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A case-control mother-child pair design is popular for ge-
netic association studies of obstetric or neonatal outcomes
because it allows assessment of both maternal and offspring
genotype effects. But a practical constraint is the high geno-
typing cost, which may double that for a study with the
same number of unrelated cases and controls. This issue
is particularly relevant for genome-wide association stud-
ies, despite the decreasing genotyping cost. Here, we devel-
oped cost-effective genotyping strategies for the case-control
mother-child pair design. We assumed that the maternal
genome had been genotyped a priori, and that the primary
goal was to detect marginal offspring genotype effects. Our
results indicated that only offspring of case mothers needed
to be genotyped in order to achieve a statistical power sim-
ilar to that for screening the maternal genome. Our conclu-
sion was based on a novel score statistic for testing offspring
genotype effects that has a higher power than the Armitage
trend test.
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genotype effect, Offspring genotype effect, One-stage design,
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1. INTRODUCTION

Obstetric complications and neonatal outcomes are com-
plex traits that may involve multiple genes in their etiol-
ogy. Because both maternal and fetal genes regulate the in-
trauterine environment, which in turn plays a critical role
in both maternal and fetal health, it has been of interest
to assess the contribution of both maternal and offspring
genomes to the risk of adverse obstetric and neonatal out-
comes (e.g., Weinberg 1998; Wilcox 1998; Saftlas AF, 2005;
Takimoto E, 1996; Wangler MF, 2005). Emerging evidence
indicated that it has indeed been fruitful to look beyond
mothers’ or fetuses’ own genomes. For instance, it has been
shown that fetal genes influence maternal metabolism and
blood pressure during pregnancy among women carrying fe-
tuses with Beckwith Wiedemann syndrome (Wangler MF,
2005), and the impact of fetal genes on maternal physiology
has also been demonstrated by animal models (Kanayama N,
2002; Petry CJ, 2007; Petry et al., 2010). Recent candi-
date gene and genomewide association studies (GWAs) have
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identified susceptible SNPs in both maternal and offspring
genomes in relation to multiple phenotypes, such as preterm
labor and autism. For example, maternal genes TIMP2 and
COL4A3 and fetal genes IL6R, IGF2, IL2, HMGCR, and
APOA1 were recently found to be associated with the risk
of spontaneous preterm labor (Romero et al., 2010; Steffen
et al., 2007). The maternal RFC1 gene was found to be as-
sociated with the risk of autism (James et al., 2010), and
both maternal and offspring MAOA genes were found to be
associated with autism severity (Cohen et al., 2010).

Traditionally, family-based study designs have been
adopted for assessing both maternal and offspring genotype
effects (OGEs), and standard case-control designs have been
adopted to assess only maternal effects or OGEs. However,
genetic association studies based on mother-child pairs rep-
resent a unique advantage. They allow assessment of both
maternal and offspring genes, and yet are cost effective be-
cause they do not need to recruit fathers as in family-based
studies. However, a practical constraint of such a design is
the high genotyping cost, since two genomes need to be geno-
typed for each subject. The high cost is particularly relevant
in GWAs which involve millions of genetic markers, despite
the decreasing genotyping cost. Here, we investigate cost-
effective genotyping designs for GWAs and candidate gene
studies involving case-control mother-child pairs.

We focus on genotyping designs for testing OGEs, recog-
nizing that results are readily extensible for testing maternal
genotype effects (MGEs). Cases and controls are mothers
who did or did not develop the phenotype of interest. DNA
samples for their children are available. The standard geno-
typing design is to genotype all case-control mother-child
pairs. However, although both MGEs and OGEs are impor-
tant, investigators may first examine subjects’ own genomes,
that is, the maternal genome. In fact, a majority of pub-
lished genetic association studies of obstetric outcomes only
afforded to examine the maternal genome. We thus assume
that the maternal genome has been genotyped a priori. Our
main idea is to exploit the obvious correlation between ma-
ternal and offspring genotypes. As such, maternal genotypes
can serve as surrogates for offspring genotypes. We thus pro-
pose that only a proportion of offspring need to be geno-
typed and that genetic information for the untyped offspring
can be recovered from the maternal genotype data.

We consider cost-effective genotyping designs for both
one-stage and two-stage studies of mother-child pairs. De-
signing cost-effective two-stage genetic association studies
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has recently been an important research topic (Satagopan et
al., 2004; Wang et al., 2006; Skol et al., 2007). These designs
examine a panel of SNPs only on a subset of study subjects
(stage I), then a small percentage of promising SNPs are
genotyped for the rest of the subjects (stage II). With a ju-
diciously selected proportion of stage-I subjects and critical
points for testing significance, joint analysis of data from
the two stages can have a power similar to the design where
all subjects are fully genotyped (Skol et al., 2006). To in-
vestigate the influence of the offspring genome, the simplest
genotyping design would be to use exactly the same design
as that for the maternal genome. That is, children of stage
I (II) mothers would be genotyped in stage I (II). However,
based on a powerful score statistic we developed, we show
here that it is feasible to further reduce the genotyping cost.
In particular, we demonstrate that it suffices to genotype
children of cases and perhaps a small proportion of children
of controls.

2. MATERIAL AND METHODS

The selection of a cost-effective design obviously depends
on the selection of test statistics. With data from a case-
control study, it is common to test the association between a
SNP and the binary phenotype using the standard Armitage
trend statistic (Armitage, 1955). We adopt a score-based
statistic to screen the maternal genome for multiplicative
genotype effects, which has a power similar to that of the Ar-
mitage trend test (Chen and Chatterjee, 2007). For testing
marginal multiplicative effects of offspring genotypes, we de-
velop a score-based statistic adapted from a likelihood ratio
statistic proposed in our previous work (Chen et al., 2009),
which is computationally more efficient and yet has a simi-
lar statistical power. This statistic integrates maternal geno-
type data into the test of OGEs, thereby improving the test
power and making it possible to reduce the cost of genotyp-
ing offspring. We recognize that testing OGEs on maternal
phenotypes may require appropriate adjustment of mater-
nal effects. When a maternal SNP has a significant marginal
effect, the corresponding offspring genotype could also be
significant since it is correlated with the maternal genotype.
We consider two simple approaches to adjusting for MGEs:
one is to stratify on the maternal genotype, and the other is
to include the maternal effect in the penetrance model. Of
course, when neither the maternal nor the offspring SNP is
associated with the phenotype, unadjusted analyses would
maintain nominal type-I error rates. We compare the power
of the two approaches in the setting of our proposed design.

2.1 Notation

We consider the testing of a bi-allelic SNP and refer to
the common allele as A and minor allele as a. The three
possible genotypes are AA(0), Aa(1), and aa(2). A mater-
nal and offspring SNP at the same locus have seven possi-
ble combinations of genotypes: (0, 0), (0, 1), (1, 0), (1, 1)

(1, 2), (2, 1), and (2, 2). Let Y denote the binary pheno-
type that takes value “1” for cases and “0” for controls.
We assume that n1 case mother-child pairs and n0 con-
trol pairs are recruited. Let Gm and Gc denote the geno-
type of a maternal and an offspring SNP, respectively, and
let pa be the minor allele frequency (MAF) of Gm and
Gc for control mothers and their children. We assume that
the penetrance of Gm and Gc is quantified by a log-linear
model log p(Y = 1|Gm, Gc; β) = β0 + f(Gm, Gc; β1), where
f(Gm, Gc; β1) is a pre-specified relative risk function. We use
“null model” to refer to the situation where neither Gm nor
Gc is associated with Y so that f(Gm, Gc; β1) is a constant.
Let β = (β0, β1). We use the “marginal maternal model” to
refer to the model with only a multiplicative MGE,

(1) log p(Y = 1|Gm; β) = β0 + β1G
m,

where Gm takes values 0, 1, or 2 according to the number
of minor alleles at the locus. We similarly use the “marginal
offspring model” to refer to the model with only a multi-
plicative OGE,

(2) log p(Y = 1|Gc; β) = β0 + β1G
c.

2.2 The score-based test statistic

Here, we develop a score-based test statistic for OGEs, on
which our design, which genotypes only a subset of children,
is based. The statistic uses data (Y, Gm, Gc) collected from
n1 case mothers and n0 control mothers and data (Y, Gc)
from nc

1 children of case mothers (nc
1 ≤ n1) and nc

0 children
of control mothers (nc

0 ≤ n0). Under the penetrance func-
tion (2), the score test statistic of the null hypothesis β1 = 0
is based on the following likelihood function:

L(β1, pa) =
nc

1∏
i=1

eβ1Gc
i p(Gc

i , G
m
i |Yi = 0)∑

Gc eβ1Gcp(Gc|Y = 0)

×
nc

0∏
j=1

p(Gc
j , G

m
j |Yj = 0)

×
n1∏

i=nc
1+1

∑
Gc eβ1Gc

p(Gc, Gm
i |Yi = 0)∑

Gc eβ1Gcp(Gc|Y = 0)

×
n0∏

j=nc
0+1

p(Gm
j |Yj = 0),

where p(Gm, Gc|Y = 0) is a function of pa under assump-
tions of HWE and transmission equilibrium in the control
population (Table 1, Chen et al., 2009). In our previous
work (Chen et al., 2009), we proposed to use the likelihood
ratio statistic, 2{log L(β̂1, p̂a)−log L(β1 = 0, p̂0

a)} for testing
β1 = 0, where p̂a and p̂0

a are the estimate of the MAF pa

under the alternative and null hypothesis, respectively. To
facilitate the power calculation for our proposed imbedded
two-stage design, we propose to test β1 = 0 based on score
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function ∂ log L(β1 = 0, p̂0
a)/∂β1, which is asymptotically a

normal random variable. This score-based statistic is equiv-
alent to the likelihood ratio statistic considered in Chen et
al. (2009) but is computationally simpler since it does not
require the estimation of β1. This statistic exploits maternal
data Gm and is more powerful than the standard Armitage
test that ignores Gm (Chen et al., 2009). The design of the
study for screening the maternal genome, in which we as-
sume that the study of the offspring genome is embedded,
is based on the likelihood

n1∏
i=1

eβ1Gm
i p(Gm

i |Yi = 0)∑
Gm eβ1Gmp(Gm|Y = 0)

×
n0∏

j=1

p(Gm
j |Yj = 0).

The corresponding score statistic asymptotically has a
power similar to that of the Armitage trend test.

2.2.1 Ignoring maternal effects could inflate type-I error
rates for testing offspring SNPs

Tests of marginal MGEs and OGEs are correlated. Thus,
it is necessary to adjust for significant maternal effects when
testing offspring genotypes. Consider the penetrance func-
tion p(Y = 1|Gm, Gc) = p(Y = 1|Gm) where only the
maternal genotype Gm is associated with the phenotype
Y , but not offspring genotype Gc. Testing Gc using Gm is
plausible since they are correlated. Without knowledge of
a relationship between Y and (Gm, Gc), one may wrongly
assume a model log p(Y = 1|Gc; γ0, γ1) = γ0 + γ1G

c

for testing the effect of Gc, where Gc takes the value of
minor allele counts. This is a “mis-specified” model be-
cause the true relationship between Y and Gc is induced
as

∑
Gc p(Y = 1|Gm)p(Gm|Gc). With the incorrect model

p(Y = 1|Gc; γ0, γ1) and data (Y, Gm, Gc), we test the null
hypothesis γ1 = 0 with the score function of γ1. To illus-
trate the point, we assume that all children are genotyped
and write the joint likelihood function (incorrectly) as

La(γ1, pa) ≈
n1∏
i=1

eγ1Gc
i p(Gm

i , Gc
i |Yi = 0)∑

Gm,Gc eγ1Gcp(Gm, Gc|Y = 0)

×
n0∏

j=1

p(Gm
j , Gc

j |Yj = 0),

from which we can obtain the score equation for γ1:

la(γ1) =
n1∑
i=1

{
Gc

i −
∑
Gc

Gc eγ1Gc

p(Gc|Y = 0)∑
Gc eγ1Gcp(Gc|Y = 0)

}
.

If γ0 + γ1G
c were equal to log p(Y = 1|Gc), the summa-

tion in the bracket would be equal to E(Gc|Y = 1). Conse-
quently, la(γ1) = 0 would be an unbiased estimating equa-
tion of γ1, based on which a valid test of γ1 = 0 can be
constructed. But this is not true with the penetrance func-
tion p(Y = 1|Gm, Gc) = p(Y = 1|Gm). Consequently, the
test of γ1 based on la(γ1) has an incorrect type-I error rate,

indicating that valid tests of marginal offspring SNPs may
require appropriate adjustment of maternal effects.

On the other hand, if Gm is independent of the phe-
notype Y given Gc, one can test associations between
Y and Gc with data (Y, Gm). This can be seen by not-
ing that the score function for γ1 can be written as∑n1

i=1 {E(Gc|Gm
i , Yi = 1) − E(Gc|Yi = 1)}. The power of the

test is thus largely determined by the correlation between
Gm and Gc in the case population. This test statistic is
used in an alternative genotyping design strategy described
below.

2.2.2 Simple approaches to adjusting for maternal effects
when testing offspring effects

We propose two approaches to controlling for MGEs. The
first strategy is to stratify on maternal genotype Gm when
testing Gc. We treat each value of Gm as a stratum and ana-
lyze the association between Y and Gc within each stratum.
The penetrance function assuming a multiplicative effect of
Gc within each Gm stratum can be written as

log p(Y = 1|Gm, Gc) = β0 + β1IGm=1 + β2IGm=2

+ α0IGm=0G
c + α1IGm=1G

c

+ α2IGm=2G
c,

where “I” is the indicator function. The score-based test
for no association with Gc (α0 = α1 = α2 = 0) has three
degrees of freedom. If data is insufficient to fit this fully
stratified model, then an alternative approach is to fit a
multiplicative effect on both Gm and Gc:

log p(Y = 1|Gm, Gc) = β0 + β1G
m + β2G

c.

One can test β2 = 0 for the association of Gc with phe-
notype Y . If the above approaches are applied to all SNPs
under investigation, then the overall type-I error rate can be
maintained. But as shown in simulation studies below, they
have diminished power in the absence of maternal effects. In
particular, in GWAs where most maternal SNPs would be
expected to be null, performing the adjusted analysis on all
SNPs could result in unnecessary loss of power for detecting
offspring SNP effects.

2.3 A one-stage imbedded design
for examining the offspring genome

We first consider the genotyping design for testing the
null hypothesis that an offspring SNP is not associated with
the phenotype, assuming that the maternal genotype data
is available for all cases and controls (one-stage design). Be-
cause our statistic exploits both maternal and offspring ge-
netic data for testing OGEs, even without genotyping all
children, it is still possible that it has a power similar to
that for testing a maternal genome. Let πcase and πcontrol

denote proportions of the genotyped children of case and

Design studies of mother-child pairs 545



control mothers, respectively. Our proposed one-stage de-
signs for assessing the offspring genome are characterized
by πcase and πcontrol.

2.4 A two-stage imbedded design
for screening the offspring genome

Here, we assume that a two-stage study for screening the
maternal genome has been conducted a priori using avail-
able design strategies (Satagopan et al., 2004; Wang et al.,
2006; Skol et al., 2007). We consider cost effective designs
for screening the offspring genome that are imbedded in the
two-stage design of the maternal genome. Similar to the one-
stage design above, this imbedded design has a reduced cost
for genotyping the offspring genome by incorporating the
available maternal genotype data. Building on our one-stage
imbedded design, we propose to genotype only a subset of
children of case and control mothers in stage I. Promising
SNPs identified in stage I are then further evaluated in the
remaining children (for whom the maternal genotype data is
usually not available), as in the standard two-stage design.

In the standard two-stage design for screening the mater-
nal genome with n case mothers and n control mothers, we
test m independent markers at a family-wise error rate 0.05.
In GWAs, m could be 500k, for example. Then nπ1 cases and
the same number of controls are genotyped in stage I, and
mπm top-ranked markers, selected in stage I based on the
score test described in Section 2.2, are genotyped for the re-
maining 2n(1−π1) case and control mothers in stage II. Let
SI and SJ be the score-based statistic based on stage-I ma-
ternal data and on the maternal data combined from both
stages, respectively. A maternal SNP is claimed to be associ-
ated with the outcome Y if |SI | > cI and |SJ | > cJ , where cI

and cJ are critical values chosen so that p(|SI | > cI) = πm

and p(|SI | > cI , |SJ | > cJ) = α under the null (Skol et al.,
2007). To achieve a desired power for the joint analysis, the
parameters π1 and πm are determined by the effect size and
MAF of the risk SNP, the relative per-SNP genotyping cost
in the two stages, etc.

To derive the imbedded two-stage design for assessing the
offspring genome, we assume that the per-SNP genotyping
cost is the same for the maternal and offspring genomes. In
stage I, among nπ1 children of stage I case mothers, only a
proportion π11 are genotyped. Among nπ1 children of stage
I control mothers, only a proportion π10 are genotyped.
Thus, the total number of children genotyped in stage I is
nπ1(π11 + π10). In stage II, mπm markers are genotyped in
the remaining children (stage II children), the total number
of whom is equal to n{2 − π1(π11 + π10)}. The parameters
π11 and π10 affect the study power. Here we choose to select
mπm top-ranked markers from stage I, the same number as
that in the study of the maternal genome. Using our score-
based statistic and performing a joint analysis of data from
stages I and II, we study the optimal choices of π10 and π11

to achieve a desired study power. The details for calculating
the power in the joint analysis are provided in Appendix A,

where we address the issue that the test statistics used in
stages I and II are different since stage I analysis incorpo-
rates maternal genotype data.

To evaluate top-ranked offspring SNPs in stage I and II
samples, we argue that the top-ranked maternal and off-
spring SNPs may overlap only by a very small proportion.
Let Sm and Sc be the score statistics for testing MGEs and
OGEs using stage-I data, respectively. Assuming that none
of the maternal or offspring SNPs are associated, the proba-
bility p{|Sm| > z1−πm/2, |Sc| > z1−πm/2} is between π2

m and
πm, where z1−πm/2 is the 1−πm/2 quantile of the standard
normal variable. Since πm is very small, the probability that
more than 10 SNPs, say, are ranked top among both ma-
ternal and offspring markers in stage I would also be very
small. In other words, we expect that a small number of
SNPs would be evaluated in stage II in both maternal and
offspring genomes. Therefore, we assume that no maternal
genotype data is available for testing OGEs in stage II.

2.4.1 Two alternative design strategies

We compare the power of our embedded design with two
other intuitive design strategies. One is to first screen the
maternal genome using a standard two-stage design, and
then only the offspring SNPs at the same loci as the sig-
nificant maternal SNPs are evaluated to search for signifi-
cant offspring effects. This is effectively a three-stage design
for screening offspring SNPs. The second strategy is to first
test each offspring SNP using only stage-I maternal geno-
type data (see Section 2.2.1 for the test statistic), and then
SNPs selected from this first-stage analysis are reassessed
using genotype data from all mothers and their children. To
calculate the power of the first strategy, let SmI and SmJ be
the respective score statistics of maternal tests using data
from stage I and both stages. Let Sc be the score statistic
of the OGE, which used maternal and offspring genotype
data for all cases and controls. Let Sm be the score statistic
of the MGE based only on the maternal data for all cases
and controls. The power of this three-stage design was cal-
culated as p(|SmI | > cI , |SmJ | > cJ , |Sc| > c3) = p(|Sc| >
c3|||SmI | > cI , |SmJ | > cJ)p(|SmI | > cI , |SmJ | > cJ), where
the conditional probability was approximated as the condi-
tional probability p(|Sc| > c3|||Sm| > cm). The critical value
c3 can be determined in a straightforward manner. The crit-
ical value cm is determined as z(1−10−7/2) = 5.33, assuming
that 500k maternal SNPs are evaluated.

3. DESIGN OF SIMULATION STUDIES

We performed extensive simulation studies to evaluate
the type-I error rate and power of our imbedded one-stage
and two-stage designs in the presence or absence of mater-
nal effects. All tests were conducted at a type-I error rate
10−7 under the marginal model (2) with β0 = −3.5 and
β1 = 0.43, unless otherwise specified. We used 1,000 cases
and 1,000 controls in all simulations, and the MAF of the
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risk SNP was 0.25. The simulation was repeated 5,000 times
for assessing type-I error rates and 1,000 for assessing power.
We examined the type-I error rates for testing OGEs in the
presence of maternal effects, considering a simple scenario
where the true penetrance function was the marginal mater-
nal model (1), but the effect of offspring genotype Gc was
tested assuming the (incorrect) model (2). In addition, we
assessed the power for testing OGEs using only maternal
genotype data in the absence of maternal effects at type-I
error rates of 10−7, 10−4, and 0.05, where the true pen-
etrance model was assumed to be the marginal offspring
model (2). Assuming penetrance model (2), we also com-
pared the power of the two proposed approaches to adjust-
ing for maternal effects.

4. RESULTS

4.1 Cost-effective one-stage designs
for testing offspring genotypes

Figure 1 displays the power for testing OGEs as a func-
tion of proportions of genotyped case and control children
(πcase and πcontrol). Not surprisingly, the power would in-
crease with both increasing πcase and πcontrol. Interestingly,
when we increased πcase at a fixed value of πcontrol, the
power improvement was much more dramatic compared to
that with the same increase in πcontrol at the same fixed
value of πcase. For example, with πcontrol = 80%, increas-
ing πcase from 20% to 40% resulted in 24% power improve-
ment. But with πcase = 80%, increasing πcontrol from 20%
to 40% resulted in less than 5% power improvement. Thus,
our results indicate that it is desirable to genotype as many
case children as possible. To achieve 80% power for testing
a multiplicative OGE in this simulation setup, multiple de-
sign strategies can be considered as suggested in Figure 1,
but it appeared to be most cost effective to genotype 87%
case children without genotyping any control children. This
would lead to a greater than 50% reduction in the cost of
genotyping offspring.

Table 1 presents the type-I error rate and power of dif-
ferent design options identified from Figure 1 for testing off-
spring risk SNPs with different MAFs. For comparison, we
also included the power using the Armitage trend test with-
out incorporating the maternal data, assuming that all chil-
dren were genotyped (the row “Standard”). The row with
πcase = πcontrol = 1 is the power calculated using our score
statistic with all case-control mother-child pairs genotyped.
We observed that the type-I error rate was close to the nom-
inal level 0.05 in all scenarios. Both cost effective designs
we considered, which were defined by (πcase, πcontrol) =
(0.87, 0) and (πcase, πcontrol) = (0.80, 0.50), had a power
similar to the “Standard” analysis irrespective of the MAF
of the risk allele. Of course, genotyping all children would
lead to around a 15% power increase compared to the two
cost-effective designs, but at the expense of more than 50%
of increase in the genotyping cost for the children.

Figure 1. The power of one-stage imbedded design for testing
marginal multiplicative offspring genotype effect. The

penetrance model was
log p(Y = 1|Gm, Gc) = −3.5 + 0.43Gc, the risk SNP MAF

was 0.25, and 1, 000 case mother-child pairs and 1, 000
control mother-child pairs were used. The test was performed
at the significance level 10−7. Each color line corresponds to

a different proportion (πcontrol) of genotyped children of
control mothers.

Table 2 presents the number of case mother-child pairs
(assuming an equal number of control mother-child pairs)
required to achieve a power 80% at different cost-effective
design options and MAFs of the risk SNP. We also con-
sidered sample size requirements with complete genotyping,
and with or without exploiting maternal genotype data (the
rows corresponding to “πcase = πcontrol = 1” and “Stan-
dard”). Similar to Table 1, it requires a similar number of
subjects for the “Standard” method with full genotyping
and for the two cost-effective designs. For example, to test a
maternal SNP with MAF 0.20 and multiplicative odds ratio
1.54 at 80% power, 1,148 case pairs are required. To test the
corresponding offspring SNP with the same effect size, one
would only need to genotype 87% of case children.

4.2 Type-I error rates and power for testing
OGEs in the presence or absence
of MGEs assuming a one-stage design

Figure 2 presents type-I error rates for testing OGEs. The
phenotype data was generated from the marginal maternal
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Table 1. Type-I error ratea and power for testing offspring genotype effectsb

Minor allele frequency of the risk SNP
βc

1 πcase πcontrol 0.05 0.10 0.15 0.20 0.25 0.35 0.50

1.00 1.00 0.043 0.045 0.051 0.049 0.053 0.053 0.052
0a 0.87 0.00 0.057 0.053 0.054 0.050 0.048 0.052 0.051

0.80 0.50 0.055 0.051 0.049 0.053 0.047 0.053 0.052

Standardd 0.018 0.177 0.440 0.657 0.791 0.901 0.920
1.00 1.00 0.043 0.335 0.666 0.851 0.931 0.978 0.986

0.43b 0.87 0.00 0.020 0.190 0.459 0.673 0.801 0.906 0.925
0.80 0.50 0.020 0.187 0.455 0.671 0.801 0.908 0.930

aThe type-I error rate were calculated at the nominal level 0.05 using the same setting as that for Figure 1.
bThe power calculations were performed using the same setting as that for Figure 1.
cThe log odds ratio of the multiplicative offspring genotype effect.
dPower was calculated assuming that all children were genotyped but maternal genotype data was not used in the test statistic.

Table 2. Number of case mother-child pairs required for testing offspring genotype effectsa

Minor allele frequency of the risk SNP
πcase πcontrol 0.05 0.1 0.15 0.2 0.25 0.35 0.5

Standardb 3640 1961 1412 1148 1000 858 828
1.00 1.00 2920 1590 1150 940 820 710 675
0.87 0.00 3540 1925 1396 1142 1000 863 832
0.80 0.50 3570 1934 1400 1144 1000 863 824
aThe calculations were performed exactly in the same setting as that for Figure 1.
bPower was calculated assuming that all children were genotyped but maternal genotype data was not used in the test statistic.

penetrance model log p(Y = 1|Gm, Gc) = −3.5 + 0.43Gm,
but in the analysis of offspring genotypes, we assumed a
mis-specified penetrance model log p(Y = 1|Gm, Gc) =
γ0+γ1G

c. The three panels from the left to right in Figure 2
display results corresponding to significance levels 10−7,
10−4, and 0.05, respectively. It appeared that the smaller
the proportion of genotyped case children was, the more
serious the inflation in the type-I error rate for testing the
OGE was. For example, at the significance level 10−7, if only
20% of case children were genotyped, the empirical type-I
error rate was 0.07 ∼ 0.20 regardless of the proportion of
genotyped control children. The inflation was serious even
when the proportion of genotyped case offspring was close to
1. For example, the type-I error rate was about 0.002 when
all mother-child pairs were genotyped, but 0.002 is much
greater than the nominal significance level 10−7.

Figure 3 presents power for testing OGEs when the ma-
ternal effect is adjusted for using the two proposed ap-
proaches assuming a one-stage design. Here, we used exactly
the same parameter setting as that for Figure 1, where no
maternal effect was present. In the left panel, the test was
stratified on the maternal genotype. In the right panel, a
multiplicative maternal effect was adjusted for in the pen-
etrance model. Both approaches appeared to maintain cor-
rect type-I error rates, and we omit results here. The first
approach appeared to have lower power due to greater de-
grees of freedom, and the power loss could be as high as
20% compared with the unadjusted analysis. For the design

corresponding to πcase = 0.87 and πcontrol = 0, compared
with the unadjusted analysis, the power loss for the first
approach was about 20%, and that for the second approach
was about 4%.

4.3 Power of imbedded two-stage designs
for testing OGEs

Figure 4 presents the power of our proposed imbedded
two-stage design at different proportions of genotyped case
and control children in stage I. We used the same simu-
lation setup as that for Figure 1. In addition, we chose the
proportion of subjects included in stage I to be π1 = 36.63%
and the proportion of markers genotyped in stage II to be
πm = 0.83%. The ratio of per-SNP genotyping cost be-
tween stages II and I was chosen to be 10. Assuming that
none of the 500k maternal SNPs were associated with the
phenotype, we assessed the power for identifying an off-
spring risk SNP with the MAF 0.25 and penetrance function
log p(Y = 1|Gm, Gc) = −3.5+0.43Gc. For our imbedded de-
sign, the critical points for calculating power in stages I and
II (cI and cJ) were 2.641 and 5.285, respectively. These val-
ues were the same as those for testing the maternal genome,
at which the joint analysis of stages I and II data has 80%
power. Similar to the one-stage design, our results suggest
that one only needs to genotype about 87% of case chil-
dren in stage I in order to achieve 80% power for identifying
the risk offspring SNP. Table 3 presents numbers of case
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Figure 2. Empirical type-I error rates for testing marginal multiplicative offspring genotype effect assuming a one-stage design.
The true penetrance model was the marginal multiplicative maternal model log p(Y = 1|Gm, Gc) = −3.5 + 0.43Gm, and the

MAF of Gm was 0.25. We used 1, 000 case mother-child pairs and 1, 000 control mother-child pairs. Each color line in all
three panels corresponds to a different proportion of genotyped children of control mothers, and the three panels from left to
right corresponds to significance levels 10−7, 10−4, and 0.05. The empirical type-I error rate was obtained using simulation

that was repeated 5000 times.
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Figure 3. Power for testing offspring genotype effects after adjusting for maternal effects. The true penetrance model was
log p(Y = 1|Gm, Gc) = −3.5 + 0.43Gc, and the MAF was 0.25. 1000 case mother-child pairs and 1000 control mother-child

pairs were used. The left and right panels correspond to the test stratified on maternal genotypes and that adjusting for a
multiplicative maternal effect. Each color line corresponds to a different proportion of genotyped children of control mothers.

The test was performed at significance level 10−7.

mother-child pairs required to achieve power 80% under the
imbedded design with π11 = 0.87 and π10 = 0. In the same
scenario, the power of the two alternative two-stage design
strategies (see the methods section) were 0.22 and 0.02, re-
spectively.

5. DISCUSSION

In the present study, we investigated cost-effective geno-
typing designs for GWAs and candidate-gene studies involv-
ing mother-child pairs. The designs we proposed for study-
ing the offspring genome are nested within a case-control
study where the maternal genotype data is available. Our
design could achieve a power similar to that for examining
the maternal genome but at a significantly reduced geno-
typing cost. This reduction owes to the fact that our test
statistic incorporates available maternal genotype data for
testing OGEs and consequently has an improved power.
If a one-stage design is adopted for assessing the mater-
nal genome, then our cost-effective design for genotyping
the offspring could save more than 50% of the genotyping
cost compared to the design that genotypes all offspring. In
a two-stage design where the ratio of per-SNP genotyping
cost between stages II and I is 10, the imbedded two-stage

design for the offspring genome could reduce the cost by
{π1 + 10πm(1 − π1)}−1{π1(π11 + π10)/2 + 10πm(1 − π1)}.
For example, with π11 = 0.87, π10 = 0, π1 = 0.366, and
πm = 0.00828, the saving is close to 50%. In practice, one
can genotype all children of case mothers in a one-stage de-
sign or all children of stage-I case mothers in a two-stage
design. This simple design could maintain a power simi-
lar to that for screening the maternal genome but at more
than 40% reduction in the genotyping cost. The same de-
sign can naturally be generalized to the study of neonatal
outcomes, where a study of the maternal genome could be
nested within that of the offspring genome.

It has long been recognized that MGEs and OGEs could
confound each other. We studied the inflation in type-I er-
ror rates for testing OGEs in the setting of our proposed
imbedded cost effective design. We observed an interesting
phenomenon that the inflation became more serious as the
proportion of genotyped children of case mothers decreased.
We found that the analysis that adjusted for a multiplicative
maternal effect in the penetrance model appeared to have
a power similar to that of the unadjusted analysis in the
absence of maternal effects. In general, we recommend that
MGEs be ignored when designing a study. For data analy-
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Table 3. Number of case mother-child pairs required in the imbedded two-stage design for screening the offspring genome
(π11 = 0.87, π10 = 0)

Minor allele frequency of the risk SNP
Odds ratio 0.05 0.15 0.25 0.35 0.50

1.20 −a 9000 6000 5000 4800
1.50 4200 1600 1200 1000 1000
1.80 1900 750 550 480 480
2.00 1300 500 400 350 350
aThe required number was unrealistically large.

Figure 4. Power of the two-stage imbedded design for
screening the offspring genome. The penetrance model was

log p(Y = 1|Gm, Gc) = −3.5 + 0.43Gc, and the MAF of the
risk SNP was 0.25. 1000 case mother-child pairs and 1000
control mother-child pairs were used. It was assumed that
36.63% of case and control mothers were genotyped in
stage I, and 0.83% of SNPs were genotyped in stage-II
mothers and children. Each color line corresponds to a

different proportion of genotyped children of stage-I control
mothers. The test was performed at the significance

level 10−7.

sis, an unadjusted analysis could be performed first. Then
only significant results would be re-examined with adjusted
analysis to avoid unnecessary loss of statistical power.

Our design was proposed for assessing marginal OGEs.
We did not extensively examine the power of our design
for detecting maternal-offspring gene-gene interactions. But
we observed in limited simulation studies that genotyping

only children of case mothers could lead to unsatisfactory
power for detecting maternal-offspring gene-gene interac-
tions. The design that genotypes a proportion of children
of control mothers usually has a higher power. Future work
is warranted for developing cost effective designs for detect-
ing mother-offspring gene-gene interactions.

APPENDIX A. POWER CALCULATION
FOR ONE-STAGE

AND TWO-STAGE DESIGNS
UNDER A MARGINAL
OFFSPRING MODEL

We here focus on the method for power calculation un-
der the two-stage design, as is readily seen below, that un-
der the one-stage design is a special case. We assume an
equal number of case and control pairs, n, to simplify the
notation. Following notations in the text, a proportion of
π11 (π10) children are genotyped for nπ1 (nπ1) stage-I case
(control) mothers. The number of available stage II children
is n{2−π1(π11+π10)}. Suppose mπc markers are genotyped
in stage II children. As mentioned in the text, we use slightly
different test statistics for analyzing stage I and stage II off-
spring data. For stage I, all available maternal and offspring
genotype data is utilized. The likelihood function, denoted
as LI(β1, pa; Gc, Gm), is provided in Section 2.2. Denote the
corresponding score statistic as SI . For stage II, we assume
that only offspring genotype is available. Thus, the score
statistic using stage-II data only is based on a slightly dif-
ferent likelihood:

LII(β1, pa; Gc) =
n21∏
i=1

eβ1Gc
i p(Gc

i |Yi = 0)∑
Gc eβ1Gcp(Gc|Y = 0)

×
n20∏
j=1

p(Gc
j |Yj = 0),

where n20 = n21 = n{1 − π1(π11 + π10)/2} is
the number stage-II case or control children. Denote
the resultant statistic as SII . For the joint analysis
of stage I and stage II data in the sense of (Skol
et al., 2006), we maximize the joint likelihood func-
tion LJ(β1, pa) = LI(β1, pa; Gc, Gm)LII(β1, pa; Gc). Let

Design studies of mother-child pairs 551



lJβ1
(p̂a) = ∂ log LJ(β1 = 0, p̂a)/∂β1. The test of hy-

pothesis β1 = 0 is based on the statistic SJ =
lJβ1

(p̂a)/var1/2{lJβ1
(p̂a)}, which is a standard normal random

variable. We calculate the power as pha(|SI | ≥ cI , |SJ | ≥
cJ). The critical points cI and cJ are determined based on
ph0(|SI | ≥ cI) = πm and ph0(|S1| ≥ c1, |SJ | ≥ cJ) = α. For
testing 500k SNPs, α could be 10−7. The subscripts ha and
h0 denote that the calculation is under the alternative and
null hypotheses, respectively.

Below we describe how to calculate the joint distribu-
tion of (SI , SJ), which is used for calculating the power
pha(|SI | ≥ cI , |SJ | ≥ cJ). First, we obtain score functions
for β1, lIβ1

(β1 = 0, p̂a) and lII
β1

(β1 = 0, p̂a), and those for pa,
lIpa

(β1 = 0, p̂a) and lII
pa

(β1 = 0, p̂a), separately for stage I and
stage II data. Below, n21 and n20 are the respective numbers
of stage II cases and controls, nc

1 and nc
0 are the respective

numbers of complete stage I case and control mother-child
pairs, and n1 and n0 are the total respective numbers of
stage I cases and controls. We omit “β1 = 0” in all score
functions.

lIβ1
(pa) =

nc
1∑

i=1

{Gc
i − E(Gc)} +

n1∑
i=nc

1+1

{E(Gc|Gm
i ) − E(Gc)}

lII
β1

(pa) =
n21∑
i=1

{Gc
i − E(Gc)}

lIpa
(pa) =

nc
1∑

i=1

[
∂ log p(Gc

i , G
m
i )

∂pa
− E

{
∂ log p(Gc)

∂pa

}]

+
n1∑

i=nc
1+1

[
E

{
∂ log p(Gc, Gm

i )
∂pa

∣∣∣∣ Gm
i

}

− E
{

∂ log p(Gc)
∂pa

}]

+
nc

0∑
j=1

∂ log p(Gc
j , G

m
j )

∂pa
+

n0∑
j=nc

0+1

∂ log p(Gm
j )

∂pa

lII
pa

(pa) =
n21∑
i=1

[
∂ log p(Gc

i )
∂pa

− E
{

∂ log p(Gc)
∂pa

}]

+
n20∑
j=1

∂ log p(Gc
j)

∂pa

Our test statistics for the stage I and joint analyses are con-
structed based on lIβ1

(p̂I
a) and lJβ1

(p̂a) = lIβ1
(p̂J

a ) + lII
β1

(p̂J
a ),

where p̂I
a and p̂J

a are solutions to equations lIpa
(pa) = 0 and

lJpa
(pa) = 0, respectively. To obtain their asymptotic vari-

ance, we perform the following Taylor series expansion:

lIβ1
(p̂I

a) ≈ lIβ1
(pa) −

∂lIβ1
(pa)

∂pa

{
∂lIpa

(pa)
∂pa

}−1

lIpa
(pa),

lJβ1
(p̂J

a ) ≈ lJβ1
(pa) −

∂lJβ1
(pa)

∂pa

{
∂lJpa

(pa)
∂pa

}−1

lJpa
(pa).

Recognizing that −∂lIpa
(pa)/∂pa = var{lIpa

(pa)},
∂lIβ1

(pa)/∂pa = cov{lIβ1
(pa), lIpa

(pa)}, and similar re-
sults for lJpa

, we can obtain variances for lJβ1
(p̂J

a ) and lIβ1
(p̂I

a)
(see below for details). Based on these Taylor expansion
results, we can obtain the covariance of the two score
functions. Thus, we obtain the joint distribution of the two
test statistics SI and SJ , which follows a bivariate normal
distribution. The power can then be calculated.

Let l = 0, 1 denote case-control status and k = I, II
denote stages I and II. Define nklc

ij =
∑nl

s=1 Igm
s =i,gc

s=j ,
nklc−

j =
∑nl

s=1 Igm
s =j , and nkl

j =
∑nl

s=1 Igc
s=j , i, j = 0, 1, 2.

Under the null hypothesis, pa can be estimated as

p̂I
a =

n∗
I

n#
I

and p̂J
a =

n∗
I + n∗

II

n#
I + n#

II

where

n∗
I = n11c

01 + n11c
10 + n11c

11 + 2(n11c
12 + n11c

21 ) + 3n11c
22

+ n11c−
1 + 2n11c−

2 + n10c
01 + n10c

10 + n10c
11

+ 2(n10c
12 + n10c

21 ) + 3n10c
22 + n10c−

1 + 2n10c−
2 ,

n#
I = 3(n11c

00 + n11c
01 + n11c

10 ) + 2n11c
11 + 3(n11c

12

+ n11c
21 + n11c

22 ) + 2(n11c−
0 + n11c−

1 + n11c−
2 )

+ 3(n10c
00 + n10c

01 + n10c
10 ) + 2n10c

11 + 3(n10c
12

+ n10c
21 + n10c

22 ) + 2(n10c−
0 + n10c−

1 + n10c−
2 ),

n∗
II = n21

1 + 2n21
2 + n20

1 + 2n20
2 ,

n#
II = 2(n21

0 + n21
1 + n21

2 ) + 2(n20
0 + n20

1 + n20
2 ).

We verified that the two estimators are consistent under the
null hypothesis.

Let cI
1 = limn1→∞ n−1

1 ∂lIpa
/∂pa, cJ

1 =
limn→∞ n−1∂lJpa

/∂pa, cI
2 = limn1→∞ n−1

1 ∂lIβ1
/∂pa, and

cJ
1 = limn→∞ n−1∂lJβ1

/∂pa. With the above estimated MAF
p̂I

a and p̂J
a , we obtained the correlation between lIβ1

(p̂I
a) and

lJβ1
(p̂J

a ), Cor{lIβ1
(p̂I

a), lJβ1
(p̂J

a )}, as follows under the null:

√
π1

√√√√√ limn1→∞
1

n1
V ar(lIβ1

(pa)) + (cI
2)2

cI
1

limn1→∞
1
nV ar(lJβ1

(pa)) + (cJ
2 )2

cJ
1

,

which can be further simplified as

√
π1

√√√√√√
1
2 (1 + 3π11)pa(1 − pa) + (1+π11)2

(π11+π10)− 4+(π11+π10)
pa(1−pa)

(2 − 3π1(1−π11)
2 )pa(1 − pa) + (2−π1(1−π11))2

π1(π11+π10)− 4+π1(π11+π10)
pa(1−pa)

.

Under the alternative hypothesis, we can not obtain a simi-
larly simple formula. Furthermore, under the alternative, p̂I

a
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and p̂J
a above are no longer unbiased estimators of pa. We

thus calculated Cor{lIβ1
(p̂I

a), lJβ1
(p̂J

a )} as

Cov{lIβ1
(p̂I

a), lJβ1
(p̂J

a )}√
V ar{lIβ1

(p̂I
a)}V ar{lJβ1

(p̂J
a )}

.

Let p1(Gm, Gc) = p(Gm, Gc|Y = 1), p0(Gm, Gc) =
p(Gm, Gc|Y = 0), p1(Gm) = p(Gm|Y = 1), p0(Gm) =
p(Gm|Y = 0), p1(Gc)=p(Gc|Y = 1), p0(Gc)=p(Gc|Y = 0).
These probabilities represent the proportion of genotypes in
the real data. Then, the covariance Cov{lIβ1

(p̂I
a), lJβ1

(p̂J
a )}

can be calculated as

Cov

{
lJβ1

(pJ
a ) − cJ

2

cJ
1

lJpa
(pJ

a ), lIβ1
(pI

a) − cI
2

cI
1

lIpa
(pI

a)
}

= Cov{lIβ1
(pI

a), lJβ1
(pJ

a )} − cJ
2

cJ
1

Cov{lJpa
(pJ

a ), lIβ1
(pI

a)}

− cI
2

cI
1

Cov{lIpa
(pI

a), lJβ1
(pJ

a )}

+
cI
2

cI
1

cJ
2

cJ
1

Cov{lJpa
(pJ

a ), lIpa
(pI

a)},

where (nπ1)−1Cov{lIβ1
(pI

a), lJβ1
(pJ

a )} can be calculated as

∑
Gc

G2
cp

1(Gc) −
{∑

Gc

Gcp
1(Gc)

}2

+
∑
Gm

EpI
a
(Gc|Gm)EpJ

a
(Gc|Gm)p1(Gm)

−
{∑

Gm

EpI
a
(Gc|Gm)p1(Gm)

} {∑
Gm

EpJ
a
(Gc|Gm)p1(Gm)

}
.

Note that E(Gc|Gm) is a function of pa. Furthermore,
(nπ1)−1Cov{lJpa

(pJ
a ), lIβ1

(pI
a)} can be obtained as

∑
Gc,Gm

Gc

log ppJ
a
(Gc, Gm)
∂pa

p1(Gc, Gm)

−

⎧⎨
⎩

∑
Gc,Gm

log ppJ
a
(Gc, Gm)
∂pa

p1(Gc, Gm)

⎫⎬
⎭

{∑
Gc

(Gcp
1(Gc))

}

+
∑
Gm

log
∑

Gc ppJ
a
(Gc, Gm)

∂pa
EpI

a
(Gc|Gm)p1(Gm)

−
{∑

Gm

EpJ
a

log
∑

gc p(Gc, Gm)
∂pa

p1(Gm)

}

×
{∑

Gm

EpI
a
(Gc|Gm)p1(Gm)

}
.

Similarly, we calculate (nπ1)−1Cov{lIpa
(pI

a), lJβ1
(pJ

a )} as

∑
Gc,Gm

Gc

log ppI
a
(Gc, Gm)
∂pa

p1(Gc, Gm)

−

⎧⎨
⎩

∑
Gc,Gm

log ppI
a
(Gc, Gm)
∂pa

p1(Gc, Gm)

⎫⎬
⎭

×
{∑

Gc

Gcp
1(Gc)

}

+
∑
Gm

log
∑

Gc ppI
a
(Gc, Gm)

∂pa
EpJ

a
(Gc|Gm)p1(Gm)

−
{∑

Gm

(EpI
a

log
∑

Gc p(Gc, Gm)
∂pa

p1(Gm))

}

×
{∑

Gm

(EpI
a
(Gc|Gm)p1(Gm))

}
.

Lastly, we calculate (nπ1)−1Cov{lIpa
(pI

a), lJpa
(pJ

a )} as

∑
Gc,Gm

log ppJ
a
(Gc, Gm)
∂pa

log ppI
a
(Gc, Gm)
∂pa

p1(Gc, Gm)

−

⎧⎨
⎩

∑
Gc,Gm

log ppI
a
(Gc, Gm)
∂pa

p1(Gc, Gm)

⎫⎬
⎭

×
{∑

Gc

log ppJ
a
(Gc, Gm)
∂pa

p1(Gc, Gm)

}

+
∑
Gm

log
∑

Gc ppI
a
(Gc, Gm)

∂pa

log
∑

Gc ppJ
a
(Gc, Gm)

∂pa
p1(Gm)

−
{∑

Gm

log
∑

Gc p(Gc, Gm)
∂pa

p1(Gm)

}

×
{∑

Gm

log
∑

Gc ppJ
a
(Gc, Gm)

∂pa
p1(Gm)

}
.

For the score test of the maternal effect with geno-
type data available for all cases and controls, we obtain
Cor{lIβ1

(p̂I
a), lJβ1

(p̂J
a )} =

√
π1 under the null hypothesis.

Note that pa can be estimated as

p̂a =
1
4n

[
n1∑
i=1

(IGm
i

=1 + 2IGm
i

=2)
n0∑
i=1

(IGm
i

=1 + 2IGm
i

=2)

]
.

The score statistic also takes a very simple form:

lβ1(β1 = 0, pa) =
n1∑
i=1

Gm
i − n12p̂a

=
n1∑
i=1

Gm
i − 1

2

[
n1∑
i=1

(IGm
i

=1

+2IGm
i

=2) +
n0∑
i=1

(IGm
i

=1 + 2IGm
i

=2)

]

Under the alternative hypothesis, the variance of the score
function lβ1(β1 = 0, pa), n−1

1 V ar{lβ1(β1 = 0, pa)}, can also
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be greatly simplified:

1
4
p1
1(1 − p1

1) + p1
2(1 − p1

2) +
1
4
p0
1(1 − p0

1) + p0
2(1 − p0

2)

− p1
1p

1
2 − p0

1p
0
2,

where pk
i = p(Gm = i|Y = k) with k = 0, 1 indicating

case-control status and i = 0, 1, 2 being the genotype score.
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