectively re-
move all unimportant groups and some of the unimportant
variables within important groups, it cannot effectively re-
move all unimportant variables within important groups.

In the next section, we improve the hierarchical lasso
method to tackle this limitation.

5. ADAPTIVE HIERARCHICAL LASSO

To improve the hierarchical lasso method, we apply the
adaptive idea [2, 21, 24, 26], i.e., to penalize different coef-
ficients differently. Specifically, we consider

max
βn,kj

{
− 1

2

n∑
i=1

(
yni −

Kn∑
k=1

pk∑
j=1

xni,kjβn,kj

)2

(14)

− nλn ·
Kn∑
k=1

√
wn,k1|βn,k1| + · · · + wn,kpk

|βn,kpnk
|
}

,

where wn,kj are pre-specified weights. The intuition is that
if the effect of a variable is strong, we would like the corre-
sponding weight to be small, hence the corresponding coef-
ficient is lightly penalized. If the effect of a variable is not
strong, we would like the corresponding weight to be large,
hence the corresponding coefficient is heavily penalized. In
practice, we may consider using the ordinary least squares
estimates or the ridge regression estimates to help us com-
pute the weights, for example,

wn,kj =
1

|β̂ols
n,kj |γ

or wn,kj =
1

|β̂ridge
n,kj |γ

,(15)

where γ is a positive constant.

5.1 Oracle property

Problem setup

Since the theoretical results we develop for (14) are not
restricted to the squared error loss, for the rest of the sec-
tion, we consider the generalized linear model. For gen-
eralized linear models, statistical inferences are based on
underlying likelihood functions. We assume that the data
V ni = (Xni, Yni), i = 1, . . . , n are independent and iden-
tically distributed for every n. Conditioning on Xni = xni,
Yni has a density fn(gn(xT

niβn), Yni), where gn(·) is a known
link function. We maximize the penalized log-likelihood

max
βn,kj

Qn(βn) = Ln(βn) − Jn(βn)

(16)

=
n∑

i=1

�n(gn(xT

niβn), yni) − n

K∑
k=1

pλn,wn(βnk),

where �n(·, ·) = log fn(·, ·) denotes the conditional log-
likelihood of Y , and

pλn,wn(βnk) = λn

√
wn,k1|βn,k1| + · · · + wn,kpk

|βn,kpnk
|.

Note that under the normal distribution,
�n(gn(xT

niβn), yni) = − (yni−xT
niβn)2

2C1
+ C2, hence (16)

reduces to (14).
The asymptotic properties of (16) are described in the

following theorems, and the proofs are in the Appendix. We
note that the proofs follow the spirit of previous work [6, 7],
but due to the grouping structure and the adaptive weights,
they are non-trivial extensions of this work.

To control the adaptive weights, we define:

an = max{wn,kj : β0
n,kj �= 0},

bn = min{wn,kj : β0
n,kj = 0}.

We assume that

0 < c1 < min{β0
n,kj : β0

n,kj �= 0}
< max{β0

n,kj : β0
n,kj �= 0} < c2 < ∞.

Then we have the following results.

Theorem 3. For every n, the observations {V ni, i =
1, 2, . . . , n} are independent and identically distributed, each
with a density fn(V n1,βn) that satisfies conditions (A1)–
(A3) in the Appendix. If P 4

n

n → 0 and P 2
nλn

√
an = op(1),

then there exists a local maximizer β̂n of Qn(βn) such that
‖β̂n − β0

n‖ = Op(
√

Pn(n−1/2 + λn
√

an)).

Hence by choosing λn
√

an = Op(n−1/2), there exists a
root-(n/Pn) consistent penalized likelihood estimate.

Theorem 4. For every n, the observations {V ni, i =
1, 2, . . . , n} are independent and identically distributed, each
with a density fn(V n1,βn) that satisfies conditions (A1)–
(A3) in the Appendix. If P 4

n

n → 0, λn
√

an = Op(n−1/2) and
P 2

n

λ2
nbn

= op(n), then there exists a root-(n/Pn) consistent lo-

cal maximizer β̂n such that:

(a) Sparsity: Pr(β̂n,Dn
= 0) → 1, where Dn = Bn ∪ Cn.

(b) Asymptotic normality: If λn
√

an = op((nPn)−1/2) and
P 5

n

n → 0 as n → ∞, then we also have:

√
nAnI1/2

n (β0
n,An

)(β̂n,An
− β0

n,An
) → N (0, G),

where An is a q×|An| matrix such that AnAT

n → G and G
is a q × q nonnegative symmetric matrix. In(β0

n,An
) is the

Fisher information matrix knowing β0
Dn

= 0.

The above requirements λn
√

an = op((nPn)−1/2) and
P 2

n

λ2
nbn

= op(n) as n → ∞ can be satisfied by selecting λn and

Group variable selection via a hierarchical lasso and its oracle property 561



wn,kj appropriately. For example, we may let λn = (nPn)−1/2

logn

and wn,kj = 1
|β̂0

n,kj
|2 , where β̂0

n,kj is the un-penalized like-

lihood estimate of β0
n,kj , which is root-(n/Pn) consistent.

Then we have an = Op(1) and 1
bn

= Op(Pn

n ). Hence

λn
√

an = op((nPn)−1/2) and P 2
n

λ2
nbn

= op(n) are satisfied

when P 5
n

n → 0.

5.2 Likelihood ratio test

Similarly as in [7], we develop a likelihood ratio test for
testing linear hypotheses:

H0 : Anβ0
n,An

= 0 vs. H1 : Anβ0
n,An

�= 0,

where An is a q × |An| matrix and AnAT

n → Iq for a fixed
q. This problem includes testing simultaneously the signifi-
cance of several covariate variables.

We introduce a natural likelihood ratio test statistic, i.e.

Tn = 2
{

sup
Ωn

Qn(βn|V ) − sup
Ωn,Anβn,An

=0
Qn(βn|V )

}
,

where Ωn is the parameter space for βn. Then we can obtain
the following theorem regarding the asymptotic null distri-
bution of the test statistic.

Theorem 5. When conditions in (b) of Theorem 4 are
satisfied, under H0 we have

Tn → χ2
q, as n → ∞.

6. SIMULATION STUDY

In this section, we use simulations to demonstrate the
hierarchical lasso (HLasso) method, and compare the results
with those of some existing methods.

Specifically, we first compare hierarchical lasso with some
other group variable selection methods, i.e., the L2-norm
group lasso (4) and the L∞-norm group lasso (5). Then we
compare the adaptive hierarchical lasso with some other “or-
acle” (but non-group variable selection) methods, i.e., the
SCAD and the adaptive lasso.

We extended the simulations in [23]. We considered a
model which had both categorical and continuous prediction
variables. We first generated seventeen independent stan-
dard normal variables, Z1, . . . , Z16 and W. The covariates
were then defined as Xj = (Zj + W )/

√
2. Then the last

eight covariates X9, . . . , X16 were discretized to 0, 1, 2, and
3 by Φ−1(1/4), Φ−1(1/2) and Φ−1(3/4). Each of X1, . . . , X8

was expanded through a fourth-order polynomial, and only
the main effects of X9, . . . , X16 were considered. This gave
us a total of eight continuous groups with four variables in
each group and eight categorical groups with three variables
in each group. We considered two cases.

Case 1. “All-in-all-out”

Y = [X3 + 0.5X2
3 + 0.1X3

3 + 0.1X4
3 ]

+ [X6 − 0.5X2
6 + 0.15X3

6 + 0.1X4
6 ]

+ [I(X9 = 0) + I(X9 = 1) + I(X9 = 2)] + ε.

Case 2. “Not all-in-all-out”

Y = (X3 + X2
3 ) + (2X6 − 1.5X2

6 )
+ [I(X9 = 0) + 2 I(X9 = 1)] + ε.

For all the simulations above, the error term ε follows
a normal distribution N(0, σ2), where σ2 was set such that
each of the signal to noise ratios, Var(XTβ)/Var(ε), was
equal to 3. We generated n = 400 training observations
from each of the above models, along with 200 validation ob-
servations and 10,000 test observations. The validation set
was used to select the tuning parameters λ’s that minimized
the validation error. Using these selected λ’s, we calculated
the mean squared error (MSE) with the test set. We re-
peated this 200 times and computed the average MSEs and
their corresponding standard errors. We also recorded how
frequently the important variables were selected and how
frequently the unimportant variables were removed. The re-
sults are summarized in Table 1.

As we can see, all shrinkage methods perform much better
than OLS; this illustrates that some regularization is cru-
cial for prediction accuracy. In terms of prediction accuracy,
we can also see that when variables in a group follow the
“all-in-all-out” pattern, the L2-norm (group lasso) method
performs slightly better than the hierarchical lasso method
(Case 1 of Table 1). When variables in a group do not follow
the “all-in-all-out” pattern, however, the hierarchical lasso
method performs slightly better than the L2-norm method
(Case 2 of Table 1). For variable selection, we can see that
in terms of identifying important variables, the four shrink-
age methods, the lasso, the L∞-norm, the L2-norm, and the
hierarchical lasso all perform similarly (“Non-zero Var.” of
Table 1). However, the L2-norm method and the hierarchi-
cal lasso method are more effective at removing unimportant
variables than lasso and the L∞-norm method (“Zero Var.”
of Table 1).

In the above analysis, we used the criterion (8) or (11)
for the hierarchical lasso, i.e., we did not use the adaptive
weights wkj to penalize different coefficients differently. To
assess the improved version of the hierarchical lasso, i.e.
criterion (14), we also considered using adaptive weights.
Specifically, we applied the OLS weights in (15) to (14) with
γ = 1. We compared the results with those of SCAD and the
adaptive lasso, which also enjoy the oracle property. How-
ever, we note that SCAD and the adaptive lasso do not
take advantage of the grouping structure information. As
a benchmark, we also computed the Oracle OLS results,
i.e., OLS using only the important variables. The results
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Table 1. Comparison of several group variable selection methods, including the L2-norm group lasso, the L∞-norm group
lasso and the hierarchical lasso. The OLS and the regular lasso are used as benchmarks. The upper part is for Case 1, and the
lower part is for Case 2. “MSE” is the mean squared error on the test set. “Zero Var.” is the percentage of correctly removed
unimportant variables. “Non-zero Var.” is the percentage of correctly identified important variables. All the numbers outside

parentheses are means over 200 repetitions, and the numbers in the parentheses are the corresponding standard errors

Case 1: “All-in-all-out”

OLS Lasso L∞ L2 HLasso
MSE 0.92 (0.018) 0.47 (0.011) 0.31 (0.008) 0.18 (0.009) 0.24 (0.008)
Zero Var. – 57% (1.6%) 29% (1.4%) 96% (0.8%) 94% (0.7%)
Non-Zero Var. – 92% (0.6%) 100% (0%) 100% (0%) 98% (0.3%)

Case 2: “Not all-in-all-out”

OLS Lasso L∞ L2 HLasso
MSE 0.91 (0.018) 0.26 (0.008) 0.46 (0.012) 0.21 (0.01) 0.15 (0.006)
Zero Var. – 70% (1%) 17% (1.2%) 87% (0.8%) 91% (0.5%)
Non-zero Var. – 99% (0.3%) 100% (0%) 100% (0.2%) 100% (0.1%)

Table 2. Comparison of several “oracle” methods, including the adaptive hierarchical lasso, SCAD and the adaptive lasso.
SCAD and adaptive lasso do not take advantage of the grouping structure information. The Oracle OLS uses only important

variables. Descriptions for the rows are the same as those in the caption of Table 1

Case 1: “All-in-all-out”

Oracle OLS Ada Lasso SCAD Ada HLasso
MSE 0.16 (0.006) 0.37 (0.011) 0.35 (0.011) 0.24 (0.009)
Zero Var. – 77% (0.7%) 79% (1.1%) 98% (0.3%)
Non-Zero Var. – 94% (0.5%) 91% (0.6%) 96% (0.5%)

Case 2: “Not all-in-all-out”

Oracle OLS Ada Lasso SCAD Ada HLasso
MSE 0.07 (0.003) 0.13 (0.005) 0.11 (0.004) 0.10 (0.005)
Zero Var. – 91% (0.3%) 91% (0.4%) 98% (0.1%)
Non-zero Var. – 98% (0.4%) 99% (0.3%) 99% (0.3%)

are summarized in Table 2. We can see that in the “all-in-
all-out” case, the adaptive hierarchical lasso removes unim-
portant variables more effectively than SCAD and adaptive
lasso, and consequently, the adaptive hierarchical lasso out-
performs SCAD and adaptive lasso by a significant margin
in terms of prediction accuracy. In the “not all-in-all-out”
case, the advantage of knowing the grouping structure infor-
mation is reduced, however, the adaptive hierarchical lasso
still performs slightly better than SCAD and adaptive lasso,
especially in terms of removing unimportant variables.

To assess how the sample size affects different “oracle”
methods, we also considered n = 200, 400, 800, 1,600 and
3,200. The results are summarized in Figure 1, where the
first row corresponds to the “all-in-all-out” case, and the
second row corresponds to the “not all-in-all-out” case. Not
surprisingly, as the sample size increases, the performances
of different methods all improve: in terms of prediction ac-
curacy, the MSE’s all decrease (at about the same rate) and
get closer to that of the Oracle OLS; in terms of variable se-
lection, the probabilities of identifying the correct model all
increase and approach one. However, overall, the adaptive
hierarchical lasso always performs the best among the three
“oracle” methods, and the gap is especially prominent in
terms of removing unimportant variables when the sample
size is moderate.

7. REAL DATA ANALYSIS

In this section, we use a gene expression dataset from the
NCI-60 collection of cancer cell lines to further illustrate
the hierarchical lasso method. We sought to use this dataset
to identify targets of the transcription factor p53, which
regulates gene expression in response to various signals of
cellular stress. The mutational status of the p53 gene has
been reported for 50 of the NCI-60 cell lines, with 17 being
classified as normal and 33 as carrying mutations [16].

Instead of single-gene analysis, gene-set information has
recently been used to analyze gene expression data. For ex-
ample, a Gene Set Enrichment Analysis (GSEA) is devel-
oped [17], which is found to be more stable and more pow-
erful than single-gene analysis. In [5], the GSEA method
is improved by using new statistics for summarizing gene-
sets. Both methods are based on hypothesis testing. In this
analysis, we consider using the hierarchical lasso method for
gene-set selection. The gene-sets used here are the cytoge-
netic gene-sets and the functionals gene-sets from the GSEA
package [17]. We considered 391 overlapping gene-sets with
the size of each set greater than 15.

Since the response here is binary (normal vs mutation),
following the result in Section 5.1, we use the logistic hi-
erarchical lasso regression, instead of the least square hi-
erarchical lasso. Note that a gene may belong to multiple
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Figure 1. Comparison of several oracle methods, including the SCAD, the adaptive lasso and the adaptive hierarchical lasso.
SCAD and adaptive lasso do not take advantage of the grouping structure information. The Oracle OLS uses only important
variables. The first row corresponds to the “all-in-all-out” case, and the second row corresponds to the “not all-in-all-out”

case. “Correct zero ratio” records the percentage of correctly removed unimportant variables. “Correct non-zero ratio” records
the percentage of correctly identified important variables.

gene-sets, we thus extend the hierarchical lasso to the case
of overlapping groups. Suppose there are K groups and J
variables. Let Gk denote the set of indices of the variables in
the kth group. One way to model the overlapping situation
is to extend the criterion (8) as the following:

max
dk,αj

n∑
i=1

�

(
K∑

k=1

dk

∑
j:j∈Gk

αjxi,j , yi

)
(17)

−
K∑

k=1

λkdk − λ ·
J∑

j=1

|αj |

subject to dk ≥ 0, k = 1, . . . , K,

where αj can be considered as the “intrinsic” effect of a
variable (no matter which group it belongs to), and different
group effects are represented via different dk. Since the num-
ber of genes in each gene-set may differ significantly from
set to set, we use λk to allow different gene-sets to be pe-
nalized differently. Specifically, we have considered λk = 1,

λk =
√

pk and λk = pk; we will report the results based on
λk =

√
pk as it echoes the square root in Section 4. Similar

adjustments can also be applied to the methods that we have
compared with. In this section, �(ηi, yi) = yiηi − log(1+eηi)
is the logistic log-likelihood function with yi being a 0/1 re-
sponse. Also notice that if each variable belongs to only one
group, the model reduces to the non-overlapping criterion
(8).

We randomly split the 50 samples into the training and
test sets 100 times; for each split, 33 samples (22 carry-
ing mutations and 11 being normal) were used for training
and the rest 17 samples (11 carrying mutations and 6 being
normal) were for testing. For each split, we applied three
methods, the logistic lasso, the logistic L2-norm group lasso
[14] and the logistic hierarchical lasso. Tuning parameters
were chosen using five-fold cross-validation.

We first compare the prediction accuracy of the three
methods. Over the 100 random splits, the logistic hierarchi-
cal lasso has an average misclassification rate of 14% with
the standard error 1.8%, which is smaller than 23% (1.7%)
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Figure 2. The number of samples vs the frequency that a sample was correctly classified on 100 random splits of the p53 data.

of the logistic lasso and 32% (1.2%) of the logistic group
lasso. To assess the stability of the prediction, we recorded
the frequency in which each sample, as a test observation,
was correctly classified. For example, if a sample appeared
in 40 test sets among the 100 random splits, and out of the
40 predictions, the sample was correctly classified 36 times,
we recorded 36/40 for this sample. The results are shown in
Figure 2. As we can see, for most samples, the logistic hierar-
chical lasso classified them correctly for most of the random
splits, and the predictions seemed to be slightly more stable
than the logistic lasso and the logistic L2-norm group lasso.

Next, we compare gene-set selection of these three meth-
ods. The most notable difference is that both logistic lasso
and the logistic hierarchical lasso selected gene CDKN1A
most frequently out of the 100 random split, while the logis-
tic L2-norm group lasso rarely selected it. CDKN1A is also
named as wild-type p53 activated fragment-1 (p21), and it is
known that the expression of gene CDKN1A is tightly con-
trolled by the tumor suppressor protein p53, through which
this protein mediates the p53-dependent cell cycle G1 phase
arrest in response to a variety of stress stimuli [13].

We also compared the gene-sets selected by the logistic
hierarchical lasso with those selected by the GSEA [17] and
the GSA [5]. The two most frequently selected gene-sets by
the hierarchical lasso are atm pathway and radiation sensi-
tivity. The most frequently selected genes in atm pathway
by the logistic hierarchical lasso are CDKN1A, MDM2 and
RELA, and the most frequently selected genes in radiation

sensitivity are CDKN1A, MDM2 and BCL2. It is known
that MDM2, the second commonly selected gene, is a target
gene of the transcription factor tumor protein p53, and the
encoded protein in MDM2 is a nuclear phosphoprotein that
binds and inhibits transactivation by tumor protein p53,
as part of an autoregulatory negative feedback loop [11, 15].
Note that the gene-set radiation sensitivity was also selected
by GSEA and GSA. Though the gene-set atm pathway was
not selected by GSEA and GSA, it shares 7, 8, 6, and 3 genes
with gene-sets radiation sensitivity, p53 signalling, p53 hy-
poxia pathway and p53 Up respectively, which were all se-
lected by GSEA and GSA. We also note that GSEA and
GSA are based on the marginal strength of each gene-set,
while the logistic hierarchical lasso fits an “additive” model
and uses the joint strengths of gene-sets.

8. DISCUSSION

In this paper, we have proposed a hierarchical lasso
method for group variable selection. Different variable se-
lection methods have their own advantages in different sce-
narios. The hierarchical lasso method not only effectively
removes unimportant groups, but also keeps the flexibility
of selecting variables within a group. We show that the im-
proved hierarchical lasso method enjoys an oracle property,
i.e., it performs as well as if the true sub-model were given in
advance. Numerical results indicate that our method works
well, especially when variables in a group are associated with
the response in a “not all-in-all-out” fashion.
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The grouping idea is also applicable to other regression
and classification settings, for example, the multi-response
regression and multi-class classification problems. In these
problems, a grouping structure may not exist among the pre-
diction variables, but instead, natural grouping structures
exist among parameters. We use the multi-response regres-
sion problem to illustrate the point [3, 19]. Suppose we ob-
serve (x1,y1), . . ., (xn,yn), where each yi = (yi1, . . . , yiK)
is a vector containing K responses, and we are interested
in selecting a subset of the prediction variables that predict
well for all of the multiple responses. Standard techniques
estimate K prediction functions, one for each of the K re-
sponses, fk(x) = βk1x1 + · · · + βkpxp, k = 1, . . . ,K. The
prediction variables (x1, . . . , xp) may not have a grouping
structure, however, we may consider the coefficients cor-
responding to the same prediction variable form a natural
group, i.e., (β1j , β2j , . . . , βKj). Using our hierarchical lasso
idea, we reparameterize βkj = djαkj , dj ≥ 0, and we con-
sider

max
dj≥0,αkj

− 1
2

K∑
k=1

n∑
i=1

(
yik −

p∑
j=1

djαkjxij

)2

− λ1 ·
p∑

j=1

dj − λ2 ·
p∑

j=1

K∑
k=1

|αkj |.

Note that if dj is shrunk to zero, all βkj , k = 1, . . . ,K will be
equal to zero, hence the jth prediction variable will be re-
moved from all K predictions. If dj is not equal to zero, then
some of the αkj and hence some of the βkj , k = 1, . . . , K, still
have the possibility of being zero. Therefore, the jth variable
may be predictive for some responses but non-predictive for
others.

One referee mentioned the paper [20], for which we are the
co-authors. Most of this work was finished before the start
of [20], which focuses on survival analysis. Furthermore, in
[20], the number of prediction variables and the number of
groups are fixed, while in this work, we allow both pnk → ∞
and Kn → ∞ as n → ∞.

Another referee pointed out the work in [10], which we
were not aware of when our manuscript was first com-
pleted and submitted in 2007. It is true that if the penalty
in (8) is modified to be

∑K
k=1 d

1/γ
k + λ

∑K
k=1

∑pk

j=1 |αkj |,
then using the same argument as in Theorem 1, one can
show that the hierarchical model is equivalent to a pe-
nalized linear regression model with the bridge penalty∑K

k=1(|βk1| + |βk2| + · · · + |βkpk
|)1/(1+γ) as in [10]. Thus

we acknowledge that the work in [10] is closely related with
ours, but there are also differences. For example:

• We proved the oracle property for both group selection
and within group selection, while the oracle property is
considered only for group selection in [10].

• Our theory applies to the generalized maximum likeli-
hood estimate, while the penalized least squares esti-
mate is considered in [10].

• Handling overlapping groups. It is not unusual for a
variable to be a member of several groups. The gene
expression date we analyzed in Section 7 is such an
example: given a plethora of biologically defined gene-
sets, not surprisingly, there will be considerable overlap
among these sets. In [10], a prediction variable that ap-
pears in more than one group gets penalized more heav-
ily than variables appearing in only one group. There-
fore, a prediction variable belonging to multiple groups
is more likely to be removed than a variable belonging
to only one group. We are not sure whether this is an
appealing property. In our approach, as shown in (17),
if a prediction variable belongs to multiple groups, it
does not get penalized more heavily than other vari-
ables that belong to only one group.
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APPENDIX

Proof of Lemma 1

Let Q∗(λ1, λ2,d,α) be the criterion that we would like
to maximize in equation (7) and let Q�(λ, d, α) be the cor-
responding criterion in equation (8).

Let (d̂
∗
, α̂∗) be a local maximizer of Q∗(λ1, λ2, d, α). We

would like to prove (d̂
�

= λ1d̂
∗
, α̂� = α̂∗/λ1) is a local

maximizer of Q�(λ, d,α).
We immediately have

Q∗(λ1, λ2,d,α) = Q�(λ, λ1d, α/λ1).

Since (d̂
∗
, α̂∗) is a local maximizer of Q∗(λ1, λ2, d, α), there

exists δ > 0 such that if d′, α′ satisfy ‖d′−d̂
∗‖+‖α′−α̂∗‖ <

δ then Q∗(λ1, λ2,d
′,α′) ≤ Q∗(λ1, λ2, d̂

∗
, α̂∗).

Choose δ′ such that δ′

min(λ1, 1
λ1

)
≤ δ, for any (d′′, α′′) sat-

isfying ‖d′′ − d̂
�‖ + ‖α′′ − α̂�‖ < δ′ we have∥∥∥∥d′′

λ1
− d̂

∗
∥∥∥∥ + ‖λ1α

′′ − α̂∗‖

≤
λ1‖d′′

λ1
− d̂

∗‖ + 1
λ1
‖λ1α

′′ − α̂∗‖
min(λ1,

1
λ1

)

=
‖d′′ − d̂

�‖ + ‖α′′ − α̂�‖
min(λ1,

1
λ1

)
<

δ′

min(λ1,
1
λ1

)
< δ.

Hence

Q�(λ, d̂′′, α̂′′) = Q∗(λ1, λ2, d̂
′′/λ1, λ1α̂

′′)

≤ Q∗(λ1, λ2, d̂
∗
, α̂∗) = Q�(λ, d̂

�
, α̂�).
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Therefore, (d̂
�

= λ1d̂
∗
, α̂� = α̂∗/λ1) is a local maximizer of

Q�(λ, d,α).
Similarly we can prove that for any local maximizer

(d̂
�
, α̂�) of Q�(λ, d,α), there is a corresponding local maxi-

mizer (d̂
∗
, α̂∗) of Q∗(λ1, λ2,d,α) such that d̂∗kα̂∗

kj = d̂�
kα̂�

kj .

Lemma 2. Suppose (d̂, α̂) is a local maximizer of (8). Let
β̂ be the Hierarchical Lasso estimate related to (d̂, α̂), i.e.,
β̂kj = d̂kα̂kj. If d̂k = 0, then α̂k = 0; if d̂k �= 0, then

‖β̂k‖1 �= 0 and d̂k =
√

λ‖β̂k‖1, α̂k = β̂k√
λ‖β̂k‖1

.

Proof of Lemma 2

If d̂k = 0, then α̂k = 0 is quite obvious. Similarly, if
α̂k = 0, then d̂k = 0. Therefore, if d̂k �= 0, then α̂k �= 0 and
‖β̂k‖1 �= 0.

We prove d̂k =
√

λ‖β̂k‖1, α̂k = β̂k√
λ‖β̂k‖1

for d̂k �= 0 by

contradiction. Suppose ∃k′ such that d̂k′ �= 0 and d̂k′ �=√
λ‖β̂k′‖1. Let

√
λ‖β̂k′‖1

d̂k′
= c. Then α̂k = c β̂k√

λ‖β̂k‖1
. Sup-

pose c > 1.
Let d̃k = d̂k and α̃k = α̂k for k �= k′ and d̃k′ = δ′d̂k′

and α̃k′ = α̂k′ 1
δ′ , where δ′ satisfies c > δ′ > 1 and is very

close to 1 such that ‖d̃k′ − d̂k′‖1 +‖α̃k′ − α̂k′‖1 < δ for some
δ > 0.

Then we have

Q�(λ, d̃, α̃) − Q�(λ, d̂, α̂)

= −δ′|d̂k′ | − 1
δ′

λ‖α̂k′‖1 + |d̂k′ | + λ‖α̂k′‖1

=
(
− δ′

c
− c

δ′
+

1
c

+ c

)√
λ‖β̂k′‖1

=
1
c
(δ′ − 1)

(
c2

δ′
− 1

)√
λ‖β̂k′‖1 > 0.

Therefore, for any δ > 0, we can find d̃, α̃ such that ‖d̃ −
d̂‖1 + ‖α̃ − α̂‖1 < δ and Q�(λ, d̃, α̃) > Q�(λ, d̂, α̂). These
contradict with (d̂, α̂) being a local maximizer.

Similarly for the case when c < 1. Hence, we have the

result that if d̂k �= 0, then d̂k =
√

λ‖β̂k‖1, α̂k = β̂k√
λ‖β̂k‖1

.

Proof of Theorem 1

Let Q(λ, β) be the corresponding criterion in equation
(11).

Suppose (d̂, α̂) is a local maximizer of Q�(λ, d,α), we
first show that β̂, where β̂kj = d̂kα̂kj , is a local maximizer
of Q(λ, β), i.e. there exists a δ′ such that if ‖
β‖1 < δ′ then
Q(λ, β̂ + 
β) ≤ Q(λ, β̂).

We denote 
β = 
β(1) + 
β(2), where 
β
(1)
k = 0 if

‖β̂k‖1 = 0 and 
β
(2)
k = 0 if ‖β̂k‖1 �= 0. We have ‖
β‖1 =

‖
β(1)‖1 + ‖
β(2)‖1.

Now we show Q(λ, β̂ + 
β(1)) ≤ Q(λ, β̂) if δ′ is small

enough. By Lemma 2, we have d̂k =
√

λ‖β̂k‖1, α̂k =
β̂k√

λ‖β̂k‖1
if ‖d̂k‖1 �= 0 and α̂k = 0 if ‖d̂k‖1 = 0. Further-

more, let d̂′k =
√

λ‖β̂k + 
β
(1)
k ‖1, α̂

′
k = β̂k+�β

(1)
k√

λ‖β̂k+�β
(1)
k

‖1

if

‖d̂k‖1 �= 0. Let d̂′k = 0, α̂′
k = 0 if ‖d̂k‖1 = 0. Then we

have Q�(λ, d̂
′
, α̂′) = Q(λ, β̂ + 
β(1)) and Q�(λ, d̂, α̂) =

Q(λ, β̂). Hence we only need to show that Q�(λ, d̂
′
, α̂′) ≤

Q�(λ, d̂, α̂). Note that (d̂, α̂) ia a local maximizer of
Q�(λ, d,α). Therefore there exists a δ such that for any
d′,α′ satisfying ‖d′ − d̂‖1 + ‖α′ − α̂‖1 < δ, we have
Q�(λ, d′,α′) ≤ Q�(λ, d̂, α̂).

Now since

|d̂′k − d̂k| =
∣∣√λ‖β̂k + 
β

(1)
k ‖1 −

√
λ‖β̂k‖1

∣∣
≤

∣∣√λ‖β̂k‖1 − λ‖
β
(1)
k ‖1 −

√
λ‖β̂k‖1

∣∣
≤ 1

2
λ‖
β

(1)
k ‖1√

λ‖β̂k‖1 − λ‖
β
(1)
k ‖1

≤ 1
2

λ‖
β
(1)
k ‖1√

λa − λδ′
≤ 1

2
λ‖
β

(1)
k ‖1√

λa/2
,

where a = min{‖β̂k‖1 : ‖β̂k‖1 �= 0} and δ′ < a/2.
Furthermore

‖α̂′
k − α̂k‖1 =

∥∥∥∥ β̂k + 
β
(1)
k√

λ‖β̂k + 
β
(1)
k ‖1

− β̂k√
λ‖β̂k‖1

∥∥∥∥
1

≤
∥∥∥∥ β̂k + 
β

(1)
k√

λ‖β̂k + 
β
(1)
k ‖1

− β̂k√
λ‖β̂k + 
β

(1)
k ‖1

∥∥∥∥
1

+
∥∥∥∥ β̂k√

λ‖β̂k + 
β
(1)
k ‖1

− β̂k√
λ‖β̂k‖1

∥∥∥∥
1

≤ ‖
β
(1)
k ‖1√

λa/2

+
‖β̂k‖1|

√
λ‖β̂k + 
β

(1)
k ‖1 −

√
λ‖β̂k‖1|√

λ‖β̂k + 
β
(1)
k ‖1

√
λ‖β̂k‖1

≤ ‖
β
(1)
k ‖1√

λa/2
+

b√
λa/2

√
λa

(
1
2

λ‖
β
(1)
k ‖1√

λa/2

)

≤ ‖
β
(1)
k ‖1

(
1√
λa/2

+
b

a
√

λa

)
,

where b = max{‖β̂k‖1 : ‖β̂k‖1 �= 0}.
Therefore, there exists a small enough δ′, if ‖
β(1)‖1 < δ′

we have ‖d̂′ − d̂‖1 + ‖α̂′ − α̂‖1 < δ. Hence Q�(λ, d̂
′
, α̂′) ≤
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Q�(λ, d̂, α̂) (due to local maximality) and Q(λ, β̂+
β(1)) ≤
Q(λ, β̂).

Next we show Q(λ, β̂+
β(1)+
β(2)) ≤ Q(λ, β̂+
β(1)).
Note that

Q(λ, β̂ + 
β(1) + 
β(2)) − Q(λ, β̂ + 
β(1))

= 
β(2)T∇L(β̂
∗
) −

K∑
k=1

√
λ‖
β(2)‖1,

where β∗ is a vector between β̂ + 
β(1) + 
β(2) and β̂ +

β(1). Since ‖
β(2)‖1 < δ′ is small enough, the second term
dominates the first term, hence we have Q(λ, β̂ + 
β(1) +

β(2)) ≤ Q(λ, β̂ + 
β(1)).

Overall, we have that there exists a small enough δ′, if
‖
β‖1 < δ′, then Q(λ, β̂ + 
β) ≤ Q(λ, β̂), which implies
that β̂ is a local maximizer of Q(λ, β).

Similarly, we can prove that if β̂ is a local maximizer of

Q(λ, β), and if we let d̂k =
√

λ‖β̂k‖1, α̂k = β̂k√
λ‖β̂k‖1

for

‖β̂k‖1 �= 0 and let d̂k = 0, α̂k = 0 for ‖β̂k‖1 = 0, then
(d̂, α̂) is a local maximizer of Q�(λ, d,α).

Regularity conditions

Let Sn be the number of non-zero groups, i.e., ‖β0
nk‖ �= 0.

Without loss of generality, we assume

‖β0
nk‖ �= 0, for k = 1, . . . , Sn,

‖β0
nk‖ = 0, for k = Sn + 1, . . . ,Kn.

Let snk be the number of non-zero coefficients in group
k, 1 ≤ k ≤ Sn; again, without loss of generality, we assume

β0
n,kj �= 0, for k = 1, . . . , Sn; j = 1, . . . , snk,

β0
n,kj = 0, for k = 1, . . . , Sn; j = snk + 1, . . . , pnk.

For simplicity, we write βn,kj , pnk and snk as βkj , pk and
sk in the following.

Since we have a diverging number of parameters, to keep
the uniform properties of the likelihood function, we need
some conditions on the higher-order moment of the likeli-
hood function, as compared to the usual condition in the
asymptotic theory of the likelihood estimate under finite
parameters (Lehmann and Casella 1998).

(A1) For every n, the observations {V ni, i = 1, 2, . . . , n} are
independent and identically distributed, each with a
density fn(V n1,βn). fn(V n1,βn) has a common sup-
port and the model is identifiable. Furthermore, the
first and second logarithmic derivatives of fn satisfy
the equations

Eβn

[
∂ log fn(V n1,βn)

∂βkj

]
= 0,

for k = 1, . . . ,Kn; j = 1, . . . , pk

Ik1j1k2j2(βn) = Eβn

[
∂

∂βk1j1

log fn(V n1, βn)

· ∂

∂βk2j2

log fn(V n1, βn)
]

= Eβn

[
− ∂2

∂βk1j2∂βk2j2

log fn(V n1, βn)
]
.

(A2) The Fisher information matrix

I(βn) =

Eβn

[
∂

∂βn

log fn(V n1,βn)
∂T

∂βn

log fn(V n1, βn)
]

satisfies the condition

0 < C1 < λmin{I(βn)} ≤ λmax{I(βn)} < C2 < ∞,

and for any k1, j1, k2, j2, we have

Eβn

[
∂

∂βk1j1

log fn(V n1,βn)

· ∂

∂βk2j2

log fn(V n1,βn)
]2

< C3 < ∞,

Eβn

[
− ∂2

∂βk1j1∂βk2j2

log fn(V n1, βn)
]2

< C4 < ∞.

(A3) There exists an open subset ωn of Ωn ∈ RPn that
contains the true parameter point β0

n such that for
almost all V n1, the density fn(V n1, βn) admits all
third derivatives ∂3fn(V n1,βn)/(∂βk1j1∂βk2j2∂βk3j3)
for all βn ∈ ωn. Furthermore, there exist functions
Mnk1j1k2j2k3j3 such that

∣∣∣∣ ∂3

∂βk1j1∂βk2j2∂βk3j3

log fn(V n1, βn)
∣∣∣∣

≤ Mnk1j1k2j2k3j3(V n1) for all βn ∈ ωn,

and Eβn
[M2

nk1j1k2j2k3j3
(V n1)] < C5 < ∞.

These regularity conditions guarantee the asymptotic
normality of the ordinary maximum likelihood estimates for
diverging number of parameters.

For expositional simplicity, we will first prove Theorem 3
and Theorem 4, then prove Theorem 2.

Proof of Theorem 3

We will show that for any given ε > 0, there exists a
constant C such that
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Pr
{

sup
‖u‖=C

Qn(β0
n + αnu) < Qn(β0

n)
}
≥ 1 − ε,(18)

where αn =
√

Pn(n−1/2 + λn
√

an/2
√

c1). This implies that
with probability at least 1− ε, that there exists a local max-
imum in the ball {β0

n +αnu : ‖u‖ ≤ C}. Hence, there exists
a local maximizer such that ‖β̂n − β0

n‖ = Op(αn). Since
1/2

√
c1 is a constant, we have ‖β̂n−β0

n‖ = Op(
√

Pn(n−1/2+
λn

√
an)).

Using pλn,wn(0) = 0, we have

Dn(u) = Qn(β0
n + αnu) − Qn(β0

n)

(19)

≤ Ln(β0
n + αnu) − Ln(β0

n)

− n

Sn∑
k=1

{pλn,wn(β0
nk + αnuk) − pλn,wn(β0

nk)}

�(I) + (II).

Using the standard argument on the Taylor expansion of
the likelihood function, we have

(I) = αnuT∇Ln(β0
n) +

1
2
uT∇2Ln(β0

n)uα2
n(20)

+
1
6
uT∇{uT∇2Ln(β∗

n)u}α3
n

� I1 + I2 + I3,

where β∗
n lies between β0

n and β0
n + αnu. Using the same

argument as in the proof of Theorem 1 in [7], we have

|I1| = Op(α2
nn)‖u‖,(21)

I2 = − nα2
n

2
uTIn(β0

n)u + op(1)nα2
n‖u‖2,(22)

and

|I3| =

∣∣∣∣∣16
Kn∑

k1=1

pk∑
j1=1

Kn∑
k2=1

pk∑
j2=1

Kn∑
k3=1

pk∑
j3=1

∂3Ln(β∗
n)

∂βk1j1∂βk2j2∂βk3j3

uk1j1uk2j2uk3j3α
3
n

∣∣∣∣∣
≤ 1

6

n∑
i=1

{
Kn∑

k1=1

pk∑
j1=1

Kn∑
k2=1

pk∑
j2=1

Kn∑
k3=1

pk∑
j3=1

M2
nk1j1k2j2k3j3(Vni)

}1/2

‖u‖3α3
n

= Op(P 3/2
n αn)nα2

n‖u‖3.

Since P 4
n

n → 0 and P 2
nλn

√
an → 0 as n → ∞, we have

|I3| = op(nα2
n)‖u‖3.(23)

From (21)–(23), we can see that, by choosing a sufficiently
large C, the first term in I2 dominates I1 uniformly on ‖u‖ =
C; when n is large enough, I2 also dominates I3 uniformly
on ‖u‖ = C.

Now we consider (II). Since αn =
√

Pn(n−1/2 +
λn

√
an/2

√
c1) → 0, for ‖u‖ ≤ C we have

|β0
kj + αnukj | ≥ |β0

kj | − |αnukj | > 0(24)

for n large enough and β0
kj �= 0. Hence, we have

pλn,wn(β0
nk + αnuk) − pλn,wn(β0

nk)

=
(√

wn,k1|β0
k1 + αnuk1| + · · · + wn,kpk

|β0
kpk

+ αnukpk
|

−
√

wn,k1|β0
k1| + · · · + wn,kpk

|β0
kpk

|
)
λn

≥
(√

wn,k1|β0
k1 + αnuk1| + · · · + wn,ksk

|β0
ksk

+ αnuksk
|

−
√

wn,k1|β0
k1| + · · · + wn,ksk

|β0
ksk

|
)
λn

≥
({

wn,k1|β0
k1| + · · · + wn,ksk

|β0
ksk

|

− αn(wn,k1|uk1| + · · · + wn,ksk
|uksk

|)
}1/2

−
√

wn,k1|β0
k1| + · · · + wn,ksk

|β0
ksk

|
)
λn

(for n large enough, by (24))

= λn

√
wn,k1|β0

k1| + · · · + wn,ksk
|β0

ksk
|(

√
1 − γnk − 1),

where γnk is defined as γnk = αn(wn,k1|uk1|+···+wn,ksk
|uksk

|)
wn,k1|β0

k1|+···+wn,ksk
|β0

ksk
| .

For n large enough, we have 0 ≤ γnk < 1 and γnk ≤
αn‖uk‖(wn,k1+···+wn,ksk

)

c1(wn,k1+···+wn,ksk
) = αn‖uk‖

c1
≤ αnC

c1
→ 0 with prob-

ability tending to 1 as n → ∞.
Therefore,

pλn,wn(β0
nk + αnuk) − pλn,wn(β0

nk)

≥ λn

√
wn,k1|β0

k1| + · · · + wn,ksk
|β0

ksk
|

· (
√

1 − γnk − 1)

≥ λn

√
wn,k1|β0

k1| + · · · + wn,ksk
|β0

ksk
|

·
(

1 + |op(1)|
2

(−γnk)
)

(Using γnk = op(1) and Taylor expansion)

≥ −λn
αn(wn,k1|uk1| + · · · + wn,ksk

|uksk
|)√

wn,k1|β0
k1| + · · · + wn,ksk

|β0
ksk

|

·
(

1 + |op(1)|
2

)

≥ −αnλn
‖uk‖

√
ansk

2
√

c1
(1 + |op(1)|).
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Therefore, the term (II) in (19) is bounded by

nαnλn

(
Sn∑

k=1

‖uk‖
√

ansk

2
√

c1

)
(1 + |op(1)|),

which is further bounded by

nαnλn
√

an

(
‖u‖ ·

√
Pn

2
√

c1

)
(1 + |op(1)|).

Note that αn =
√

Pn(n−1/2 + λn
√

an/2
√

c1), hence the
above expression is bounded by

‖u‖nα2
n(1 + |op(1)|).

This term is also dominated by the first term of I2 on ‖u‖ =
C uniformly. Therefore, Dn(u) < 0 is satisfied uniformly on
‖u‖ = C. This completes the proof of the theorem.

Proof of Theorem 4

We have proved that if λn
√

an = Op(n−1/2), there exists
a root-(n/Pn) consistent estimate β̂n. Now we prove that
this root-(n/Pn) consistent estimate has the oracle sparsity
under the condition P 2

n

λ2
nbn

= op(n), i.e., β̂kj = 0 with proba-
bility tending to 1 if β0

kj = 0.
Using Taylor’s expansion, we have

∂Qn(βn)
∂βkj

=
∂Ln(βn)

∂βkj
− n

∂pλn,wn(βnk)
∂βkj

(25)

=
∂Ln(β0

n)
∂βkj

+
Kn∑

k1=1

pk1∑
j1=1

∂2Ln(β0)
∂βkj∂βk2j2

(βk1j1 − β0
k1j1)

+
1
2

Kn∑
k1=1

pk1∑
j1=1

Kn∑
k2=1

pk2∑
j2=1

∂3Ln(β∗
n)

∂βkj∂βk1j1∂βk2j2

(βk1j1 − β0
k1j1)(βk2j2 − β0

k2j2)

− nλnwn,kj

2
√

wn,k1|βk1| + · · · + wn,kpk
|βkpk

|
sgn(βkj)

� I1 + I2 + I3 + I4,

where β∗
n lies between βn and β0

n.
Using the argument in the proof of Lemma 5 in [7], for

any βn satisfying ‖βn − β0
n‖ = Op(

√
Pn/n), we have

I1 = Op(
√

n) = Op(
√

nPn),

I2 = Op(
√

nPn),

I3 = op(
√

nPn).

Then, since β̂n is a root-(n/Pn) consistent estimate max-
imizing Qn(βn), if β̂kj �= 0, we have

∂Qn(βn)
∂βkj

∣∣∣
βn=β̂n

(26)

= Op(
√

nPn)

− nλnwn,kj

2
√

wn,k1|β̂k1| + · · · + wn,kpk
|β̂kpk

|
sgn(β̂kj) = 0.

Therefore,

nλnwn,kj√
wn,k1|β̂k1| + · · · + wn,kpk

|β̂kpk
|

= Op(
√

nPn) for β̂kj �= 0.

This can be extended to

nλnwn,kj |β̂kj |√
wn,k1|β̂k1| + · · · + wn,kpk

|β̂kpk
|

= |β̂kj |Op(
√

nPn),

for any β̂kj with β̂nk �= 0. If we sum this over all j in the
kth group, we have

nλn

√
wn,k1|β̂k1| + · · · + wn,kpk

|β̂kpk
|(27)

=
pk∑

j=1

|β̂kj |Op(
√

nPn).

Since β̂n is a root-(n/Pn) consistent estimate of β0
n, we

have |β̂kj | = Op(1) for (k, j) ∈ An and |β̂kj | = Op(
√

Pn/n)
for (k, j) ∈ Bn ∪ Cn.

Now for any k and j satisfying β0
kj = 0 and β̂kj �= 0,

equation (26) can be written as:

∂Qn(βn)
∂βkj

∣∣∣
βn=β̂n

(28)

=
1

2λn

√
wn,k1|β̂k1| + · · · + wn,kpk

|β̂kpk
|

(Op(
√

Pn/n)nλn

√
wn,k1|β̂k1| + · · · + wn,kpk

|β̂kpk
|

− nλ2
nwn,kjsgn(β̂kj)) = 0.

Denote

hnk = Op(
√

Pn/n)nλn ·
√

wn,k1|β̂k1| + · · · + wn,kpk
|β̂kpk

|.

Let hn =
∑Kn

k=1 hnk. By equation (27), we have hn =∑Kn

k=1 Op(
√

Pn/n)
∑pk

j=1 |β̂kj |Op(
√

nPn) = Op(P 2
n). Since

P 2
n

λ2
nbn

= op(n) guarantees that nλ2
nbn dominates hn with

probability tending to 1 as n → ∞, the first term in (28) is
dominated by the second term as n → ∞ uniformly for all k
and j satisfying β0

kj = 0 since wn,kj ≥ bn and hn > hnk. De-

note gnk = 2λn

√
wn,k1|β̂k1| + · · · + wn,kpk

|β̂kpk
|/(nλ2

nbn).

Let gn =
∑Kn

k=1 gnk. By equation (27), we have
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gn = 2
∑Kn

k=1(1/n)
∑pk

j=1 |β̂kj |Op(
√

nPn)/(nλ2
nbn) =

op(1/
√

nPn). The absolute value of the second term in (28) is
bounded below by 1/gn. So with probability uniformly con-
verging to 1 the second term in the derivative ∂Q(β)

∂βkj
|β=β̂n

will go to ∞ as n → ∞, which is a contradiction with equa-
tion (28). Therefore, for any k and j satisfying β0

kj = 0, we
have β̂kj = 0 with a probability tending to 1 as n → ∞. We
have β̂Dn

= 0 with probability tending to 1 as well.
Now we prove the second part of Theorem 4. From the

above proof, we know that there exists (β̂n,An
,0) with prob-

ability tending to 1, which is a root-(n/Pn) consistent local
maximizer of Q(βn). With a slight abuse of notation, let
Qn(βn,An

) = Qn(βn,An
,0). Using the Taylor expansion on

∇Qn(β̂n,An
) at point β0

n,An
, we have

1
n

(∇2Ln(β0
n,An

)(β̂n,An
− β0

n,An
) −∇Jn(β̂n,An

))(29)

= − 1
n

(
∇Ln(β0

n,An
)

+
1
2
(β̂n,An

− β0
n,An

)
T∇2{∇Ln(β∗

n,An
)}

(β̂n,An
− β0

n,An
)
)

,

where β∗
n,An

lies between β̂n,An
and β0

n,An
.

Now we define

Cn � 1
2
(β̂n,An

− β0
n,An

)
T∇2{∇Ln(β∗

n,An
)}(β̂n,An

− β0
n,An

).

Using the Cauchy-Schwarz inequality, we have

∥∥∥∥ 1
n
Cn

∥∥∥∥
2

(30)

≤ 1
n2

n∑
i=1

n‖β̂n,An
− β0

n,An
‖4

Sn∑
k1=1

pk∑
j1=1

Sn∑
k2=1

pk∑
j2=1

Sn∑
k3=1

pk∑
j3=1

M3
nk1j1k2j2k3j2(V ni)

= Op(P 2
n/n2)Op(P 3

n) = Op(P 5
n/n2) = op(1/n).

Since P 5
n

n → 0 as n → ∞, by Lemma 8 in [7], we have

∥∥∥∥ 1
n
∇2Ln(β0

n,An
) + In(β0

n,An
)
∥∥∥∥ = op(1/Pn)

and ∥∥∥∥
(

1
n
∇2Ln(β0

n,An
) + In(β0

n,An
)
)

(β̂n,An
− β0

n,An
)
∥∥∥∥(31)

= op(1/
√

nPn) = op(1/
√

n).

Since √
wn,k1|β̂k1| + · · · + wn,ksk

|β̂ksk
|

=
{
wn,k1|β0

k1|(1 + Op(
√

Pn/n)) + · · ·

+ wn,ksk
|β0

ksk
|(1 + Op(

√
Pn/n))

}1/2

=
√

wn,k1|β0
k1| + · · · + wn,ksk

|β0
ksk

|

· (1 + Op(
√

Pn/n)),

we have

λnwn,kj√
wn,k1|β̂k1| + · · · + wn,ksk

|β̂ksk
|

=
λnwn,kj√

wn,k1|β0
k1| + · · · + wn,ksk

|β0
ksk

|
(1 + Op(

√
Pn/n)).

Furthermore, since

λnwn,kj√
wn,k1|β0

k1| + · · · + wn,ksk
|β0

ksk
|

≤ λnwn,kj√
wn,kjc1

≤ λn
√

an√
c1

= op((nPn)−1/2)

for (k, j) ∈ An, we have(
1
n
∇Jn(β̂n,An

)
)

kj

=
λnwn,kj

2
√

wn,k1|β̂k1| + · · · + wn,ksk
|β̂ksk

|

= op((nPn)−1/2)

and ∥∥∥∥ 1
n
∇Jn(β̂n,An

)
∥∥∥∥ ≤

√
Pnop((nPn)−1/2) = op(1/

√
n).(32)

Together with (30), (31) and (32), from (29) we have

In(β0
n,An

)(β̂n,An
− β0

n,An
)

=
1
n
∇Ln(β0

n,An
) + op(1/

√
n).

Now using the same argument as in the proof of Theo-
rem 2 in [7], we have

√
nAnI1/2

n (β0
n,An

)(β̂n,An
− β0

n,An
)

→
√

nAnI−1/2
n (β0

n,An
)
(

1
n
∇Ln(β0

n,An
)
)

→ N (0,G),

where An is a q × |An| matrix such that AnAn
T → G and

G is a q × q nonnegative symmetric matrix.
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Proof of Theorem 2

Note that when wn,kj = 1, we have an = 1 and bn = 1.
The conditions λn

√
an = Op(n−1/2) and P 2

n

λ2
nbn

= op(n) in

Theorem 4 become λn
√

n = Op(1) and Pn

λn
√

n
→ 0. These

two conditions cannot be satisfied simultaneously by adjust-
ing λn, which implies that Pr(β̂D = 0) → 1 cannot be guar-
anteed.

We will prove that by choosing λn satisfying
√

nλn =
Op(1) and Pnn−3/4/λn → 0 as n → ∞, we can have a root-
n consistent local maximizer β̂n = (β̂An

, β̂Bn
, β̂Cn

)
T

such
that Pr(β̂Cn

= 0) → 1.
Similar as in the proof of Theorem 4, we let

h′
n =

∑Kn

k=Sn+1 hnk. By equation (27), we have h′
n =∑Kn

k=Sn+1 Op(
√

Pn/n)
∑pk

j=1 |β̂kj |Op(
√

nPn) = Op(P 2
n/

√
n).

Since Pnn−3/4/λn → 0 guarantees that nλ2
n dominates h′

n

with probability tending to 1 as n → ∞, the first term in
(28) is dominated by the second term as n → ∞ uniformly
for any k satisfying β0

nk = 0 since wn,kj = 1 and h′
n > hnk.

Similar as in the proof of Theorem 4, we have β̂Cn
= 0 with

probability tending to 1.

Proof of Theorem 5

Let Nn = |An| be the number of nonzero parame-
ters. Let Bn be an (Nn − q) × Nn matrix which satisfies
BnBT

n = INn−q and AnBT

n = 0. As βn,An
is in the orthog-

onal complement to the linear space that is spanned by the
rows of An under the null hypothesis H0, it follows that

βn,An
= BT

nγn,

where γn is an (Nn − q) × 1 vector. Then, under H0 the
penalized likelihood estimator is also the local maximizer
γ̂n of the problem

Qn(βn,An
) = max

γn

Qn(BT

nγn).

To prove Theorem 5 we need the following two lemmas.

Lemma 3. Under condition (b) of Theorem 4 and the null
hypothesis H0, we have

β̂n,An
− β0

n,An

=
1
n

I−1
n (β0

n,An
)∇Ln(β0

n,An
) + op(n−1/2),

BT

n(γ̂n − γ0
n)

=
1
n

BT

n{BnIn(β0
n,An

)BT

n}−1Bn∇Ln(β0
n,An

)

+ op(n−1/2).

Proof of Lemma 3

We need only prove the second equation. The first equa-
tion can be shown in the same manner. Following the proof
of Theorem 4, it follows that under H0,

BnIn(β0
n,An

)BT

n(γ̂n − γ0
n)

=
1
n

Bn∇Ln(β0
n,An

) + op(n−1/2).

As the eigenvalue λi(BnIn(β0
n,An

)BT

n) is uniformly
bounded away from 0 and infinity, we have

BT

n(γ̂n − γ0
n)

=
1
n

BT

n{BnIn(β0
n,An

)BT

n}−1Bn∇Ln(β0
n,An

)

+ op(n−1/2).

Lemma 4. Under condition (b) of Theorem 4 and the null
hypothesis H0, we have

Qn(β̂n,An
) − Qn(BT

nγ̂n)(33)

=
n

2
(β̂n,An

− BT

nγ̂n)
T

In(β0
n,An

)(β̂n,An
− BT

nγ̂n)

+ op(1).

Proof of Lemma 4

A Taylor’s expansion of Qn(β̂n,An
) − Qn(BT

nγ̂n) at the
point β̂n,An

yields

Qn(β̂n,An
) − Qn(BT

nγ̂n) = T1 + T2 + T3 + T4,

where

T1 = ∇TQn(β̂n,An
)(β̂n,An

− BT

nγ̂n),

T2 = − 1
2
(β̂n,An

− BT

nγ̂n)
T∇2Ln(β̂n,An

)

(β̂n,An
− BT

nγ̂n),

T3 =
1
6
∇T{(β̂n,An

− BT

nγ̂n)
T∇2Ln(β�

n,An
)

(β̂n,An
− BT

nγ̂n)}(β̂n,An
− BT

nγ̂n),

T4 =
1
2
(β̂n,An

− BT

nγ̂n)
T∇2Jn(β∗

n,An
)

(β̂n,An
− BT

nγ̂n).

We have T1 = 0 as ∇TQn(β̂n,An
) = 0.

Let Θn = In(β0
n,An

) and Φn = 1
n∇Ln(β0

n,An
). By

Lemma 2 we have

(β̂n,An
− BT

nγ̂n)

= Θ−1/2
n {In − Θ1/2

n BT
n(BnΘnBT

n)−1BnΘ1/2
n }Θ−1/2

n Φn

+ op(n−1/2).

In−Θ1/2
n BT

n(BnΘnBT

n)−1BnΘ1/2
n is an idempotent matrix

with rank q. Hence, by a standard argument and condition
(A2),

(β̂n,An
− BT

nγ̂n) = Op

(√
q

n

)
.
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We have

(34)
(

1
n
∇2Jn(βn,An

)
)

kjk1j1

= 0, for k �= k1

and (
1
n
∇2Jn(β∗

n,An
)
)

kjkj1

(35)

=
λnwn,kjwn,kj1

4(wn,k1|β∗
k1| + · · · + wn,ksk

|β∗
ksk

|)3/2

=
λnwn,kjwn,kj1

4(wn,k1|β0
k1| + · · · + wn,ksk

|β0
ksk

|)3/2
(1 + op(1))

≤ λn
√

an

4(c1)3/2
(1 + op(1))

= op((nPn)−1/2).

Combining (34), (35) and condition q < Pn, following the
proof of I3 in Theorem 3, we have

T3 = Op(nP 3/2
n n−3/2q3/2) = op(1)

and

T4 ≤ n

∥∥∥∥ 1
n
∇2Jn(β∗

n,An
)
∥∥∥∥‖β̂n,An

− BT

nγ̂n‖2

= nPnop((nPn)−1/2)Op

(
q

n

)
= op(1).

Thus,

Qn(β̂n,An
) − Qn(BT

nγ̂n) = T2 + op(1).(36)

It follows from Lemmas 8 and 9 in [7] that∥∥∥∥ 1
n
∇2Ln(β̂n,An

) + In(β0
n,An

)
∥∥∥∥ = op

(
1√
Pn

)
.

Hence, we have

1
2
(β̂n,An

− BT

nγ̂n)
T{∇2Ln(β̂n,An

) + nIn(β0
n,An

)}(37)

(β̂n,An
− BT

nγ̂n)

≤ op

(
n

1√
Pn

)
Op

(
q

n

)
= op(1).

The combination of (36) and (37) yields (33).

Proof of Theorem 5

Given Lemmas 3 and 4, the proof of the Theorem is sim-
ilar to the proof of Theorem 4 in [7].
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