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Simultaneous set-wise testing under dependence,
with applications to genome-wide association

studies

WEI WaANG, ZHT WEI AND WENGUANG SUN*

We consider the problem of identifying disease-
associated genomic regions in genome-wide association stud-
ies (GWAS). It is shown that conventional single SNP anal-
ysis can be greatly improved by (i) exploiting the spatial de-
pendency and (ii) conducing set-wise analysis. The SNP set
association problem can be conceptualized as the problem
of simultaneously testing a large number of sets of hypothe-
ses. We use hidden Markov models to exploit the linkage
disequilibrium information in GWAS data, based on which
a data-driven screening procedure (GLIS) is proposed. GLIS
is shown to be optimal in the sense that it has the smallest
missed set rate (MSR) among all valid false set rate (FSR)
procedures. The numerical results demonstrate that the pro-
posed procedure controls the FSR at the desired level, enjoys
certain optimality properties and outperforms conventional
combined p-value methods. We apply the GLIS procedure to
analyze a Type 1 diabetes (T1D) GWAS dataset for detect-
ing T1D associated genomic regions. The results show that
our proposed SNP set analysis not only provides better bi-
ological insights, but also increases the statistical power by
pooling information from different samples.

KEYWORDS AND PHRASES: Hidden Markov model, Large-
scale multiple testing, Conjunction test, Partial conjunction
test, Genome-wide association studies.

1. INTRODUCTION

Driven by advances in low-cost, high-throughput profil-
ing technologies, genome-wide association studies (GWAS)
have been widely used to interrogate the architecture of the
whole human genome. GWAS have shown to be successful
in detecting genetic variants that contribute to complex dis-
eases. For example, GWAS have identified 53 new common
genomic regions that are associated with autoimmune dis-
eases [21], and have become predominant tools as a first step
to localize the unknown weak variants.

In large-scale GWAS, it is typical to test hundreds of
thousands of correlated markers simultaneously. However,
conventional multiple testing procedures often suffer from
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low statistical power and lack of replicable findings, which
have greatly limited the practical advantage of GWAS, es-
pecially in detecting markers with moderate or small effects.
For example, recent comparative analyses of different GWAS
on the same disease suggest that even for the most signif-
icant SNPs, the significance indicated by one study may
not necessarily show up in another study. The low signal-to-
noise ratio in most genotype data sets, a typical consequence
of the “large p, small n” paradigm, provides new statisti-
cal challenges for developing a testing procedure with both
high sensitivity and low error rate: a liberal p-value cutoff
yields too many false positive results, yet a strict p-value
cutoff tends to wipe out most interesting effects. In this ar-
ticle, we discuss two useful strategies that promise to im-
prove the signal-to-noise ratio in GWAS data: utilization of
spatial dependency and set-wise analysis. We shall develop
an asymptotically optimal data-driven procedure in a com-
pound decision theoretic framework where the grouping and
dependency structures in the GWAS data can be exploited
in a unified way.

During the meiosis process in a germ cell, a cross-over
breaks parental chromosomes non-randomly into inheritable
segments and then form gametes by recombining those seg-
ments. The single nucleotide polymorphisms (SNPs) within
a segment will be inherited together with high probability
and random combinations of all possible SNP states within
the segment are prohibited. This co-segregation of adjacent
SNPs results in the so-called linkage disequilibrium (LD).
For a given SNP, its LD dependency with distant marker
sites is attenuated over generations because of recombina-
tion. On the other hand, adjacent SNPs are likely to show
strong association with each other. In general, the LD de-
pendency decreases with the physical distance between two
SNPs.

The linear block structure in the SNP data is very infor-
mative for constructing efficient testing procedures. First,
if a SNP is disease-associated, then it is likely that the
neighboring SNPs are also disease-associated (due to the
co-segregation). Therefore, when deciding the significance
level of a SNP, the neighboring SNPs should be taken into
account. This shows that exploiting the dependency struc-
ture is very promising to increasing the efficiency of exist-
ing screening procedures. Second, the linear block structure


http://www.intlpress.com/SII/

indicates that set-wise analysis in general yields more inter-
pretable scientific findings. The proposed SNP set analysis,
resting upon the assumption that SNPs underlying a dis-
ease phenotype work in groups, may help to identify weak
effects markers that are undetectable in single-SNP associa-
tion studies. Setting a goal that target groups of important
variables will significantly increase the screening power and
reduce the number of false positives.

In summary, exploiting dependency and combining hy-
potheses in sets are two useful strategies to increase the
signal to noise ratio in the sample, and are especially suit-
able for application in large-scale GWAS due to the special
structures of the SNP data. A major goal of this research is
to develop a multiple testing procedure that simultaneously
incorporates the dependency and grouping information de-
scribed above. Next we shall discuss some related works on
multiple testing under dependence, then introduce existing
methods for SNP set analysis, and finally outline the main
ideas and advantages of our proposed research.

The correlation effects on multiple testing procedures
have been extensively studied in the literature, see [14, 26,
31, 28, 10], among others. However, most previous research
has been focused on the validity issue of different false dis-
covery rate (FDR, Benjamini and Hochberg 1995 [4]) pro-
cedures. Although the dependency structure is highly in-
formative, it has been largely ignored by most conventional
methods [5, 14, 26, 38]. For example, the works by [5, 13, 38]
showed that the FDR is controlled at the nominal level by
the BH procedure under different dependence assumptions,
supporting the “do nothing” approach which treats all de-
pendent tests as if they were independent.

However, the dependency information is highly infor-
mative for constructing more efficient tests. Sun and Cai
(2009) [33] derived an optimal procedure, based on the lo-
cal index of significance (LIS), for multiple testing in a hid-
den Markov model (HMM). Numerical results demonstrated
that the performance of conventional p-value thresholding
procedures can be substantially improved by exploiting the
HMM-dependency. The LIS procedure was recently applied
to a GWAS of Type I diabetes (T1D) and compared with
the BH procedure [37]. Significant improvement in rankings
for T1D loci was achieved. For instance, a recent GWAS
meta-analysis has confirmed 46 T1D susceptibility loci [2],
among which 3 are on the top 500 list identified by BH and
7 are on the top 500 list identified by LIS (c.f. Table 2 in
[37]). By exploiting dependency, the signal to noise ratio is
greatly increased by integrating information from adjacent
locations. The precision of tests is greatly improved in the
sense that (1) the number of false positives is greatly re-
duced and (2) the statistical power to reject a non-null is
substantially increased. This indicates that dependence can
make the testing problem “easier” and is a blessing if effi-
ciently utilized. A major goal of this article is to extend the
LIS procedure in [33] for set-wise FDR analysis.
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The strategy of conducting set-wise analyses in multiple
comparisons is driven by both the need from scientific appli-
cations and the statistical consideration of screening power.
First, conjunction analysis of SNP sets is of great biological
interest, since groups of SNPs often serve as better proxies
to capture disease association than any single SNP [9]. Sec-
ond, recognizing that the “most significant SNPs” approach
is less capable of separating the majority of truly associ-
ated signals from background noises, researchers have hy-
pothesized that the “most significant SNP sets” approach,
which jointly considers multiple SNPs in a genetic or bi-
ological meaningful set, might complement the “most sig-
nificant SNPs” approach for analyzing data and interpret-
ing results from such studies [35]. The proposed SNP set
analysis, resting upon the assumption that SNPs underly-
ing a disease phenotype work in groups, may help to iden-
tify weak-effects markers that are undetectable in single-
SNP association studies. The set information can be de-
rived from chromosome bands, biological pathways, func-
tional terms (Gene Ontology), and etc (see Section 4 for
more details). A SNP set analysis conducted in [35] suc-
cessfully discovered a significant association between Crohn
Disease and the IL12 /1123 pathway which harbors 20 genes.
Such findings suggest that functional grouping information
is very useful in that weak signals from individual ob-
servations can be pooled together to exhibit overall sig-
nificance. However, the LD dependency information is ig-
nored in [35] and the multiplicity issue is essentially not
addressed.

In this article, we consider a new multiple testing ap-
proach for set-wise FDR analysis. Our approach addresses
the multiplicity issue since it controls the false discovery
rate asymptotically. In addition, by taking into account the
LD dependency, our approach is expected to bring further
improvements over the existing methods on SNP set anal-
yses. As in [37], we use HMMs to model the SNP-SNP
and SNP-trait associations. The fundamental difference is
that the goal has changed to the identification of groups
of markers or SNP sets that are associated with the dis-
ease. This goal can be achieved by testing the conjunction
of null hypotheses and partial conjunction of null hypothe-
ses [3]. We expect that the signal to noise ratio in the sample
can be greatly enhanced by (i) integrating the information
of all SNPs in a set and (ii) exploiting the spatial depen-
dency.

The article is organized as follows. The hidden Markov
model, theoretical framework for set-wise testing and a data-
driven procedure are discussed in detail in Section 2. In Sec-
tion 3, simulation studies are carried out to compare the
numerical performances of our approach vs. conventional
methods. In Section 4, our procedure is applied to the anal-
ysis of data from a GWAS of T1D for identifying disease-
associated genomic regions. We conclude the article with a
discussion of results and open problems.



2. SIMULTANEOUS ANALYSIS OF SETS OF
CORRELATED HYPOTHESES

By combining all hypotheses in a set, we can form a
new hypothesis at the set level; examples include the con-
junction of null hypotheses (global null that all hypotheses
are true), disjunction of null hypotheses (all hypotheses are
false) and partial conjunction of null hypotheses [3]. Con-
ventionally, Fisher’s combined p-value method is the best
known method for testing conjunction of null hypotheses
and has been widely used in many applications, such as
meta-analysis of microarray experiments and brain imaging
studies [20, 39, 24, 16, 27, 19]. Simultaneous partial conjunc-
tion tests has recently been considered in FDR analysis by
Benjamini and Heller (2008)3].

In this section, we first introduce some important con-
cepts and existing methods for simultaneous analysis of sets
of hypotheses, then develop an “oracle” testing procedure in
a compound decision theoretic framework by assuming that
the correlation structure and distributional information are
known. Finally, we discuss issues related to the practical
implementation of the oracle procedure, including a hidden
Markov model (HMM) for SNP data and a data-driven pro-
cedure that mimics the oracle procedure based on HMMs.

2.1 A decision-theoretic formulation for
set-wise multiple testing

Suppose that we have divided the SNPs into K sets (see
Section 4 for more details), and in set k there are mj SNPs.
Let 0, = (0k1,- - -, Okm, ) denote the unknown states in set k,
where 6; = 1 if SNP i from set k is disease associated and
0x; = 0 otherwise. Depending on an investigator’s interest, a
set-wise screening procedure claims a SNP set is interesting
if (i) at least one SNP in the set is disease-associated; or (ii)
at least uy out of mj; SNPs in the set are disease-associated;
or (iii) all my SNPs are disease associated. By convention,
(i)—(iii) are respectively referred to as conjunction test, par-
tial conjunction test and disjunction test. Conjunction and
disjunction tests can be viewed as special cases of partial
conjunction tests.

For a given SNP pattern of interest, we can define the null
and non-null parameter spaces for . For example, the null
space OF for testing global null and partial conjunction are
@g = {Gk : Z?;kl Ori = 0} and @]g = {Ok : Z:ikl O < uk},
respectively. The non-null state spaces ©F can be obtained
as the complement of the corresponding null spaces. For the
K sets of hypotheses, define a binary vector

9= (91,...,9x) € {0,1} 5,
where

(1)

Therefore the SNP set selection problem can be restated
as the simultaneous testing of K new hypotheses: Hgo :

9, =01if 0, € @’5 and ¥, = 1 otherwise.

0) € OF versus Hyy : 0, € OF, k=1,..., K, where set k is
selected if the null hypothesis Hyyg is rejected at the set level.
Here, we are interested in inference of the unknown ¥;’s
based on the observed data and need to solve K component
problems simultaneously. A solution to this problem can be
represented by a compound decision rule

8 =(61,...,0K) € {0,1}¥,

where 0, = 1 if we claim that Hj is false and 6, = 0
otherwise. Under this formulation, a false positive (negative)
occurs if we decide 0 = 1 (0 = 0) while 9, =0 (9 = 1).
To summarize the set-wise testing results, we use the false
set rate (FSR) and missed set rate (MSR) to combine the
false positive and false negative results in set-wise testing:

FSR:E{M}

) (S ) V1

(3)

MSR — E { ZkK:;(ﬂk(l — Ok) } .
(k=1 V) V1

Specifically, the FSR is the expected proportion of falsely
rejected sets among all rejections and the MSR is the ex-
pected proportion of non-null sets that are missed. The goal
of set-wise multiple testing is to find a decision rule § that
minimizes the MSR for a prespecified FSR level.

2.2 Combined p-value approach and its
drawbacks

In this section, we introduce a screening procedure SBH
based on combined p-values proposed by Benjamini and
Heller (2008) [3]. In microarray data analysis, several meth-
ods have been introduced for testing the significance of mul-
tiple gene sets [25, 12]. However, few of these methods uti-
lize the dependency among individual tests within a set. We
shall see that the SBH procedure is inefficient and can be
greatly improved by our GLIS procedure which exploits the
available spatial dependency.

Suppose there are n; cases and ng controls being geno-
typed over the my SNPs in set k, k = 1,..., K. The total
number of SNPs is m = Zle my. We conduct a y>-test
with 1 degree of freedom for each SNP to assess the asso-
ciation between the allele frequencies and the disease sta-
tus; the p-values from the y2-tests are then recorded. Let
p’(“l), e ,p’(“mk) be the ordered p-values from the kth set. De-

note by H. qu m, the partial conjunction of hypotheses that at
least u out of my hypotheses in set k are false. The Simes’
p-value can be used to summarize the p-values from set k

into a single index
. mp—u-+1 ,
min - Plu—14j) (-

(4) ;

k
pu/mk =

Then HS/mk is rejected if pﬁ/mk is small.
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Benjamini and Heller [3] proposed a two-stage proce-
dure for FSR control. In the first stage, Simes’ p-values
are obtained for all sets. In the second stage, the p-values

are ordered as pik/)mk,k; = 1,...,K. Denote by Hq(];)mk
k=1,..., K, the corresponding hypotheses. The BH step-

up procedure [4] is then applied to the ordered p-values to
determine which sets should be rejected:

Let | = max{k :pik/)mk < —a},

then reject H yk=1,...,1
It was shown in [3] that this procedure, referred to as the
Simes-BH (SBH) procedure, controls the FSR at the nomi-
nal level a. In addition, it was shown that the SBH proce-
dure is still valid under different dependency assumptions.
However, the SBH procedure is highly inefficient because
the information of the dependence structure among SNPs in
a set can be exploited to construct more efficient tests. Next
we develop an oracle procedure for testing sets of correlated
hypotheses. In the derivation, it is assumed that the corre-
lation structure and distributional information are known.
A data-driven procedure based on an HMM that mimics the
oracle procedure will be discussed in Section 2.5 for situa-
tions where such information is unknown.

2.3 The oracle procedure for FSR control

To facilitate the future implementation of our oracle pro-
cedure, we shall use z-values instead of p-values for method-
ological development. Specifically, given the two-sided p-
value and odds ratio of a SNP, we can convert a p-value
to a z-value using the following transformation

It is reasonable to assume that a z-value is distributed as
N(0,1) under the null, and is distributed as a normal mix-
ture under the alternative. The normal mixture model is
a dense class, which is general enough to approximate al-
most all mixture distributions and has been found in a wide
range of applications. Such a transformation also greatly fa-
cilitates the implementation of our oracle procedure because
various methods for consistently estimating the normal mix-
tures have been developed in the literature. Details on model
parameter estimation (EM algorithm) in a normal mixture
will be discussed in Section 2.5.

Now we turn to the derivation of our oracle procedure
for set-wise testing of correlated hypotheses. The basic as-
sumptions on the data structure are (i) the data for each
hypothesis has been summarized to a z-value (based on a
x>2-test), (ii) the z-values are correlated and the correlation
structure is known. We assume the conditional distributions
for z-values

(6)
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if odds ratio > 1
otherwise

()

2ki|Oki ~ (1 — Opq) Fo + O F1.

where Fjy and F} are the null and non-null distribution func-
tions, respectively. The corresponding density functions are
denoted by fo and f;. When z-value is used, Fy is stan-
dard normal N(0,1) and F; is a normal mixture F; =
Zlel N (i, 0}), where L is the number of components in
the mixture. In this section, we assume that there is an
oracle that knows F} and the model that describes the de-
pendency of the tested hypotheses with parameter W. The
specific definition of ¥ and the situation where such infor-
mation is unknown will be considered later. Next we study
the oracle’s response to the set-wise simultaneous testing
problem.

Consider a general decisionruled = (§; : k=1,...,K) €
{0,1}% where 6, = 1 indicates that SNP set k is reJected
and 0 = 0 otherwise. The multiple testing problem is
closely related to a weighted classification problems. Specif-
ically, let A be the known relative cost of a false positive to a
false negative. Define a weighted classification problem with
loss function

K
%Z (AL = 01)d5 + Op(1 = 61}

k=1

(7)  La(#,6) =

It was shown in Sun and Cai (2007, 2009) [32, 33] that
the multiple testing and weighted classification problems
are essentially equivalent under a monotone ratio condition
(MRQC). Specifically, let T be the collection of all test statis-
tics that satisfy the MRC and D,, the collection of the test-
ing rules at FSR level v and of the form 6 = I(T < c1).
Suppose that the classification risk with the loss function
defined in (7) is minimized by 6*{T',c¢(\)}, so that T is the
optimal statistic in the weighted classification problem. If
T € 7, then T is also optimal in the multiple testing prob-
lem, in the sense that for each FSR level «, there exists a
unique ¢(«) such that 0{T, ¢(«)} controls the FSR at level
« with the smallest MSR level in D,.
It can be shown that the optimal classification rule that
minimizes the classification risk is the Bayes rule
6{A, (1/A)1} = (3 :

k=1,...,K),

where
Ak = P\p(’ﬂk = O‘Z)/P\p(’ﬂk = 1‘2)

and 0 = I(Ar < 1/X). The equivalence between multiple
testing and weighted classification under dependence [33]
implies that A is also the optimal test statistic for FSR con-
trol. Next we define the generalized local index of significance
(GLIS)

GLISk = Pq;(’ﬁk = 0|Z),

for k=1,..., K. Note that GLIS; = Ay /(1+ Ag) is strictly
increasing in Ay, the (oracle) optimal multiple testing pro-
cedure must be of the form

(8) 6(GLIS, CORI) =

[I(GLISk < COR) k= 1,...,K],



where the oracle cutoff cog is given by

cor = sup{c € (0,1) : FSR(GLIS, 1) < a}.

The oracle procedure (8) provides a benchmark for develop-
ing and evaluating different FSR procedures. The difficulty
of the implementation of oracle procedure (8) varies accord-
ing to the model specification. In Section 2.4, we introduce
an HMM for SNP data, then discuss the implementation of
GLIS oracle procedure in Section 2.5.

2.4 A hidden Markov model for SNP data

The hidden Markov Model (HMM) is a classical model
to capture linear dependency and, due to DNA’s linear pri-
mary structure, it has been widely applied to analyze ge-
nomic data, such as inferring protein binding sites from
ChIP-Chip data [23] and detecting DNA number copy al-
ternations from array CGH data [15]. An optimal testing
procedure under HMM-dependency was developed in Sun
and Cai (2009) [33]. For single SNP analysis, we have im-
plemented HMMs to characterize the dependency among
neighboring SNPs [37] and successfully generalized Sun and
Cai’s procedure to model multiple heterogeneous HMMs.

In an HMM, it is assumed that each SNP in the chromo-
some has two possible hidden states: disease-associated or
non-disease-associated, and the states of all SNPs along the
chromosome form a Markov chain. In our application, the
observed genotype data are assumed to be generated con-
ditional on the hidden states via a normal mixture model.
Specifically, let 8, = {6k1,...,0km,} denote the underly-
ing states of the SNP sequence in set k, where 6;; = 1
indicates that SNP 4 from set k is disease-associated and
0x; = 0 otherwise. In the current section, we only con-
sider testing on one chromosome; the multiple-chromosome
situation will be considered in Section 2.6. Assume that
0=0;:k=1,...,K)isdistributed as a stationary Markov
chain with transition probability

9)

In an HMM, the observed z-values are assumed to be con-
ditionally independent given the hidden states:

HP Zkl‘ak’ta

for k=1,..., K. Denote by A = (a;;) the transition matrix,
7w = (mg, m1) the stationary distribution, F = {Fp, F1} the
observation distribution, and ¥ = (A, w, F) the collection
of all HMM parameters.

A5 = P(@s = j\Hs_l = Z)

(10) P(z1|0x, F

2.5 A data-driven procedure

The optimal testing procedure (8) is difficult to imple-
ment because it is hard to determine the optimal cutoff cor

directly. Also, in practice, the HMM parameters ¥ are un-
known. As before, we first obtain the estimated parameters
U by the EM algorithm, then plug-in ¥ to obtain
G/LTSk = P@(ﬁk = 0|Z)

The details of the EM algorithm for a normal mixture model
are given in [33]. In situations where the number of compo-
nents L is unknown, we can use the BIC criterion to deter-
mine the best choice of L. Specifically,

V|

BIC
2

=1log{P(¥p|2)} — == log(m),

where P(W|z) is the likelihood function, ¥y, is the maxi-
mum likelihood estimate of HMM parameters, and |V | is
the total number of HMM parameters.

The next step is to rank the plug-in GLIS statistics
from all sets and choose an appropriate cutoff. Denote
by @(1)7 R G/LTS(K) the ranked plug-in values and
H)y, ..., H) the corresponding hypotheses. In light of the
oracle procedure, we propose the following data-driven pro-
cedure (GLIS):

k
1
(11) Let [ = max ey Z ,

then reject all Hyy, k = 1,...,
rameters U, the GLIS statistic

mpg
P (Z Ori < €|z>
i=1

can be computed for any partial conjunction patterns,
namely, no more than € non-nulls in the set. Specifically, the
calculation involves exhaustively enumerating all possible
patterns and summing up their probabilities based on the
forward-backward algorithm [29]. The choice of ¢ is based
on prior genetics knowledge and investigator’s experiences,
e.g., € = 4, if we believe that for a true disease variant, its
two neighbors on each side (dependent on markers’ density)
shall be LD dependent and show significant association; oth-
erwise it may be a false positive due to noise.

Compared to the combined p-value procedure SBH, the
advantages of the GLIS include: (i) Interpretability. By def-
inition, the GLIS can be interpreted as the probability of a
genomic region having the spatial pattern of interest given
the observed genotypic data. In contrast, the meaning of the
combined p-value, obtained via a step-up procedure, is not
obvious. (ii) Accuracy. The numerical results in our simu-
lation studies show that the GLIS approach can accurately
achieve the nominal FSR level, whereas the SBH procedure
is over-conservative. (iv). Efficiency. By exploiting the spa-
tial correlation, the GLIS produces more efficient rankings

. Given the estimated pa-

Sitmultaneous set-wise testing under dependence, with applications to genome-wide association studies 505



of genomic regions than the Simes’ p-value. Hence it is ex-
pected that the GLIS identifies more true signals than the
SBH procedure at the same FSR cost.

The following theorem, which can be proved similarly to
the Theorems 5 and 6 in [33], shows that the data-driven
procedure is asymptotically valid and optimal.

Theorem. Consider the HMM defined by (9) and (10).
Let U be a consistent estimate of the HMM parameters.
Denote by ﬁLTS(l), . ,E[-J\S(K) the ranked plug-in values,
and Hyy, ..., Hiyy the corresponding hypotheses. Then un-
der the regularity conditions (1)-(5) in [35], the data-driven
procedure (11) controls the FSR at level a asymptotically.
In addition, let MSRor and MSRpp be the MSR levels of
the oracle procedure (8) and the data-driven procedure (11),
respectively, then MSRpp = MSRogr + o(1).

2.6 Pooled analysis with multiple
chromosomes

The chromosomes in a genome segregate independently
and may exhibit different dependency structures. It is there-
fore more appropriate to model each chromosome separately.
In this section, we generalize the previous data-driven proce-
dure for multiple-chromosome analysis. The key issue is how
to combine the simultaneous inferences made for separate
chromosomes to achieve optimal genome-wise FSR control.
See [6] for more theoretical backgrounds on the optimality
of multiple testing with groups.

A straightforward approach to combining the analyses
from different chromosomes is the so-called separate analy-
sis [11], which suggests applying an inference procedure to
each chromosome at the same test level. However, this ap-
proach is not optimal in general. Let 2° be the observed data
for chromosome ¢, c =1, ..., C. Denote by ¥¢ the estimated
HMM parameters for chromosome ¢ and (TLTS; the corre-
sponding test statistics. In light of the data-driven CLfdr
procedure in [6], we propose the following pooled procedure
for multiple-chromosome set-wise analysis:

Step 1. Calculate the plug-in GLIS statistic G/LTSZ =
Pge(¥], = 0]z°) for individual chromosomes ¢ =
1,...,C.

Step 2. Combine and rank the plug-in GLIS statis-
tic from all chromosomes. Denote by GLIS(yy,...,
GLIS(ZSZIKC) the ordered values and Hy,...,
H(Zle Ko the corresponding hypotheses.

Step 3. Reject all Hy, i = 1,...
(1/1) 325—y GLIS(j) < a}.

It can be shown that this pooled procedure is optimal in
the sense that the genome-wise MSR is minimized subject
to a constraint on the genome-wise FSR. One important fea-
ture of this pooled procedure is that different chromosome-
wise FSR levels are chosen such that genome-wise MSR

,1, where | = max{i :
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level is minimized. The 3-step procedure is a hybrid strategy
that has combined features from both pooled and separate
analyses. Specifically, it is a “separate” analysis because, in
step 1, the grouping information is exploited to calculate
chromosome-wise HMM parameters; it is also a “pooled”
strategy because, in steps 2 and 3, the group labels are
dropped and the rankings of all hypotheses are determined
globally. The difference between our approach and Efron’s
approach is that we suggest a different way on how the si-
multaneous inferences from different chromosomes may be
combined: Efron suggests using identical test levels for all
chromosomes, whereas we suggest using different test levels
for different chromosomes. Again, we refer to [6] for more
insights and discussions on the advantages of our pooled
strategy.

3. SIMULATION STUDIES

In this section, we conduct simulation studies to com-
pare the numerical performances of the GLIS procedure vs.
the SBH procedure. The SBH procedure is inefficient be-
cause the dependency structure is ignored. We will show
that GLIS improves SBH by exploiting the dependency in-
formation among adjacent SNPs.

As an illustrative example, we consider 2 chromosomes,
each with 2,000 SNPs. We generate two Markov chains
6 = (65)2%9°) ¢ = 1,2, with transition matrices A' =
(0.98,0.02;0.3,0.7) and .A? = (0.98,0.02;0.05,0.95), respec-
tively. Conditional on the hidden states 65, the observations
z{ are generated as

207 ~ (1 = 07)N(0,1) + 07N (pic, 1)

Next, we define the set size to be 20, namely, from the
first SNP on a chromosome, every 20 consecutive SNPs are
grouped as a set. Consequently, we have 200 sets in total for
the two chromosomes. Let the partial conjunction pattern
threshold € = 5, i.e., we have our partial conjunction null
O =1{0; : 21221 Ori < 5}. Our goal is to find the SNP sets
with the pattern of our interest while controlling the FSR at
a pre-specified level for the whole genome (combining chro-
mosomes 1 and 2). For 200 replications, we apply GLIS and
SBH procedures at FSR level a = 0.1. We vary p; from 1
to 4 with an increment 0.5 and ps = p; + 1, and plot the
FSR and MSR levels as functions of y;.

The simulation results are shown in Figure 1. Panel (a)
indicates that both procedures control the FSR at the nom-
inal level & = 0.1. However, GLIS gives a precise control of
the FSR while SBH is over conservative. From Panel (b),
we can see that the MSR of GLIS is much lower than that
of SBH. Note that the smaller the value of u, the weaker
the signal, we conclude that the improvement in MSR levels
brought by GLIS becomes larger as the signal is weaker. Ad-
ditional simulation results indicate that the efficiency gain
of GLIS is larger when the dependency is stronger. We omit
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the details here and refer to [33] for more discussions on this
issue.

It may be argued that the higher power of GLIS is gained
at the price of a higher FSR level. Actually, another impor-
tant source for the efficiency gain is in the improved rankings
produced by GLIS. To illustrate, we plot Figure 2 to com-
pare the ranking efficiencies of GLIS versus SBH. Here, the
sensitivity is calculated as the average proportions of cor-
rectly identified SNP sets over the 200 replications. Using
different significance thresholds, we calculate corresponding
FSRs and sensitivities. We can see that under the same FSR
level, GLIS discovers more true disease-associated SNP sets
than SBH. Again, we observe the improvement is more dra-
matic when signals are weak. This makes GLIS particularly
attractive to GWAS in finding genetics variants with mod-
erate or small effects, which would be missed otherwise by
conventional p-value based approaches.

From the above simulation studies we can see that, by
modeling genomic dependency, the GLIS procedure can
greatly improve the efficiency of detecting (weak) signals.
The signal to noise ratio in the sample is increased by in-
tegrating information from adjacent SNPs. As a result, we

may simultaneously reduce the number of false positives and
increase the statistical power to reject a non-null. This con-
firms that dependence can make the testing problem “eas-
ier” and is a blessing if incorporated properly in a testing
procedure [30, 33, 37].

Another issue is the efficiency of set-wise analysis versus
single SNP analysis. Conceptually, the SNP set analysis is
also more powerful because the signal to noise ratio is fur-
ther enhanced by pooling information from all SNPs in a
set. However, it is difficult to conduct a fair comparison of
them because the goals of the two types of analyses are fun-
damentally different. Instead, we shall illustrate the differ-
ences between these two approaches in our real data analysis
presented next.

4. APPLICATION TO T1D DATASETS

Childhood diabetes, also called Type 1 diabetes (T1D),
is a multifactorial, autoimmune complex disease. Different
from Type 2 diabetes, childhood diabetes is typically found
in young individuals with onset as early as one year old and
most cases are diagnosed before the age of 18. As a result,
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Figure 2. At the same FSR level, GLIS has higher sensitivity than SBH, especially when signals are weaker.

environmental factors complicate the childhood diabetes ge-
netic analysis less than other complex diseases. Associations
of six loci with child diabetes have been convincingly estab-
lished because of their large effects. However, the established
genetic associations with childhood diabetes only explain lit-
tle more than 50% of the genetic risk. Many more genes with
moderate or small effects remain to be discovered [34, 18].
Finding these unknown “weak” genes is the main target of
GWAS.

The Wellcome Trust Case-Control Consortium
(WTCCC), established in 2005, consists of a large number
of research groups across the UK. One of the WTCCC
aims was to explore the utility, design and analysis of
GWAS for detecting genetic variants associated with most
common diseases. In 2007, the WTCCC published data on
14,000 cases of seven common diseases and 3,000 shared
controls [8]. All samples are genotyped by Affymetrix
Mapping 500K arrays. As a real case study, we apply our
proposed GLIS procedure to analyze the 2,000 T1D cases
and the 3,000 shared controls. We perform a series of
standard quality control procedures to eliminate markers
with minor allele frequency less than 1%, Hardy-Weinberg
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Equilibrium p-values lower than le-6, or genotype no-call
rate higher than 5%. In addition, we remove the prob-
lematic samples as specified in the WTCCC website.
After the quality control, 397,780 SNPs from 1,963 T1D
cases and 2,938 shared controls are eligible for further
analysis.

4.1 Model selection and the estimation of
HMM parameters

We first conduct a x2-test with d.f. of 1 for each SNP to
assess the association between the allele frequencies and the
disease status. Then we obtain z-values from the p-values
using the transformations defined by (5). Each chromosome
is modeled separately to obtain chromosome-specific HMM
parameters W¢. We assume that the null distribution is stan-
dard normal N(0,1) and the non-null distribution is a nor-
mal mixture Zlel eN(p,02). The number of components
L in the non-null distribution is determined by the BIC cri-
terion,

“ A4
BIC = log [ P(15 )} — 12 log(m).



where P(¥$|2) is the likelihood function, ¥$, the MLE of
HMM parameters, |¥¢ |, the number of HMM parameters
and m¢, the number of SNPs for chromosome c.

4.2 Results for set-wise analysis

We group every 20 consecutive SNPs as a set. Our goal is
to identify T1D associated genomic regions spanned by the
20 SNPs, which covers at least one T1D variant. Given the
estimated parameters \if, we calculate the GLIS statistics for
the partial conjunction pattern based on

my
P (Zem < E|Z> .
=1

For a true disease variant, whether genotyped or not by the
Affymetrix Mapping 500K array, we expect its two geno-
typed neighbors on each side be LD dependent and show
significant association. Therefore, we set € = 4. We also try
e = 2,3,5 and see how sensitive the set analysis is to the
choice of e. We apply both the SBH and GLIS procedures
at FSR level 0.001.

Note that here we simply group every 20 consecutive
SNPs as a set. In practice, the grouping strategy can be im-
proved in several ways by integrating various domain knowl-
edge. First, we can divide SNPs into blocks based on their
LD dependency information derived from Hapmap [7]. Sec-
ond, we may group SNPs in the same haplotype block [17] as
a set. Many tools are available for haplotype reconstruction,
such as HAPLORE [41] and HapBlock [40]. Third, we can
map SNPs to the genes they belong to. Then as in many
pathway-based analyses [36, 35], genes, thus the affiliated
SNPs, can be grouped as a set if they come from the same
biological pathway or have the same molecular function. Fi-
nally, clustering methods may also be employed for grouping
SNPs.

A meta-analysis based on recent GWAS has confirmed
46 genetic variants associated with T1D [2]. The numbers

Table 1. The number of non-NULLs (known T1D variants)

of non-NULLs claimed by the two procedures under differ-
ent € values are shown in Table 1. The numbers of the known
T1D variants among the claimed non-NULLs are given in
brackets in the same table. We can see that SBH is very
conservative and claims much fewer non-NULLs than GLIS
under the same FSR level. Accordingly, GLIS identifies more
known T1D variants. As the threshold ¢ increases, both pro-
cedures tend to claim fewer non-NULLs. This is not sur-
prising because fewer significant sets are expected when we
require more significant individual signals to claim one set
to be significant. Compared with the least stringent thresh-
old € = 2, the threshold ¢ = 4 or 5 seems to be a good
tradeoff for this T1D GWAS dataset, which claims about
hundreds fewer non-NULLs with only 4 fewer known T1D
variants. For different applications, practitioners may choose
an appropriate € value based on their domain experience and
knowledge. Table 2 lists the top 6 known T1D loci identi-
fied by GLIS using the threshold ¢ = 4. We can see that
the ranking by GLIS statistics is quite different from that
by SBH procedure. A good example is the ranking of SNP
rs6441961 and SNP rs7221109. SBH places SNP rs6441961
after SNP rs7221109, with rank 157 and 125, respectively,
while GLIS places SNP rs6441961 before SNP rs7221109,
with rank 102 and 109, respectively, both improved though.

5. CONCLUSION AND DISCUSSION

This article develops HMM-based partial conjunction
testing procedures for identifying disease associated genomic
regions in analysis of large-scale GWAS data. The proposed
GLIS procedure is extended from [33, 37] for SNP sets anal-
ysis. We show that dependency information, if taken into ac-
count, shall again bring improvement in the multiple testing
of partial conjunction hypotheses as in multiple testing of
single hypotheses. The numerical performances of our GLIS
procedure are investigated using both simulated and real
data. Compared to the SBH procedure [3] which ignores de-
pendency information, our GLIS procedure is more powerful
in identifying small to moderate signals.

We group adjacent SNPs in LD into a set. The motivation
is that multilocus methods such as Haplotype-based analy-
sis have been generally appreciated for their higher poten-

e=2 e=3 e=4 €=5 tial of detecting disease susceptibility region than do single-
GLIS — 1714(19)  1562(18)  1394(15)  1203(15)  marker methods [1]. In addition, previous research found
SBH 66(2) 60(2) 52(1) 47(1) that some groups of SNPs serve as better proxies for the
Table 2. The top 6 known T1D susceptibility loci identified by GLIS
Chromosome SNP Position (Base) GLIS SBH GLIS Rank SBH Rank
6 rs9268645 32516505 0 3.43E-43 1 7
1 rs6679677 114015850 1.85E-49 4.34E-09 37 33
16 rs12708716 11087374 8.51E-25 5.70E-05 68 64
12 rs1265566 110179096 1.74E-24 0.000687 70 72
3 rs6441961 46327388 3.37E-13 0.014597 102 157
17 rs7221109 36023812 1.30E-12 0.007472 109 125
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hidden SNPs than does any single SNP [9]. The improved
efficiency brought by our method can be attributed to the
utilization of the group structure and the modeling of the
LD dependency of SNPs by HMM. For a set of SNPs, there
may be two scenarios: (1) many of them show weaker indi-
vidual disease association because of high LD; and (2) only
one or few of them show strong disease association and the
others show no association due to low LD. It should be noted
that if a relatively high threshold for ¢ is set, for example,
the suggested value 4 or 5, our proposed method may prefer
(1) and miss those strong isolated SNPs surrounded by low
LD dependent neighbors. Because of the complex genome
heterogeneity, it may be hard to adjust the threshold values
to be region specific. As a result, our proposed method, like
many other multilocus methods, does not intend to replace
the current single SNP mapping methods but serves as a
useful complement.

The GLIS procedure can be improved in several ways.
First, a discrete time HMM is used in the proposed method.
However the SNPs genotyped on an array are not dis-
tributed with equal distance. An immediate improvement is
to incorporate the between-SNP distances and use an inho-
mogeneous HMM to model the dependency. Second, correla-
tions among SNPs are much more complicated and the LD
dependency may not always decrease monotonically with
the physical distance between two SNPs. It could be that
pairs of SNPs that are tens of kilobases apart are in “com-
plete” LD, whereas nearby pairs of SNPs from the same
region are in weak LD. It is shown that a network is a more
precise description of the complex SNP dependency [22].
It would be of interest to generalize our partial conjunction
testing procedure from a Markov chain to a Markov random
field. Third, it might be a strong assumption that the whole
chromosome follow a stationary Markov chain. Instead of as-
suming homogeneous transition probabilities for the whole
Markov chain, we may use different transition probabilities
for different genomic regions and introduce a hierarchical
Bayes model to model them. Such hierarchical Bayes mod-
els relax the homogeneous dependency assumption and may
lead to better inference procedures. Finally, each candidate
set has the same number of SNPs. When applying GLIS to
GWAS, the practitioner can allow variable set sizes and de-
termine an appropriate number of SNPs to include into a set
based on their domain knowledge, e.g., LD block structure
derived from HapMap. We expect that GLIS can be further
improved by integrating such domain knowledge.
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