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Bayesian co-segmentation of multiple MR images

Jianfeng Xu and Feng Liang
∗

Segmentation is one of the basic problems in magnetic
resonance (MR) image analysis. We consider the problem
of simultaneously segmenting multiple MR images, which,
for example, can be a series of 2D/3D images of the same
tissue scanned over time, different slices of a volume im-
age, or images of symmetric parts. These multiple MR im-
ages share common structure information and hence they
can assist each other in the segmentation procedure. We
propose a Bayesian co-segmentation algorithm where the
shared information across multiple images is utilized via a
Markov random field prior. An efficient algorithm based on
the Swendsen–Wang method is employed for posterior sam-
pling, which is more efficient than the single-site Gibbs sam-
pler. Because our co-segmentation algorithm pulls all the
image information into consideration, it provides more ac-
curate and robust results than individual segmentation, as
supported by our experimental studies with real examples.

Keywords and phrases: MRI, Co-segmentation, Bayes-
ian, MCMC.

1. INTRODUCTION

A basic problem in magnetic resonance imaging (MRI)
is to precisely segment regions of interest (ROI’s) from the
image data, which is a crucial part of diagnosis, surgery,
therapy guidance, and other medical research and appli-
cations (Kass et al., 1988; Zou et al., 2001; Frangi et al.,
2001). Many segmentation algorithms have been introduced
in literature. These existing algorithms can be roughly di-
vided into three categories (Lakare and Kaufman, 2000):
the algorithms based on geometric or topological struc-
ture models, including Snakes (Kass et al., 1988), Level Set
(Yang et al., 2004), and Watershed (Beucher and Meyer,
1993), the algorithms based on statistical models, including
the thresholding method (Weszka, 1978), K-means cluster-
ing (Wells et al., 1996), Markov random fields based meth-
ods (Winkler, 2006), and classification methods, and the
algorithms based on hybrid approaches.

Despite such a wide array of literature, MRI segmenta-
tion still remains a challenging problem due to the complex
structure between ROI and the neighboring parts and imag-
ing artifacts such as noise, motion, contrast, etc. To address
these challenges, various methods have been proposed to
∗Corresponding author.

incorporate more information, either from prior knowledge
or from other sources, to improve the accuracy of segmenta-
tion. For instance, Cootes et al. (1995) introduced the shape
prior into segmentation to keep the deformation of the con-
tour consistent with statistical models from the PCA anal-
ysis. Following Cootes’ method, several papers have focused
on the incorporation of the shape prior information into tra-
ditional methods (Yang et al., 2004; Leventon et al., 2000;
Tsai et al., 2003). In many situations, however, the use of
shape prior models is limited because there are not enough
training images to build the prior model. Further, it is not
suitable for applications involving a large number of MR
images that call for automatic computer-assisted segmenta-
tion procedures. Recently, Younis et al. (2007) proposed to
combine the information from MRI and MR spectroscopy
imaging (MRSI) for segmentation, with the advantage that
MRI segmentation can be further corrected or enhanced by
MRSI. Such a method, however, is not accessible for single-
modality MRI analysis.

In this paper, we propose to incorporate the informa-
tion from similar images to improve the accuracy of seg-
mentation, instead of replying on information from prior
knowledge on the shape of ROI or from other sources (i.e.,
modalities). We consider the problem of simultaneously seg-
menting multiple MR images, which, for example, can be a
series of MR images scanned over time such as images of
liver perfusion or dynamic cardiac motion, spatial slices of
a volume, or images of symmetrical tissues such as lung and
hippocampus. Due to their similarities, it is beneficial to
share the image information with each other when executing
segmentation, which we refer to as co-segmentation. Simi-
lar problems have been considered by Cheng and Figueiredo
(2007). However they treated each image independently and
only utilized the spatial information within each image for
segmentation.

The term “co-segmentation” was used by others be-
fore, but with a slightly different meaning. For example, in
Younis et al. (2007), co-segmentation refers to segmenting
the brain region based on two modalities, MR and MRSI
images. In Rother et al. (2006), co-segmentation refers to
extracting a common part (e.g., the foreground) from an
image pair, in which what is shared is not the segmentation
structure across images but the model for the foreground
segment. In other words, some pixels in these two images
are assumed to be generated by the same statistical model,
but how these pixels are located and how other pixels are
generated or located in these two images are totally inde-
pendent.
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In our work, co-segmentation refers to jointly segmenting
multiple images of which the segmentation structure (i.e.,
spatial configuration of the segmentation result) is shared.
Note that in our framework, the image data from a shared
segment on different images are not necessarily modeled
by the same distribution, so our approach is less sensitive
to noise and image artifacts. We present a Bayesian co-
segmentation procedure, in which the shared structure in-
formation across images, as well as the information among
neighboring vertices (pixels/voxels) in the same image, is
coded in a Markov random field prior. A Swendsen–Wang
type algorithm is developed for posterior sampling, which
updates a block of vertices simultaneously and is more effi-
cient than the alternative single-site Gibbs sampler.

The remaining sections are organized as follows: Sec-
tion 2 discusses the model and prior specification; Section 3
presents the Bayesian inference via two Gibbs sampling algo-
rithms; In Section 4, we illustrate the utility of our method
on four MRI data sets, and finally close with remarks in
Section 5.

2. METHOD

2.1 Gaussian mixture models

For convention, we first introduce some notations. As-
sume all J MR images have the same size in each of the l
dimensions, (d1, . . . , dl), and have totally n = d1 × · · · × dl

vertices. For example, l = 2 for 2D images and l = 3 for 3D
images. The vertices are often called pixels for 2D images
and voxels for 3D images. Denote the intensity measure at
vertex i in image j by Yji ∈ R

p, for example, an image with
RGB format has p = 3. In this paper, we focus on gray scale
MR images, so Yji ∈ R with j = 1 : J and i = 1 : n.

The goal of MRI segmentation is to partition vertices in
an image into different clusters, based on the homogeneity
of their intensity measures. Suppose there are totally K seg-
ments or clusters. For each vertex i in image j, we introduce
a latent variable Zji ∈ {1, . . . , K}. It is a common practice
in MRI segmentation to model the intensity measure Yji in
the same cluster with a Gaussian distribution (Wells et al.,
1996; Permuter et al., 2006; Lee and Lewicki, 2002),

(1) p(Yji|Zji = k) = φ
(
Yji; μjk, σ2

jk

)
,

where φ(·; μ, σ2) denotes a normal density function with
mean μ and σ2. Under this framework, segmentation be-
comes the problem of inferring the latent variables Zji’s.
There are several advantages of this model-based approach.
First, it is a soft segmentation approach in the sense that
Zji is not restricted to take one fixed value, but treated
as a random variable and allowed to have uncertainty over
the K clusters. So it can handle cases that have ambigui-
ties in the structure definition due to the sampling artifacts
or poor resolution. Further, such a generative model can be
easily extended to a semi-supervised setting where some ver-
tices can have known labels given by experts. At last, with

a model-based approach, the selection of hyper-parameters,
such as the number of clusters, can be formulated as a model
selection problem, thus a range of criteria such as AIC and
BIC can be applied.

We write the unknown parameters and latent variables
in this model as (Z··,μ··,σ

2
··), where the subscript dot is a

shorthand notation for the set containing all possible val-
ues in that subscript location. In a Bayesian framework, we
make our inference of the unknowns based on the posterior
distribution

π
(
Z··,μ··,σ

2
··

∣∣ Y··
)
∝

J∏
j=1

n∏
i=1

p
(
Yji

∣∣ Zji, μj·, σ
2
j·
)

(2)

× π(Z··) ×
J∏

j=1

K∏
k=1

π
(
μjk, σ2

jk

)
,

where the first line is the likelihood of the data Y·· and
the second line are the prior distributions over the latent
variable Z·· and unknown parameters.

In co-segmentation, prior distributions play a critical role,
which will be discussed in the next subsection. The posterior
distribution given above is not in closed form and we will
employ a MCMC algorithm for posterior sampling, which
will be discussed in Section 3.

2.2 Co-segmentation priors

For computation efficiency, we use conjugate normal pri-
ors for the cluster mean μjk and inverse Gamma for variance
σ2

jk, namely,

π(μjk) = N(μ0, τ0), π
(
σ2

jk

)
= InvGa(α0, β0).

In our empirical experiments, we use default values for these
hyper-parameters (μ0, τ0, α0, β0), which correspond to non-
informative or vague prior choices. For example, in all of our
experiments, we set

μ0 = 0.5, τ0 = 0.1, α0 = 1, β0 = 0.01.

In specific clinical scenario, however, the hyper-parameters
should be tuned based on the prior knowledge and experi-
ence of radiologists, which will make co-segmentation more
effective.

In traditional Bayesian mixture models, the latent vari-
ables Zji’s in (1) are modeled as i.i.d. discrete random vari-
ables. However, such an independent model does not work
well with image data since the spatial dependence among
intensity measures Yji’s from nearby vertices should be in-
corporated into the model. For example, it is natural to
assume that neighboring vertices are likely to belong to the
same segment. For co-segmentation, in order to utilize infor-
mation across images, we further extend the neighborhood
on the same image to multiple images (e.g., image pairs, or
adjacent images if images are obtained over time). We start
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with a graph on the nJ vertices from the J MR images:
connect two vertices (ji) and (j′i′), if they are neighboring
vertices on the same image or vertices on different images
but from roughly the same location. For example, we set
the neighborhood as |j − j′| ≤ 1 and |i − i′| ≤ 1 in our ex-
periments. Denote all the edges by set E0, then construct a
Potts model on Zji’s as the following

(3) π(Z··) ∝ exp
{ ∑

(ji)∼(j′i′)

β(ji)(j′i′)I[Zji = Zj′i′ ]
}

where I[·] is an indicator function, the pair (ji) ∼ (j′i′)
means they are connected by an edge from E0, and β(ji)(j′i′)

is an edge-dependent tuning parameter representing the in-
teraction strength. Our prior distribution above leads to in-
formation sharing over multiple images and meanwhile pre-
serving the spatial structure within each individual image
which has been destroyed by vectorization.

Note that if one permutes the labels Zji’s simultaneously
for all images, for example, relabel the 1st cluster as the
2nd and the 2nd as the 1st for all images, the likelihood (1),
the prior distribution (3), and therefore the posterior distri-
bution stay the same. This is known as the label-switching
issue in Bayesian mixture modeling (McLachlan and Peel,
2000). To make a coherent inference, we need to fix the or-
der of the K clusters on one particular image. In the later
analysis, we will order the K clusters on the first image by
their cluster means, i.e., μ11 < · · · < μ1K .

Also note that if one permutes the labels on some (not
all) images, the likelihood still stays the same, but the prior
and the posterior change, since a priori we favor the con-
figuration satisfying Zji = Zj′i′ where (ji) and (j′i′) are
neighboring vertices on different images. So given a config-
uration Z··, it is possible to shuffle the labels on image 2 to
image J (the labels on the 1st image have been fixed) to in-
crease the prior (3), and therefore to increase the posterior
probability. Finding the optimal order of the labels on the
(J−1) images is time-consuming, so instead we give a simple
greedy algorithm to find a sub-optimal solution in the Ap-
pendix. This shuffling step is not a valid MCMC step, but is
used to guide the chain to reach regions with high posterior
probabilities, so in the MCMC algorithms in Section 3, this
shuffling step is only called in the burning period.

3. MCMC ALGORITHMS

With the Potts prior on Z··, the posterior distribution (2)
is not in closed form. However, the conditional distributions
for each parameter or latent variable given others and the
data are from known parametric families, which leads to
a simple Gibbs sampling scheme given in Section 3.1. We
refer to it as a single-site Gibbs sampler (SSGS), since it
updates the cluster membership Zji sequentially over each
vertex. A more efficient algorithm that updates a block of
Zji’s based on Swendsen–Wang method is described in Sec-
tion 3.2, which we refer to as a SW Gibbs sampler (SWGS).

3.1 A single-site Gibbs sampler

In the single-site co-segmentation, all parameters and la-
tent variables are updated sequentially in each iteration as
follows.

I. Initialization. Assign initial values for (μ··, σ
2
··,Z··)

such that μ11 < · · · < μJK . Then, execute the following
MCMC steps recursively:

II. At the t-th iteration,

1. Update Zji sequentially for i = 1 : n and j = 1 : J
with

P (Zji = k|Y··, · · · ) =
wk∑K
l=1 wl

,

where (· · · ) denotes all other parameters and la-
tent variables (except Zji) evaluated at their cur-
rent values, and

wk ∝ φ
(
Yji; μjk, σ2

jk

)(4)

× exp
{ ∑

(j′i′)∈N (ji)

β(ji)(j′i′)I[Zj′i′ = k]
}

,

where the set N (ji) denotes all the vertices (j′i′)
that are neighbors of (ji) as defined by the initial
edge set E0.

2. For each cluster k = 1 : K on the j-th image
(j = 1 : J), let Y j[Z=k] denote the cluster mean
for the k-th cluster and njk =

∑n
i=1 I[Zji = k] the

corresponding cluster size. Update

μjk|Y··, · · · ∼ N
(
μ, τ2

)
where μ = rY j[Z=k] + (1 − r)μ0, and

r =
τ2
0

σ2
jk/njk + τ2

0

,
1
τ2

=
1

σ2
jk/njk

+
1
τ2
0

.

Then update

σ2
jk|Y··, · · · ∼ InvGa

(
njk

2
+ α0,

1
2

∑
i:Zji=k

(
Yji − μjk

)2 + β0

)
.

3. Label-switching: relabel the K clusters such that
μ11 < μ12 < · · · < μ1K .

4. Shuffle the labels on image 2 to image J when in
the burning period (see Appendix).
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3.2 A Swendsen–Wang Gibbs sampler

In SSGS, the labels Zji’s are updated sequentially. Such
a single-site operation is inefficient for segmenting MR im-
ages in two aspects: (1) Traversing all vertices sequentially
in each iteration is time-consuming due to the high dimen-
sion of MR images; (2) It might take many iterations to
update a set of coupled vertices (Barbu and Zhu, 2005). In
this subsection, we present a more efficient algorithm, which
still operates image by image but on each image updates a
block of vertices simultaneously.

Let Zj· denote all the labels on the j-th image. Recall
that the joint conditional distribution of Zj· given the data
and other unknowns is

π(Zj·|Y··, · · · ) ∝ exp

{
n∑

i=1

gji(Zji)

}(5)

× exp
{ ∑

(ji)∼(ji′)

β(ji)(ji′)I[Zji = Zj′i′ ]
}

,

where

gji(k) = log φ
(
Yji; μjk, σ2

jk

)
+

∑
(ji)∼(j′i)

β(ji)(j′i)I[Zj′i = k].

The distribution (5) remains in the Potts family with the
likelihood and prior contribution from other images as the
external field term, So for each image we can sample a block
of coupled Zji’s simultaneously using the Swendsen–Wang
(SW) algorithm.

The SW algorithm, proposed by Swendsen and Wang
(1987), is an efficient sampling method for Potts models.
Instead of updating the Z values vertex by vertex, it up-
dates the values block by block as follows. Given the current
configuration of Z’s, connect neighboring vertices with the
same Z values with certain probability that depends on β in
(5). The connected vertices form disjointed blocks, and then
SW algorithm updates the Z values in a block simultane-
ously. The SW algorithm can be justified by augmenting the
space of Z’s by bonding variables (Edwards and Sokal, 1988;
Higdon, 1997). Recently, Barbu and Zhu (2005) provided
another justification for SW from the aspect of Metropolis–
Hastings, which leads to the use of SW algorithm for non-
Potts models.

Our SW Gibbs sampling algorithm, abbreviated as
SWGS, is similar to SSGS given in the previous subsection,
except at step II(1) we update Zj· for j = 1 : J as follows.
Given the current labeling Zj· for the j-th image, connect
two neighboring vertices (ji) and (ji′) that have the same
Z value with probability 1− exp{−β(ji)(ji′)} where β(ji)(ji′)

is the edge-dependent interaction parameter as in (3) and
(5). Then the vertices on the j-th image are divided into m
disconnected components (V1, . . . , Vm), where Vl ∩ Vl′ = ∅

and
⋃m

l=1 Vl = {1, . . . , n}. For each component V , we update
their labels ZjV simultaneously with

(6) P (ZjV = k|Y··, · · · ) ∝ exp
{ ∑

i∈V

gji(k)
}

.

Although our SWGS algorithm is designed for cases
where the conditional distributions are from the Potts fam-
ily, it can be easily extended to sample arbitrary pos-
terior distributions. For example, for the bounding box
prior in Lempitsky et al. (2009), and the prior used in
Barbu and Zhu (2005) that encourages large and connected
segments, the corresponding conditional distribution of Zj·
is no longer from the Potts family. Nevertheless, we can
still update the labels block by block through a Metropolis–
Hastings step. We formulate the disjoint blocks as described
before, then for block V , propose to assign ZjV a new label.
The acceptance ratio for the new configuration Z′

j· is given
by

α(Zj· → Z′
j·) = min

{
1,

q(Zj·, V |Z′
j·) π(Zj·|Y··, · · · )

q(Z′
j·, V |Zj·) π(Z′

j·|Y··, · · · )

}
.

The proposal density q(Zj·, V |Z′
j·) is difficult to evaluate

since there are many different ways to obtain the same
vertices set V . An important result from Barbu and Zhu
(2005) showed that the ratio of the two proposal densities
q(Zj·, V |Z′

j·)/q(Z′
j·, V |Zj·) is of simple form. So the accep-

tance ratio can be computed easily. Further, with a partic-
ular choice of the proposal distribution for assigning labels
for Z′

jV , the acceptance ratio is 1.

3.3 Posterior inference and choice
of hyper-parameters

In the Bayesian framework, parameters estimation and
inference on latent variable Zji’s become a matter of sum-
marizing the posterior distribution. In general, we can report
either posterior mean, median or model over the MCMC
samples. In our experimental studies, we adopted poste-
rior means for parameter estimation and posterior modes
for Zji’s.

Our algorithm requires the number of clusters K to be
pre-given. In some applications, we can set K to be the num-
ber of different tissues in MR images. For example, it is com-
mon to set K = 3 in segmenting MR brain images, which
correspond to gray-matter, white-matter, and cerebrospinal-
fluid tissue. Alternatively, we can use model selection criteria
such as AIC and BIC to select K.

The choice of β(ji)(j′i′), the edge-dependent interac-
tion parameter as in (3), plays an important role in co-
segmentation: large value leads to high influence of neigh-
boring vertices. To the best of our knowledge, there is no
optimal way to select β. We could try different β values and
then select them by some model selection criteria, which,
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however, is time-consuming since there are many β’s (same
as the number of edges). In our empirical study, we set

β(ji)(j′i′) = − log
(
1 − e−h|Yji−Yj′i′ |

)
,

where h is a positive tuning parameter, implying high influ-
ence of neighboring vertices when their intensity measures
are close. Then choose h as follows. For each image, we plot-
ted the histogram for the intensity difference among neigh-
boring vertices, |Yji − Yj′i′ |, where (ji) and (j′i′) are neigh-
bors. (The intensity measures have been normalized with
Yji ∈ [0, 1].) We found that there was no valleys between
0 and 0.05 in all histograms, that is, two vertices would be
classified in the same cluster when |Yji − Yj′i′ | < 0.05, if
using a simple thresholding rule. Then we chose h such that
neighboring vertices with intensity difference equal to 0.05
had a 50% chance to be connected in the SW algorithm, that
is, we set 1 − exp{−β} = e−0.05×h ≈ 0.5. Such an equation
leads to h ≈ 14. Eventually, we adopted a less informative
choice h = 15.

4. EXPERIMENTS

We demonstrate the efficiency and accuracy of our co-
segmentation algorithm on four different types of MRI data
sets. We compare the performance of co-segmentation with
individual segmentation on the first three data sets: (i) a
pair of synthetic brain images; (ii) five real corpus callosum
MRI slices from a volume data, and (iii) three 2D abdominal
MR images scanned over time. We then demonstrate the
efficiency of SWGS versus SSGS on a 3D dynamic cardiac
data set. The individual segmentation procedure is almost
the same as the co-segmentation, except that β(ji)(j′i′) in (3)
is set to be zero when j 
= j′, that is, information is shared
among nearby vertices on the same image, but not across
images.

Evaluating the accuracy of medical images segmentation
is difficult due to the lack of “true” segmentation results.
Since segmentation for medical images is mainly used to
identify ROI’s and true ROI’s can be provided by experts,
after obtaining the segmentation result, we label some clus-
ters as ROI and the other clusters as non-ROI. In all the
figures, we display only this two-class segmentation result:
ROI versus non-ROI. We employ quantitative evaluations
based on the proportion of correctly identified ROI, as in-
troduced in Fenster and Chiu (2005). Let VT and VS denote
the regions enclosed by the true boundary of ROI (provided
by human experts) and the estimated boundary (from the
segmentation algorithm) respectively. Define the true posi-
tive (TP) volume as the volume enclosed by both the true
and estimated boundaries, i.e., VTP = VS ∩ VT , the false
positive (FP) volume is VFP = VS − VT , the false negative
(FN) volume is VFN = VT − VS , and V denotes the total

Figure 1. The top row are the original sequential MR images;
the second row are their closed contours, which form

super-vertices; the bottom plot is the final super-vertices for
the three images.

region. Then define

True Position Fraction (TPF) =
VTP

VT
,

False Position Fraction (FPF) =
VFP

V − VT
,

False Fraction (FF) = 1 − VFP + VFN

VT
.

Following Fenster and Chiu (2005), we name the last mea-
sure “False Fraction”, although it is the measure that we
prefer to be large.

For each data set, we first normalize the intensity mea-
sures such that Yji ∈ [0, 1]. Then apply some standard pre-
processing in image segmentation to reduce the number of
vertices. We first use Laplacian of Gaussian (a compound
operator that combines a smoothing Gaussian-shape opera-
tion with a differentiation Laplacian operation) to obtain the
closed contours of boundary for each image. The contours
give rise to a fine partition of an image and vertices falling
into the same boundary can be treated as a super-vertex.
To keep the consistency of super-vertices over J images, we
use the overlap of the J partitions to form super-vertices.
Figure 1 depicts the final super-vertices of three sequential
images.

4.1 Synthetic contaminated brain image pair

In this experiment, we construct a synthetic contami-
nated image pair based on a brain image (of size 181× 217)
from the Simulated Brain Database1, which is derived from
an average of 27 T1-weighted images of a normal brain. We

1http://www.bic.mni.mcgill.ca/brainweb/
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Table 1. Evaluation of individual segmentation and co-segmentation

TPF FPF FF
Co-seg Individual Co-seg Individual Co-seg Individual

Brain 1 0.98 0.81 0.03 0.01 0.97 0.81

Brain 2 0.99 0.82 0.04 0.01 0.96 0.82

CC 1 0.96 0.98 0.00 0.01 0.94 0.93

CC 2 0.98 0.99 0.01 0.01 0.93 0.89

CC 3 0.98 1.00 0.01 0.02 0.91 0.79

CC 4 0.94 0.99 0.01 0.02 0.88 0.75

CC 5 0.87 0.98 0.00 0.17 0.83 −0.98

Liver 1 0.94 0.95 0.01 0.01 0.88 0.87

Liver 2 0.93 0.93 0.00 0.04 0.90 0.48

Liver 3 0.92 0.95 0.00 0.017 0.90 0.77

Figure 2. Data and results for the contaminated brain image
pair: original images (top row), results from individual

segmentation (middle row), and results from co-segmentation
(bottom row).

add white noises at two different regions of the brain, one
contaminated region on one image. This pair of synthetic
data is shown on the top row of Figure 2. We want to demon-
strate that the contaminated region in each image could be
retrieved much better under the supervision of the other one.

We set K = 3 that correspond to GM (gray matter),
WM (white matter) and CSF (cerebrospinal-fluid tissue).
The results for individual segmentation and co-segmentation
for WM are shown in Figure 2 and the quantitative evalu-
ation is in Table 1. Although co-segmentation does slightly
worse than individual segmentation on FF (approximately
2% higher than the individual segmentation), it extracts
17% more ROI than the individual segmentation as shown
in TPF. As we expect, co-segmentation provides a much
better overall result than individual segmentation since it
utilizes the information from both images that are known
to be similar.

Figure 3. Data and results for CC slices: original images (top
row), results from individual segmentation (middle row), and

results from co-segmentation (bottom row).

4.2 Multiple corpus callosum slices

Several studies have indicated that the size and shape
of the corpus callosum (CC) in human brain are corre-
lated to sex, age, brain growth, and various types of brain
dysfunction. In order to find such correlations, computer-
assisted segmentation is needed (Lundervold et al., 1999).
Five CC slices, each of size 70 × 100, from the Simulated
Brain Database are shown in Figure 3 (top row).

We applied co-segmentation and individual segmentation
algorithms on this data set with various choice of K. As
discussed in Lundervold et al. (1999), the number of tissue
types in CC images is less than 10. So K ranges from 2
to 10 as in the plot of AIC and BIC versus K shown in
Figure 4. The most significant reduction of AIC and BIC
occurs when K changes from 4 to 5. Both criteria continue
decreasing after K = 5, but with a much slower rate. So
we select K = 5. The segmentation results are shown in the
middle and the last rows in Figure 3. We can see that co-
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Figure 4. The plot of AIC and BIC versus various K for CC slices (top panel) and sequential liver (lower panel) images.

Figure 5. Data and results for sequential liver images: original
images (top row), results from individual segmentation

(middle row), and results from co-segmentation
(bottom row).

segmentation is roughly the same as the individual segmen-
tation on the first four images, but is much better on the
last one. As shown in Table 1, individual segmentation of
the last image CC5 has FPF = 0.17 and FF = −0.98 in-
dicating serve over segmentation, i.e., a huge false positive
error. However, this is avoided by our co-segmentation pro-
cedure, which has FPF = 0.00 and FF = 0.83 for CC5, since
it utilizes the information across images.

4.3 Sequential liver images

Liver perfusion is a quantitative measurement of blood
flow in the liver, which provides useful information on the

Figure 6. Data and results for the cardiac data: one slice of
the 3D image is presented at 3 time points (top panel, from

left to right), and results from co-segmentation (lower panel).

assessment and treatment of liver diseases. Precise segmen-
tation of livers under perfusion is an important preliminary
step for further analysis. The difficulty of liver segmentation
is the ambiguity of the boundaries that are connected with
other organs like the heart. In this experiment, we use se-
quential liver images from Chen and Gu (2006), which are
2D abdominal MR images (of size 145 × 118) scanned over
time and are shown in Figure 5.

The bottom panel of Figure 4 presents the selection of K
using AIC and BIC, both of which select K = 6. Accord-
ing to Figure 5 and Table 1, our co-segmentation algorithm
outperforms the individual one.

4.4 4D cardiac data

Cardiovascular disease is one of the leading death causes
in the world. Segmenting cardiac MR images is a common
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Figure 7. Convergence comparison between SSGS and SWGS. The left plot is the convergence rates of SSGS and SWGS
which indicates SWGS needs only 1/10 iterations steps to be convergent. The right plot shows the speed in time for

convergency which evaluates the SWGS is around 25 time faster than SSGS.

medical practice since it provides clinically useful indica-
tors of heart function. In this experiment, we use a se-
ries of three 3D MR images (of size 101 × 101 × 12) from
Andreopoulos and Tsotsos (2008), which are scanned along
a cardiac circle. The purpose of segmentation here is to de-
limitate the endocardium. As shown in Figure 6, the nearby
images (along the time domain) have strong similarities,
which motivates the use of co-segmentation.

For this set of data, the two co-segmentation algorithms,
SWGS and SSGS, output roughly the same result in terms
of accuracy. SWGS, however, has an apparent advantage in
terms of speed. Figure 7 (left) compares their convergence
rates in terms of the number of iterations, and indicates that
SSGS needs almost 9 times more iterations than SWGC to
reach convergence. This is because in each iteration, SWGS
updates the cluster labels block by block, while SSGS does
it pixel by pixel. Further, the way SWGS updates the cluster
labels requires less computation, therefore less time, to finish
an iteration than SSGS, as supported by the right panel of
Figure 7 that compares the convergence speed in terms of
time.

5. DISCUSSION

A new Bayesian model-based approach is introduced to
segment multiple MR images simultaneously. The major
contribution of our work is to utilize the shared structures
among multiple images, which make the segmentation more

accurate and robust. An efficient Gibbs sampler based on
the Swendsen–Wang method is employed for posterior sam-
pling, which updates the segmentation indicators block by
block and is more efficient than the single-site Gibbs sam-
pler.

APPENDIX: SHUFFLING

For j = 1 : (J − 1), perform the following steps sequen-
tially,

1. Save the current configuration Z·· as Z̃··.
2. Based on Zj· and Z(j+1)·, construct a K × K table T

whose (a, b)-th entry is defined to be

Ta,b =
n∑

i=1

I[Zji = a] × I[Z(j+1)i = b].

Here the row indices correspond to the clusters from im-
age j and the column indices correspond to the clusters
from image (j + 1).

3. Let (a0, b0) = arg maxa∈1:K,b∈1:K Ta,b.
4. Switch the labels a0 and b0 for Z(j+1)·.
5. Delete the a0-th row and b0-th column from table T ,

and repeat the above procedure on the remaining (K −
1)× (K − 1) table, until reaching a table with only one
entry.

520 J. Xu and F. Liang



6. If π(Z··) > π(Z̃··), that is,∑
(ji)∼(j′i′):j′=j+1

β(ji)(j′i′)

(
I[Zji = Zj′i′ ]

− I[Z̃ji = Z̃j′i′ ]
)

> 0,

accept the new configuration, otherwise, reset Z·· = Z̃··.
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