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Motivation: Predicting functional sites in kinases is an im-
portant problem in biology. Both the functional sites and the
relationship among the amino acids within the sites need to
be understood. An algorithm is developed for kinase func-
tional site prediction using amino acid sequence data based
on hierarchical stochastic language (HSL) modelling.

Results: Our method is validated by using two complemen-
tary approaches. Firstly, the predicted functional sites using
the HSL were compared with experimentally verified func-
tional sites including the patterns in PROSITE, the contact-
ing sites in the Protein Data Bank (PDB), and the domains
in Pfam. Compared to the patterns in PROSITE and the
contacting sites in PDB, the overall average recall/precision
of the HSL model was 83.5% / 23.0% and 66.1% / 79.9%,
respectively. Compared to Pfam, 90% of the predicted func-
tional sites were parts of domains with names containing the
substring “kinase”. Secondly, 10-fold cross-validation was
used to study the kinase function prediction accuracy of the
HSL. The HSL achieved both high sensitivity (94.7%) and
specificity (94.0%) compared to 94.5% and 85.8%, respec-
tively, for MEME. The HSL model automatically detected
kinase sub-families. The identified sub-families were consis-
tent with known phylogenetic trees of the kinase sequences.
Therefore, the HSL was applicable to kinase sequences with
heterogeneous subsets sharing the same catalysis function.

Availability and Supplementary information: The soft-
ware and supplementary materials are available at
http://www.math.pku.edu.cn/teachers/dengmh/HSL

Keywords and phrases: Kinase, Functional sites, Hier-
archical stochastic language (HSL).

1. INTRODUCTION

Kinases are a ubiquitous group of enzymes participating
in a variety of cellular pathways. They catalyze the transfer
of the terminal phosphate group from adenosine triphos-
phate (ATP) to an acceptor, which can be a small molecule,
lipid, or protein substrate. Because of their universal role
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in cellular processes, the classification of kinases and the
prediction of their functional sites are very important in bi-
ology.

Several databases of kinase functional sites based on ex-
perimental data are available. PROSITE [1] provides biolog-
ically significant sites in regular expression forms (or pat-
terns). The Protein Data Bank (PDB) [2] contains the 3-
dimensional coordinates of all amino acid atoms and some
binding atoms, which are direct evidence for the presence
of functional sites. However, only a small number of kinase
functional sites are available in PROSITE and PDB due to
difficulties in biological experiments.

Several computational approaches for functional site pre-
diction have been developed. Homology searches have been
widely used in motif finding. BLOCKS [3] and MEME [4]
generate a position specific scoring matrix by Gibbs sam-
pling and an expectation-maximisation (EM) algorithm, re-
spectively. PFAM [5] associates protein function with pro-
tein domains identified by hidden Markov models.

The available methods have two major drawbacks. First,
the homology assumption does not always hold. Two types
of kinase families, homologies and analogies [6], are present.
Kinases of homology families have a common ancestor and
similar functional sites, while in analogy families, kinases
of similar functions do not inherit their function similar-
ity from common ancestry, but from convergent evolution.
Homology-based methods can only identify motifs of the
largest sub-family in an analogy family. Second, the avail-
able motif finding approaches often neglect potential inter-
actions among the active sites, which are important in per-
forming catalysis functions. Better models for kinase func-
tional sites should be able to distinguish the potential mixed
kinase sub-families and to consider the interdependency of
the amino acids within each motif.

In this paper, we introduce a hierarchical stochastic lan-
guage (HSL) model for the identification of functional sites
in kinase families. The model integrates the advantages of
the k-tuple approach for motif finding with the syntax. The
HSL first finds keywords by consensus of k-tuples that char-
acterize the functional sites, and then finds a stochastic
grammar to constitute different types of sentences for each
kinase functional family. The model automatically detects
kinase sub-families.
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We built models for 81 kinase functional families each
containing at least 20 sequences from Swiss-Prot. Compar-
ing with patterns in PROSITE, the HSL achieved 83.5%
recall and 23.0% precision. Comparing with PDB patterns,
the HSL achieved 66.1% recall and 79.9% precision. For se-
quence classification, 63 families were found to have a unique
model, 14 families had two sub-families, and 4 families had
three sub-families. These sub-families are consistent with
their different branches of phylogenetic trees and signifi-
cantly increased classification sensitivity. Overall, the HSL
model achieved both high sensitivity (94.7%) and specificity
(94.0%) in 10-fold cross-validation classification, which out-
performed MEME, that with sensitivity 94.5% and speci-
ficity 85.8%.

2. MATERIALS AND METHODS

2.1 Materials

In this paper, the functional sites of kinase families cor-
responding to the Swiss-Prot [12] sequences were stud-
ied. Kinase sequences were downloaded from Swiss-Prot
(UniProtKB/Swiss-Prot Release 50.0 of 30 May 2006) and
classified by the ENZYME database [13]. In the ENZYME
database, kinases were classified according to their Enzyme
Commission (E.C.) numbers [14] based on the chemical re-
actions they catalyze. In order to study the functional sites
in a kinase family using any statistical approach, it is nec-
essary that the number of sequences is relatively large. In
this study, only the kinase families containing at least 20
sequences excluding fragments were selected. 81 kinase fam-
ilies containing 11,115 sequences were selected and used for
the following analysis.

We compared our results with the structures from PDB
(19 January 2005) and the patterns from the PROSITE
database (Release 19.34 of 5 September 2006). PDB provides
resources for the structures of biological macromolecules and
their relationships to sequences and functions. PROSITE
consists of biologically significant patterns that help to reli-
ably identify known protein families for new sequences. Fig-
ure 1 shows the number of kinase families in each data source
and their overlaps. The result were also validated based on
the domains from the SwissPfam database (Version 21.0 of
November 2006) [5]. SwissPfam contains the domain struc-
ture of SWISSPROT and TrEMBL proteins according to
Pfam.

2.2 HSL modelling

An HSL model for identifying the functional sites in a ki-
nase family was developed. In the general language model,
the patterns in a family were viewed as being composed of
simple subpatterns [15]. The patterns were viewed as sen-
tences belonging to a language, the subpatterns were viewed
as the alphabets of the language, and the sentences were gen-
erated from the subpatterns according to a grammar. Thus,
a large collection of complex patterns could be described

Figure 1. The numbers of kinase families with overlaps in
Swiss-Prot, PDB and PROSITE.

by a small number of subpatterns and grammatical rules.
The stochastic language model assigned probabilities to the
grammatical rules [16]. The HSL model in this study com-
prises the keywords’ stochastic language models built on
amino acids and the sentences’ stochastic language model
for describing the interrelationships among the keywords.
The details of constructing the HSL are as follows.

Taking the ancestor of the family as the starting point
of the language, a stochastic grammar was defined for each
functional family. A stochastic language model is a quintu-
plet {E, S, R, P, T}, where E is a set of symbols (keywords:
W1, W2, W3, etc.); S is the starting state (the family’s start-
ing state consisting of some keywords in E); R is the set
of grammatical rules (the evolutionary rules, which indicate
variants, such as mutations, insertions and deletions, allowed
in sequences); P is the probability of different rules in R; and
T is the maximum number of variants allowed from S. For a
sequence s consisting of symbols in E, {E, S, R, P} gives a
probability that s can be generated by the stochastic gram-
mar for this family and T is a threshold for family classifi-
cation. Figure 2 shows the stochastic language model start-
ing with S=“W1W2W3W4W5W6” while “W1W2W4W5W6”,
“W1W2W7W3W4W5W6”, “W1W2W3W8W5W6”, etc. can be
generated from S.

A stochastic language model was also built for each key-
word by taking 20 amino acids as symbols and the consensus
motif as the starting state. The same quintuplet structure
described above for the sentences can be used. The hierar-
chical stochastic model consists of the keyword’s stochastic
model and the sentence’s stochastic model.

2.3 Modelling the keywords

For the HSL model to work well, it is essential to de-
fine the keywords correctly. For a given kinase family, the
sequences within the family are referred to as positive se-
quences and all sequences from other families as negative
sequences. The keywords of a kinase family should be over-
represented among the positive sequences. Three steps were
used to identify the keywords for the family. First, the
over-represented k-tuples within the positive sequences were
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Figure 2. The stochastic language model. E={W1, W2, W3,
W4, W5, W6, W7, W8, W9, W10}, S=“W1W2W3W4W5W6”

is the standard sentence. Double-headed solid arrows
represent mutations, double-headed dashed arrows represent

insertions, and single-headed dashed arrows represent
deletions (keyword W3 can be deleted).

found. Second, the over-represented k-tuples were concate-
nated to form words. Third, the words were aligned to all the
sequences. The keywords were defined as the words whose
mean alignment score to the positive sequences is signifi-
cantly higher than that to the negative sequences.

The 20 amino acids were used as the symbol set Ew.
To identify the starting keywords Sw, the over-represented
k-tuples were first found. However, k cannot be chosen arbi-
trarily. If k is too small, say k = 2, each 2-tuple is expected
to appear in every sequence of 400 residues in a random se-
quence. When k is too large, say k ≥ 5, the frequency of
the k-tuple in the sequences of the family may have large
fluctuations. Empirical exploration of the data showed that
k = 4 is appropriate for the particular problem. There are
a total of 160,000 (204) quadruplets. For each quadruplet
qi(i = 1, 2, . . . , 160, 000), the number of positive sequences
containing qi were counted. The Nt most frequent quadru-
plets were chosen as candidate quadruplets.

Given a candidate quadruplet, the frequency of its occur-
rence within the positive samples was compared with that
within the negative samples using a chi-square score with
Yates correction [17] computed by

χ2 =
N(|ad − bc| − N/2)2

(a + b)(c + d)(a + c)(b + d)
,

where N = a + b + c + d; a and b are the numbers of oc-
currences of the quadruplet and other quadruplets in the
positive sequences, respectively; and c and d are defined as
for a and b but for the negative sequences. A candidate
quadruplet was referred to as significant if the p-value (with
Bonferroni correction) is less than 0.05. The significant can-
didate quadruplets were considered as parts of the starting
words and concatenated to construct the starting words as
in algorithm 1.

Algorithm 1 Gready Concatenate(A)
Input: An array A of significant candidate quadruplets with

frequencies within the positive samples.
Output: An array of starting keywords.

1: sort A based on frequencies in descending order.
2: for i = 1 to length(A)-1 do
3: for j = i + 1 to length(A) do
4: F1 = first three residues of A[i]
5: L1 = last three residues of A[i]
6: F2 = first three residues of A[j]
7: L2 = last three residues of A[j]
8: if F1 == L2 then
9: Anew = A[j] + (A[i] - F1)

10: remove A[i] and A[j] from A
11: append Anew to the end of A
12: break
13: else if F2 == L1 then
14: Anew = A[i] + (A[j] - F2)
15: remove A[i] and A[j] from A
16: append Anew to the end of A
17: break
18: end if
19: end for
20: end for
21: return A

It was assumed that the positive sequences were gener-
ated from the starting words. To derive the generating rules,
the starting words were aligned with the positive sequences.
The grammatical rules Rw for the keyword model were
{insertion, deletion, mutation}. The probability of different
rules, Pw, was derived by aligning the starting words to the
positive sequence using the Smith-Waterman algorithm [18]
with the BLOSUM50 matrix [19] and a gap penalty of 8. The
effect of the gap penalty on the results was also studied. For
each starting word, the highest local alignment score with
each sequence in the training sets was obtained. A Wilcoxon
rank sum test was performed to test the hypothesis that the
alignment score with the positive sequences was higher than
the score with the negative sequences. A starting word was
referred to as a keyword if the p-value (with Bonferroni cor-
rection) was smaller than 0.05.

Fisher’s LDA (Linear Discriminate Analysis) [20] was
used to discriminate whether a positive sequence contains
a keyword Wi. For each Wi, the maximum number of vari-
ants allowed, Tw

i , was estimated by comparing the alignment
scores of the key word to the positive sequences with that for
the negative sequences. Let μi1 and μi2 be the mean align-
ment scores of the keyword to the positive set and negative
set, respectively. Let σi1 and σi2 be the corresponding stan-
dard deviations. The classifier’s threshold for the Wi was
defined as:

(1) Ti =
μi1σi2 + μi2σi1

σi2 + σi1
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If a sequence’s alignment score with Wi was higher than Ti,
we claimed that the sequence contains Wi.

2.4 Modelling the sentence grammar

For a given kinase family, the keywords were defined as in
the above section. The positive sequences were composed of
keywords interspersed with other nonessential amino acids
which were ignored in the following analysis. It was assumed
that the positive sequences descended from an ancestor se-
quence composed of all the keywords in a given order and
that the positive sequences were generated by deleting some
of the keywords. It was further assumed that the keywords
in the positive sequences had the same order as in the an-
cestral sequence. First the keyword order in the ancestor se-
quence was determined. The deleted keywords and the most
likely keyword order in the positive sequences were then de-
termined. Finally a score for a sequence to belong to the
kinase family was defined.

To determine the keyword order in the ancestor sequence,
the keywords were aligned to each of the positive sequences.
For n keywords Wi(i = 1, 2, . . . , n) and m positive sequences
SEQk(k = 1, 2, . . . , m), let POSik be the starting posi-
tion of the highest scored segment when Wi was aligned
with SEQk. Wi was referred to as occurring before Wj if∑m

k=1 sign(POSik − POSjk) < 0. The keywords were sorted
and the ancestor sentence Ss = W(1)W(2) . . . W(n) was then
defined.

Note that some keywords may be absent in some positive
sequences. It is also possible that the order of the keywords
in a particular sequence may not be the same as in the an-
cestor sequence. Therefore, it is not straightforward to find
the deleted keywords. The following approach was devel-
oped to find the deleted keywords and to give a score for
a sequence to be in the family. For keyword W(i), its dele-
tion probability pi was defined as the fraction of positive
sequences with keyword W(i) deleted. Since the deleted key-
words are not clear when the keywords are not in order, it is
not straightforward to calculate pi. An iterative algorithm
was developed to calculate pi and to determine the deleted
keywords in the positive sequences.

1. Initialize pi by p
(0)
i .

2. For each positive sequence, determine the deleted key-
words using a dynamic programming algorithm (2) to
maximize

(2)
n∑

i=1

[ui + 3 × log(1 − pi)] × Ii

where ui is the alignment score between the i-th key-
word W(i) and the sequence, Ii = 0 if the i-th keyword
is deleted and Ii = 1 otherwise.

3. Update pi by the fraction of sequences with keyword
W(i) deleted.

4. Repeat steps 2 and 3 until pi converges.

Note that the i-th keyword W(i) could still be deleted even
if ui ≥ Ti (the threshold defined in section 2.3) because of
the desired maximisation of equation 2. The second term
in the summand is an adjustment for the score of the i-th
keyword. If pi is close to 1 (most positive sequences do not
contain the keyword), then the adjustment is large. On the
other hand, if pi is small (most positive sequences contain
the keyword), then the adjustment is low. The constant 3
was used to be consistent with the definition of the BLO-
SUM50 matrix [19].

The scores for the negative sequences were also computed
using equation 2. By comparing the scores for the positive
sequences and those of the negative sequences, Fisher’s LDA
(linear discriminant analysis) can also be used to define a
threshold T s by equation 1. If the sequence score defined in
equation 2 was higher than T s, it was classified as belonging
to the function class.

Algorithm 2 Align Sentences

Input:
starting sentence W(1)W(2) . . . W(n);
keyword models {Ei, Si, Ri, Pi, Ti} (i = 1, 2, . . . , n);
a sequences SEQ for alignment;
deletion probability pi(i = 1, 2, . . . , n).

Output: overall matching score and matching flag of each key-
word.

1: let ci = 3 × log2 (1 − pi)(i = 1, 2, . . . , n)
2: let Ls be the length of SEQ
3: for i = 1 to n do
4: let Li be the length of W(i)

5: let H be the (Li + 1) × (Ls + 1) score matrix of local
alignment of W(i) and SEQ by the Smith-Waterman
algorithm

6: for j = 1 to Ls do
7: let u = max{H1j , H2j , . . . , HLij} + ci

8: if u < Ti then
9: u = 0

10: end if
11: Ui,j = u
12: end for
13: end for
14: for i = 0 to n do
15: Qi,0 = 0
16: end for
17: for j = 0 to Ls do
18: Q0,j = 0
19: end for
20: for i = 1 to n do
21: for j = 1 to Ls do
22: Qi,j = max(Qi−1,j , Qi,j−1, Qi−1,j−1 + Ui,j)
23: end for
24: end for
25: locate the maximum element of Q as MQ, and trace back the

path to find out which keywords are aligned.
26: return MQ as final score and the matching flags of each

keywords.
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Table 1. Comparing keywords with the results from PDB structures and PROSITE patterns. HSL model: the matching
keywords of the HSL model on the sequence; GLC: the contacting regions for GLC in PDB:1cza; G6P: the contacting regions

for G6P in PDB:1cza; PROSITE: the pattern found in PROSITE. The bold capitals in the table are those residues where
keywords match exactly with the putative binding sites in PDB. The italic capitals are matching residues with the pattern of

PROSITE

Source Hexokinase (EC 2.7.1.1)

HSL model laLDLGGTNFRVLDLGGTNFRVLDLGGTNFRV-LGFTFSFPFTFSFPFTFSFP- WTKGFWTKGFWTKGF-VNDTVGTVNDTVGTVNDTVGT- iNMEWGNMEWGNMEWG- YEKMYEKMYEKM-SGMYSGMYSGMYlgei-DGSGDGSGDGSG-GAGAGAal

GLC (1cza) DLGGTDLGGTDLGGT- TFSFPTFSFPTFSFPc-litWTKGFWTKGFWTKGF-VNDTVGTVNDTVGTVNDTVGT-livgtgsn-NMEWGNMEWGNMEWGafgd-kqrYEKMYEKMYEKMiSGMYSGMYSGMY

G6P (1cza) LDLGGTNFRVLDLGGTNFRVLDLGGTNFRVl- FTFSFFTFSFFTFSF- KGFKGFKGF-VNDTVGTVNDTVGTVNDTVGTmmt-livgtgsn-vdgtlykl- lseDGSGDGSGDGSGkGAGAGA

PROSITE [LLLivm]-GGG-FFF-[TTTn]-FFF-SSS-[FFFy]-PPP-x(5)-[livm]-[dnst]-x(3)-[livm]-x(2)-WWW-TTT-KKK-x-[lFFF]

2.5 Sub-families

The family was divided into two or more sub-families if
more than 10 positive sequences were incorrectly classified
by the model, and the fraction of incorrectly classified se-
quences of the positive set was higher than 5%. The correctly
identified sequences were grouped as a sub-family. The in-
correctly classified sequences were further trained using the
same procedure as above. The final family model consisted
of all the HSL models of the sub-families.

2.6 Predictions

Given a new sequence and the HSL model with sub-
families, the score of the sequence for each sub-family was
calculated as in equation 2. The sequence was predicted to
be generated from a sub-family model if the final score was
higher than the threshold in the model. A sequence was pre-
dicted to be generated from an HSL model with sub-families
if it was generated from at least one of the sub-family mod-
els.

3. RESULTS

The program was applied to the 81 families containing
at least 20 sequences and the corresponding HSL models
were obtained. The results were validated by comparing
the identified keywords with the patterns in PROSITE and
PDB. To evaluate the accuracy of the functional classifi-
cation with the HSL models, 10-fold cross-validation was
performed. Comparisons were also made with MEME.

3.1 Comparisons with PROSITE, PDB and
Pfam

The HSL models were validated by comparing the key-
words with patterns in PROSITE and protein structures in
PDB. The patterns in PROSITE are functional sites of regu-
lar expression. Protein structure data in PDB contain the 3-
dimensional coordinates of all amino acid atoms of proteins
and the binding atoms. Based on annotation in the Macro-
molecular Structure Database (MSD)[7], the ligands labeled
as base, simple, ion or unknown were removed. A PDB con-
tacting region was then defined as a maximum continuous
segment in which all residues were close to the binding lig-
ands with a Euclidean distance less than 10Å, and at least
one distance was less than 5Å.

The prediction accuracy was measured by recall and pre-
cision. For PROSITE patterns and the positive training se-
quences, all pattern-matching regions were found on the se-
quences. The recall was defined as the ratio of the number
of overlaps between the predicted keywords in the positive
sequences and the PROSITE pattern-matching regions over
the total number of PROSITE pattern-matching regions.
The precision was defined as the ratio of the number of
overlaps between the predicted keywords in the positive se-
quences and the PROSITE pattern-matching regions over
the total number of predicted keywords. Compared with
PROSITE patterns, the HSL achieved an average recall of
83.5% and an average precision of 23.0% compared to 37.3%
and 29.1% for MEME, respectively. Compared with PDB
contacting regions, the HSL achieved an average recall of
66.1% and an average precision of 79.9% compared to 44.7%
and 74.7%, respectively, for MEME. The relative low preci-
sion for PROSITE comparison was due to the incomplete-
ness of PROSITE patterns which were accurate but very
short. The detailed results for the PDB and PROSITE com-
parisons are given in the supplementary materials.

For example, the crystal structure of a mutant monomer
of recombinant human brain hexokinase type 1 (PDB code:
1cza) from the hexokinase family (E.C. 2.7.1.1) has two sim-
ilar domains which form complex with glucose (GLC) and
glucose-6-phosphates (G6P). Table 1 shows the comparison
results with PDB and PROSITE for one domain. The bold
italic capitals are those residues where the keywords match
exactly the PDB contacting regions. The italic capitals are
matching residues with the PROSITE patterns. Figure 3
shows the locations of keywords in the 3D structure of one
domain and their putative functions. The keywords of the
HSL model are shown as colour ribbons. These ribbons are
close to the ligands and form a pocket to bind with them.
Residue Asp657(N) of the purple ribbon, “VNDTVGT”, is
the putative catalytic base and the conformation of green
ribbon “LDLGGTNFRV” is identical with that observed in
the G6P/GLC complex of the wild-type enzyme [8].

The predicted keywords using HSL were also compared
with the domain structures in the Pfam database. 90% of the
keywords predicted by the HSL were part of Pfam domains
with names containing the substring “kinase” compared to
77.2% for MEME.
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Figure 3. The ribbon structure of one domain in hexokinase
from human brain (PDB code: 1cza) complex with GLC and
G6P. GLC and G6P are shown in a space-filling model. The
keywords of the HSL model are shown as colour ribbons.

These ribbons are close to the ligands and form a pocket to
bind with them. Residue Asp657(N) of the purple ribbon,

“VNDTVGT”, is the putative catalytic base and the
conformation of green ribbon “DLGGTNFRV” is identical

with that observed in the G6P/GLC complexes of the
wild-type enzyme [8]. This drawing was prepared with the

program MOLMOL [21].

3.2 Cross-validation and kinase function
prediction

The 10-fold cross-validation was also used to evaluate the
kinase functional prediction accuracy by the HSL. The se-
quences from the positive and negative sets were randomly
placed into 10 subsets. In each run, 9 positive and 9 neg-
ative subsets were chosen for model training, and the re-
maining positive and negative subsets were held for testing.
A score was obtained for each of the testing sequences us-
ing the trained HSL model. For a given threshold T s, a test
sequence was predicted as positive if its score was greater
than T s. The true positives (TP ), false negatives (FN),
false positives (FP ), and true negatives (TN) were then
obtained. The false positive rate (FPR), true positive rate
(TPR), sensitivity (SN), and specificity (SP ) were calcu-
lated as follows:

SN = TPR =
TP

TP + TN
, SP = 1 − FPR =

TN

FP + TN

By adjusting the threshold value T s, the receiver operat-
ing characteristic (ROC) curve for the HSL was obtained
(Figure (4)). For comparison, the ROC curves were also
shown for the HSL model without sub-families and MEME.
When the false positive rate is low (e.g. ≤ 0.15), the true
positive rate for the HSL model is always the highest. For an-
other comparison, the relationship between sensitivity and

Figure 4. The ROC curves for HSL with/without sub-families
and MEME.

Table 2. The average SN and SP of the HSL model with
sub-families, the HSL model without sub-families, and MEME

Method SN SP

HSL model with sub-families 94.7% 94.0%
HSL model without sub-families 83.1% 96.9%
MEME with same SN as HSL model 94.5% 85.8%
MEME with same SP as HSL model 86.8% 93.7%

specificity was also studied. Table (2) shows that the HSL
significantly outperforms MEME.

3.3 Automatic detection of kinase
sub-families using the HSL

Another advantage of the HSL model is its ability to de-
tect kinase sub-families with different ancestries automat-
ically. Some proteins evolved from proteins from different
ancestries may play the same function, but their active sites
may not be the same. For example, Figure (5) shows the
unrooted phylogenetic tree for E.C. 2.7.7.12. Classification
for E.C. 2.7.7.12 by the HSL model was consistent with the
tree. The sequences on the two main branches were classi-
fied into two sub-families. The detailed classification results
are provided in the supplementary materials.

Adenylate kinase (E.C. 2.7.4.3) is a small monemeric en-
zyme that catalyzes the reversible transfer of MgATP to
AMP (MgATP+AMP�MgADP+ADP). The family con-
tains 262 protein sequences in SWISS-PROT. The HSL di-
vided this family into two sub-families, one having 232 se-
quences and the other 30. Both sub-families have crystal
structures in PDB, chain A of PDB:2ECK [9] and chain F of
1NKS [10] were selected for comparison. The global RMSD
calculated by SuperPose [11] between the two structures was
higher than 10, illustrating they were different. Table (3)
shows the keywords of two sub-families and their compar-
isons with PDB and PROSITE. Most of the keywords in
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Table 3. Comparing keywords with the results from PDB structures and PROSITE patterns. HSL model: the matching
keywords of the HSL model on the sequence; AMP: the contacting regions for AMP in chain A of PDB:2eck and chain F of
PDB:1nks; ADP: the contacting regions for ADP in chain A of PDB:2eca and chain F of PDB:1nks; PROSITE: the pattern

found in PROSITE. The bold capitals in the table are those residues where keywords match exactly with the putative binding
sites in PDB. The italic capitals are matching residues with the pattern of PROSITE

Source The first sub-family of E.C. 2.7.4.3.

HSL model LGAPGAGKGTQALGAPGAGKGTQALGAPGAGKGTQA- QISTGDMLRQISTGDMLRQISTGDMLR- LVTDELVTDELVTDE- gFLLDGFPRTILDGFPRTILDGFPRTI

2eck:AMP lLGAPGAGKGTQALGAPGAGKGTQALGAPGAGKGTQA- QISTGDMLRQISTGDMLRQISTGDMLR-gkqakdimdagkLVTDELVTDELVTDElvialv-LDGFPRTILDGFPRTILDGFPRTIpga-rkddqeetvrkrlvey

2eck:ADP lLGAPGAGKGTQALGAPGAGKGTQALGAPGAGKGTQAqf-QISTGDMLRQISTGDMLRQISTGDMLR- DGFPRDGFPRDGFPR-grvyhvkfnpp-dgtkpvaev

PROSITE [livmFFFywca]-[LLLivmfyw](2)-DDD-GGG-[FFFyi]-PPP-RRR-x(3)-[nq]

Source The second sub-family of E.C. 2.7.4.3.

HSL model kigIVTGIPGVGKIVTGIPGVGKIVTGIPGVGK- RDEMRRDEMRRDEMR- IDTHIDTHIDTH- -gyLPGLPLPGLPLPGLP-vlagstvkv

1nks:AMP IVTGIPGVGKIVTGIPGVGKIVTGIPGVGKstvl-inygdfm-dRDEMRRDEMRRDEMRkl-qkklq-IDTHIDTHIDTHavirtp- LPGLPLPGLPLPGLP-rnr

1nks:ADP VTGIPGVGKVTGIPGVGKVTGIPGVGKstv- DTHDTHDTH-srqkrdttr-vivnvegdps

PROSITE [livmfywca]-[livmfyw](2)-d-g-[fyi]-p-r-x(3)-[nq]

this pattern can not be found in the sequences of this sub-family.

Figure 5. The unrooted phylogenetic tree for the sequences in
E.C. 2.7.7.12 and the sub-families identified by the HSL.

The figure was generated using MEGA [22].

different sub-families match the putative binding sites in
PDB and the pattern in PROSITE. For the unique pattern
in PROSITE, it fails to characterise the sequences in the sec-
ond sub-family. Figure (6) shows the different structures of
each sub-family displayed as ribbons, and the keywords are
coloured in the structures. It indicates that the HSL model
is able to classify proteins with different structures from the
same functional family.

4. DISCUSSION

In this paper, we developed a hierarchical stochastic lan-
guage (HSL) model for the functional site prediction and
classification of kinases. The HSL model takes into account
inter-dependencies among the residues and the keywords
within the functional sites. In the model, the most conserved
residues are first extracted as keywords, then the keywords
(with certain variation allowed) are used as basic units to

build the high level language model. The sub-families are
identified automatically.

The HSL model was applied to 81 kinase families contain-
ing at least 20 sequences in Swiss-prot. The predicted sites
were validated by protein structures in PDB and patterns in
PROSITE. Moreover, most of the predicted keywords were
part of kinase domains in Pfam. Some keywords which were
not parts of a kinase domain might be part of other func-
tional domains. For example, keyword “ISVK” in the EC
2.7.11.1 family was a part of the additional interactional do-
mains (PH domain) of the Serine/threonine-protein kinase
CLA4 (UniProt ID:O14427).

With 10-fold cross-validation for sequence classification,
the model achieved both higher sensitivity and specificity
than MEME. The model could also deal with kinase fami-
lies with multiple ancestors. The automatically divided sub-
families were consistent with the phylogenetic trees and
known protein structures.

The effects of parameter values were also studied, in par-
ticular Nt (the number of chosen most common k-tuples in
the positive samples) and the gap penalty, on the conclu-
sions. The model was applied with Nt=20, 30 and 40, and
gap penalties as 6, 8 and 10. The classification results are
given in the supplementary materials and the results show
that the conclusions are insensitive to the parameter values.

The HSL model has several distinct features. First, the
number of parameters needed in the HSL model is much
less than other complex models, such as the hidden Markov
models used by PFAM. Second, the HSL model captures the
most important signals of the family since it starts with the
keywords which are short and conserved in a kinase fam-
ily. Third, the HSL model takes the relationship between
keywords into account, which is important for predicting
functional sites from the protein primary structures.

In summary, the HSL model can be successfully used to
predict kinase functions and kinase functional sites. It can
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Figure 6. The ribbon structures of two Adenylate kinases. The left figure shows a domain structure of E. coli. Adenylate kinase
with bound AMP and ADP (PDB code:2eck, chain A) [9]. AMP and ADP are shown in the space-filling model. The coloured
ribbons are keywords found by the HSL model. The right figure is the domain structure of Adenylate kinase from a trimeric

archaeal with bound AMP and ADP (PDB code:1nks, chain F) [10]. AMP and ADP are shown in the space-filling model. The
coloured ribbons are keywords found by the HSL model. This drawing was prepared with the program MOLMOL [21].

also automatically detect kinase sub-families if the sequences
within a kinase family came from different ancestors. The
kinase functional sites predicted by the HSL may be used as
candidates for further experimental validations. The HSL
model studied in this paper may also be used to predict
other functional protein families.

ADDITIONAL FILES

Additional file — supplementary results

The supplementary tables give several results: 1) Com-
parison of the keywords to PDB and PROSITE. 2) 10-fold
cross-validation results of kinase families classification with
HSL models. 3) 10-fold cross-validation results of kinase
families classification with a different setting of parameters
Nt = 20, 30, 40 and gap penalties 6, 8, 10.
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