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Variance model selection with application to joint
analysis of multiple microarray datasets under
false discovery rate control∗

Long Qu, Dan Nettleton,
†
Jack C. M. Dekkers and

Nicola Bacciu

We study the problem of selecting homogeneous variance
models vs. heterogeneous variance models in the context of
joint analysis of multiple microarray datasets. We provide
a modified multiresponse permutation procedure (MRPP),
modified cross-validation procedures, and the right AICc
(corrected Akaike’s information criterion) for choosing a
variance model. In a simple univariate setting, our modi-
fied MRPP outperforms commonly used competitors. For
microarray data analysis, we suggest using the sum of gene-
specific selection criteria to choose one best gene-specific
model for use with all genes. Through realistic simulations
based on three real microarray studies, we evaluated the pro-
posed methods and found that using the correct model does
not necessarily provide the best separation between differen-
tially and equivalently expressed genes, but it does control
false discovery rates (FDR) at desired levels. A hybrid pro-
cedure to decouple FDR control and differential expression
detection is recommended.
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1. INTRODUCTION

1.1 Joint analysis of from multiple
microarray datasets

Microarrays are a popular tool in genomic expression pro-
filing studies for discovering genes that respond to treat-
ments of interest. The measurements from each experimen-
tal unit in such studies are very high dimensional expres-
sion vectors, ranging from thousands to tens or hundreds of
thousands of genes, far exceeding the available sample sizes.
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This creates a hurdle to analyzing the data from all genes
simultaneously using traditional multivariate methods.

A popular and practical choice is to fit a univariate model,
e.g., a linear model or a linear mixed model [45], to each gene
separately. For each contrast of interest, the analysis usually
results in a p-value for each gene. This set of p-values is then
summarized so that a certain error rate is controlled at a
pre-specified level. False discovery rate (FDR) and variants
thereof have become the de facto standard choices for this
purpose [7, 40] due to the exploratory nature of microarray
expression studies.

A major problem of this approach is that the power for
detecting interesting genes is usually very low because 1) the
cost of microarrays hinders most researchers from using
moderate to large sample sizes, 2) the measurements pro-
duced by the current technology are rather noisy, and 3) the
pre-existing biological variation among experimental units is
often large. Although it may be reasonable to expect sam-
ple sizes to increase as the cost of technology decreases, an
examination of the microarray datasets hosted in the Gene
Expression Omnibus (GEO) database [5] indicates that the
percentage of datasets with 10 or fewer experimental units
has remained relatively steady at above 40% nearly every
year over the past decade. Combining data from multiple
datasets collected by a single lab or by several labs offers
one way to address the persistent problem of insufficient
sample size.

In this paper, we explore the variance model selection
problem for joint analysis of multiple microarray datasets
to improve the detection of differentially expressed genes
using gene-wise linear models. In particular, we focus on
how to determine if gene-specific estimates of error variance
should be pooled across datasets and used for testing linear
contrasts of means within a dataset. We assume that we
have data from several similar datasets using the same type
of microarray and biological samples from the same or very
similar populations. Our main interest lies in testing linear
contrasts within some datasets. This differs from the usual
meta-analysis in that different datasets do not necessarily
involve the same sets of treatments. Multiple datasets are
used only to provide better variance estimates, instead of
better estimates of means.
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More specifically, the problem we consider can be de-
scribed as follows. Suppose we have K independent data ma-
trices, Y1,Y2, . . . ,YK , which correspond to K independent
sets of high-dimensional vector-valued observations. We will
refer to Yk as a dataset and assume that Yk is of dimension
G × nk, with rows corresponding to genes and independent
columns corresponding to vector-valued observations for all
k = 1, 2, . . . , K. Further, we assume that E(Yk) = B′

kX
′
k,

where Xk is an nk × pk design matrix with full column
rank and Bk is a pk × G matrix of unknown parameters.
For example, suppose the kth dataset follows a commonly
used (unpaired) two-treatment design with 3 biological sam-
ples for each treatment. Xk could be I2 ⊗ 13, where I2 is
a 2 × 2 identity matrix, ⊗ stands for Kronecker product,
and 13 is a vector of 3 ones. The corresponding Bk will
be two rows of unknown mean parameters. Each row repre-
sents a treatment, and each column represents a gene. Fi-
nally, we assume that the covariance matrix of any column
of Yk is Σk for all k = 1, 2, . . . , K. In this paper, we de-
velop procedures for assessing whether a model assuming
diag(Σ1) = diag(Σ2) = · · · = diag(ΣK) should be selected
for making inference about B1,B2, . . . ,BK .

1.2 Model selection

The aforementioned question is a model selection prob-
lem with respect to variances. In general, model selection
has long been studied, and there are at least three major ap-
proaches. The first is to perform hypothesis testing, e.g., a
likelihood ratio test, and to choose a relatively simple model
as long as there is no obvious evidence showing that the
more complicated alternative models fit the data much bet-
ter. In our problem, we could begin by testing for equality
of variance across all K datasets within all genes. If the null
hypothesis is not rejected, then pooling variance estimates
across all datasets within each gene might be a good choice.
If the null hypothesis is rejected, then a refined form of the
variance model could be formulated and tested. For exam-
ple, if one dataset seems to have increased variation rela-
tive to the rest, a model that allows the variances for that
dataset to differ from the variances for other datasets could
be proposed and tested. This procedure can be repeated un-
til a sufficiently rich variance model is judged to adequately
fit the data according to the testing procedure. The sec-
ond approach is to order the candidate models according to
some criterion and to choose the model that optimizes the
criterion, e.g., Akaike’s information criterion (AIC) [1, 2],
Schwarz Bayesian information criterion (BIC) [32], or pre-
diction sums of squares (PRESS) [3]. The third approach
is to employ Bayesian techniques and to choose models by
summarizing posterior distributions [38]. Because Bayesian
methods often rely heavily upon Monte Carlo simulations
that are very computationally intensive for large microar-
ray datasets, we only discuss the first two approaches in
this study.

In the context of choosing an appropriate variance model
for joint analysis of multiple datasets, the hypothesis testing
approach requires a good test for heterogeneity in variances.
For univariate data, the likelihood ratio tests, i.e., the F -
test for two-sample comparison and Bartlett’s test [6, 37]
for general one-way designs, are known to be sensitive to de-
partures from normality. If the normality assumption holds,
they have very good theoretical properties, but in practice,
robust tests for variances are often recommended. For ex-
ample, Levene’s test performs one-way ANOVA on absolute
residuals from a least squares fit [24]. The Brown-Forsythe
test is similar but computes residuals from a least absolute
deviations fit [9]. These tests are only approximate, and, as
will be seen in our simulations, the approximation is often
very poor under typical small sample sizes in microarray
datasets. Thus, the resulting nominal p-value distribution
deviates far from the theoretical uniform distribution on
the unit interval. In this study, we propose an alternative
permutation based procedure that better controls type I er-
ror and has good power. Moreover, it can be automatically
applied to any high-dimensional dataset.

Commonly used model selection criteria can also be clas-
sified into three categories. Methods in the first category
seek models that minimize some estimate of the prediction
sums of squares. In linear models, Mallows’ CP [26] and
PRESS are widely used methods for such a purpose. How-
ever, these methods are designed for selecting mean struc-
tures, i.e., regressors of the model. In this study, we propose
two new cross-validation measures designed specifically for
differentiating alternative variance models.

The second category of model selection criteria, exem-
plified by AIC, corrected AIC (AICc) [21], and Takeuchi’s
information criterion (TIC) [41], includes methods that ap-
proximate expected estimated Kullback-Leibler divergence
as a criterion to rank candidate models. These methods have
firm information-theoretic justifications [1, 2] and are known
to be asymptotically efficient [33, 34]. They do not intend to
choose a smallest true model asymptotically but to choose
a good approximate model based on the available amount
of data, because the true model may be infinite dimensional
and fall outside the set of candidate models. Among the
three methods, AIC is a special case of TIC, but TIC is
difficult to estimate and is rarely used. The AICc is a bias-
corrected version of AIC, but its derivation is model depen-
dent. Unfortunately, common software implementations of-
ten ignore this fact and compute a panacea version of AICc
that assumes homogeneity in variances. For example, as of
version 9.2 of SAS/STAT [31], neither the PROC MIXED pro-
cedure nor the PROC GLIMMIX procedure reports the cor-
rect AICc when a GROUP option is used in the REPEATED
or RANDOM statement to specify heterogeneity of variances.
Hence, in this study, we will provide the correct AICc for-
mula for linear models with heterogeneous variances.

The third category of model selection criteria includes
model dimension consistent criteria, e.g., BIC, Hannan and

478 L. Qu et al.



Quinn’s information criterion (HQIC) [17] and Bozdogan’s
consistent AIC (CAIC) [8]. These methods have the prop-
erty that when the true models are indeed in the set of candi-
date models, then as sample size increases to infinity, a true
model with the smallest model dimension will be selected.
However, when the candidate set does not include any true
models, these criteria asymptotically choose a small approx-
imate model based on Kullback-Leibler divergence. For the
subtle difference compared with the second category of cri-
teria, see [10].

A completely different strategy to model selection is
regularizing parameter estimates through various shrink-
age methods. In the context of microarray data analysis,
many such methods have been proposed in the literature to
combat the insufficient sample size problem in estimating
variances. Most of these methods do not require the use of
datasets from other studies. They aim to improve gene-wise
variance estimation by pooling information from other genes
within a single dataset. Examples of such methods are ad
hoc modifications [14, 44], estimates based on mean-variance
relationship [13, 15, 20, 22, 23], and hierarchical model based
estimates [4, 11, 25, 36]. In this paper, we pick the very pop-
ular limma method [36] as a representative of such shrinkage
estimation methods and compare its performance with our
model selection approaches.

2. METHODS

In subsections 2.1 through 2.3, we propose three inde-
pendent variance model selection approaches. We develop
an approximate permutation test for testing homogeneity of
high dimensional spread in subsection 2.1. In subsection 2.2,
we propose cross-validation methods for choosing between
variance models. Under normal theory linear model assump-
tions, the correct AICc formula for selection of the variance
model is derived in subsection 2.3. Together with other in-
formation criteria, we suggest in subsection 2.4 to use the
sum of information criteria across genes as a means to se-
lect a common variance model for all genes in the analysis
of multiple microarray datasets. The performance of these
methods is assessed through simulations based on real mi-
croarray data in subsection 2.5 and section 3.

2.1 Modified MRPP for testing
homogeneity of variances

The multi-response permutation procedure (MRPP) [27]
is a multivariate permutation test that has been success-
fully applied to the analysis of gene sets for microarray
data [28], with the advantage that the dimension of the
response variable needs not be less than the sample size.
For a K-treatment design, the usual MRPP statistic is con-
structed in two steps. First, average pairwise Euclidean dis-
tances across observations within each treatment group are
calculated as a measure of spread within the treatment
group. Next, the test statistic is constructed by a weighted

sum of the K average pairwise distances, which is largely
motivated by the decomposition of sums of squares in the
usual analysis of variance (ANOVA). The treatment labels
are then randomly shuffled a large number of times, and the
test statistic is re-computed for each shuffling. The p-value
is reported as the proportion of shufflings that result in a
test statistic no larger than the one observed for the original
data before shuffling.

There are two obstacles in directly applying the usual
MRPP to test the equality of variances across multiple mi-
croarray datasets. First, the usual MRPP test statistic is
rather insensitive to changes in spread of the multivariate
distribution because it is mainly designed for detecting mean
differences, as in ANOVA. Second, within each microarray
dataset, observations are not exchangeable due to the dif-
ferences in means across treatments within datasets and the
MRPP statistic does not account for this more complicated
mean structure.

To overcome these problems, we first conduct a complete
QR decomposition for each Xk,

Xk = QkRk = [Qk1,Qk2][R′
k1,0]′,

where Qk is an nk×nk orthonormal matrix with the first pk

columns being Qk1 and the remaining columns being Qk2,
and Rk is an nk × pk matrix with the first pk rows being an
upper triangular matrix Rk1 and the remaining rows being
zero.

To remove the mean structure in Yk, it is trivial to check
that the orthogonal projection matrix (the hat matrix) that
projects onto the column space of Xk is Qk1Q′

k1, so that
the residual matrix Yk(Ik −Qk1Q′

k1) has mean zero, where
Ik is the nk × nk identity matrix. Mielke and Berry [27] di-
rectly used the columns of residual matrices similar to these
to perform permutation tests. However, this is problematic
because 1) the columns within the same residual matrix are
correlated, whereas columns from different residual matrices
are independent, and 2) the covariance matrices correspond-
ing to columns within any residual matrix are not necessarily
identical. Hence, even if the null hypothesis is true, the fun-
damental assumption of exchangeability for the permutation
test is violated.

To improve exchangeability, we suggest using a transfor-
mation that simultaneously removes the means, decorrelates
the columns, and standardizes the columns. Specifically, we
define Zk = YkQk2 for all k = 1, 2, . . . ,K and propose to
use the columns of Z1,Z2, . . . ,ZK as data for an MRPP-
based (approximate) test of variance equality. Note that
each Zk is G × dk instead of G × nk, where dk = nk − pk

is the error degrees of freedom for dataset k. This reduc-
tion makes sense since after accounting for the means, the
effective sample size for the variances is actually dk for the
kth dataset. A similar reduction is used for residual max-
imum likelihood [29] estimation of variance components in
mixed linear models. Tests not accounting for the loss of
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information in estimating the location parameters, e.g., the
commonly used Levene’s test and the Brown-Forsythe test,
will likely lead to poorly controlled type I errors, as verified
through simulations in the next section. Also, by using the
orthogonality of the columns of Qk, it can be easily checked
that the columns of Zk are uncorrelated and the covariance
matrix of any column of Zk is identically Σk, the same as the
covariance matrix of any column in Yk. Although uncorre-
latedness implies neither independence nor exchangeability
among the columns, unless normality is further assumed,
Zk does offer a better candidate than the raw residuals for
approximate permutation tests, by alleviating the problem
up to the second order moments.

Lastly, we need a test statistic based on these Z matrices.
Both steps in constructing the usual MRPP statistic need
some modification. First, the measure of within-treatment
spread no longer needs the “pairwise” concept, because we
now know the location of Zk, i.e., E(Zk) = 0. Actively using
this location information will lead to more powerful tests.
To keep our approach closely related to the well established
MRPP statistic, we choose the spread measure to be the
average Euclidean distance of each column of Zk to the ori-
gin and denote this as δk. Second, for testing the equality
of spreads across the K datasets, the weighted sum of δk

used in the usual MRPP formulation is no longer sensible.
Instead, we propose to use

min
k=1,2,...,K

δk

max
k=1,2,...,K

δk

as the test statistic, which is similar to the Fmax statistic
of Hartley [19]. Analogous to standard permutation proce-
dures, the dataset labels for columns of Zk’s are then shuf-
fled a large number of times and the p-value is reported as
the proportion of shufflings that results in a test statistic
smaller or equal to the one observed without shuffling.

This test will be more sensitive when only one or a few of
the K datasets have very different spreads. Other statistics
can be constructed to be more sensitive when most of the K
datasets have slightly different spreads, but we believe the
latter case is less important for the purpose of joint analysis
of multiple datasets because most tests of mean contrasts
can tolerate mild departures from the equal variance as-
sumption, especially under balanced designs. Second, this
statistic is more sensitive to differences in marginal variabil-
ity than to changes in correlations among the G dimensions.
This is advantageous for joint analysis of multiple microar-
ray datasets because, in the standard gene-by-gene analy-
sis, pooling error variance estimates across datasets is jus-
tified whenever marginal variances are approximately con-
stant across datasets. Thus for the microarray application,
it is more important to be able to detect departures from
diag(Σ1) = diag(Σ2) = · · · = diag(ΣK) than to be able
to detect departures from Σ1 = Σ2 = · · · = ΣK . Further-
more, our experience with real microarray datasets suggests

that an expansion of gene-specific error variances by a mul-
tiplicative factor from one dataset to another is the most
common type of departure from diag(Σ1) = diag(Σ2) =
· · · = diag(ΣK). Thus, the power of our test is focused on
detecting such alternatives.

2.2 Cross-validation for selecting variance
models

Cross-validation (CV), as a data based method for esti-
mating prediction ability, is a powerful tool for model se-
lection. However, the most commonly used CV method in
linear models, PRESS, and the closely related Mallows’ CP

criterion, are not able to identify heterogeneity in variance.
Furthermore, the usual application of CV only selects one
common model that has good prediction ability over all K
datasets. But when our interest primarily lies in inference
within a single dataset, the selected model might not be
optimal because the prediction ability on other datasets bi-
ases our choice. Hence, it might be more interesting to se-
lect different models for inference problems within different
datasets.

Here we propose CV based procedures that can solve the
above problems. A key point is to consider element-wise
squared Zk, denoted as Z(2)

k , as the raw data to perform
prediction, such that the selection of variance models on
Zk can be roughly treated as the selection of mean mod-
els on Z(2)

k . For ease of discussion, let z(2)
k denote an arbi-

trary row of Z(2)
k . The same procedure to be discussed can

be applied to each row of Z(2)
k . In the case of normality

based linear models for Yk, the elements of z(2)
k are inde-

pendently and identically distributed as scaled χ2
1 random

variables with mean σ2
k > 0. Hence the average of all ele-

ments of z(2)
k provides a natural estimator of its mean, i.e.,

the variance of each element in the corresponding row in
Yk. A variance model can be specified by a function M
that maps dataset k ∈ {1, 2, . . . ,K} onto {1, 2, . . . , J}, such
that σ2

k = σ2
k′ iff M(k) = M(k′) for J ∈ {1, 2, . . . ,K}. For a

full model, J = K; and for a reduced model, J < K. Once
the z(2)

1 , z(2)
2 , . . . , z(2)

K are treated as the data, leave-one-out
cross-validation can be done as usual. That is, we delete one
data point and use the average of other data points that
share the same mean according to the model specified by M
as a predictor for the deleted data point, and the procedure
is repeated for each data point.

Suppose the ith element of z(2)
k , z

(2)
ki , is deleted, and the

prediction based on the remaining data according to the
model specified by M for z

(2)
ki is

z̃
(2)
k(−i) =

1
Dk − 1

⎛
⎝−z

(2)
ki +

∑
{k′:M(k′)=M(k)}

dk′∑
j=1

z
(2)
k′j

⎞
⎠ ,

where Dk =
∑

{k′:M(k′)=M(k)} dk′ is the total degrees of free-

dom used for estimating the mean of z
(2)
ki according to model
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M without deleting any data. We define the raw PRESS
residual as eki = z

(2)
ki − z̃

(2)
k(−i) and the corrected PRESS

residual as e′ki = eki

√
(Dk − 1)/(2Dk). It can be easily

checked that E(eki) = E(e′ki) = 0 and Var(e′ki) = σ4
k. The

multiplicative correction in e′ki removes the dependence of
Var(eki) upon Dk, so that e′ki are comparable to each other.
Although this correction assumes normality of Yk, it is still
reasonable in other cases, especially for reasonable sample
sizes. The final PRESS measure for model selection is then∑K

k=1

∑dk

i=1 e′ki
2. The model with the smallest PRESS mea-

sure is preferred.
Alternative to the squared error loss above, we may

choose the prediction loss to be the (−2×) prediction log
likelihood for each z

(2)
ki , which relates to the Kullback-Leibler

divergence. Let the log likelihood based on a single data
point z

(2)
ki be �ki(σ2

k) = log fχ2
1
(z(2)

ki /σ2
k) − log σ2

k, where
fχ2

1
is the density function for the χ2

1 distribution. The
final CV based prediction log likelihood criterion is then
−2

∑K
k=1

∑dk

i=1 �ki(z̃
(2)
k(−i)). Again, the model with the small-

est criterion is preferred.
Note that the above two procedures select one model

to be used for all K datasets. This may not be ideal
if we are interested in analyses within datasets but not
across datasets. In this case, CV based procedures can
be easily adapted to dataset-specific PRESS

∑dk

i=1 e′ki
2

and/or dataset-specific (−2×) prediction log likelihood
−2

∑dk

i=1 �ki(z̃
(2)
k(−i)) as model selection criteria. Note that

even if these procedures are dataset-specific, information
from other datasets is borrowed through the prediction
z̃
(2)
k(−i). Use of these dataset-specific criteria would allow dif-

ferent variance pooling strategies for different datasets. As
we will demonstrate through simulation in the next section,
in some cases it may be advantageous to pool error variance
estimates across two datasets 1 and 2 for analyzing dataset
1 but not for analyzing dataset 2. Thus such a breakdown
of model selection criteria can be quite useful. Note that
it is rarely straightforward to break other information cri-
teria (e.g., AIC or BIC) down in this manner, because of
the difficulty in reasonably decomposing the penalty on log
likelihood.

2.3 AICc under heteroscedasticity

Hurvich and Tsai [21] developed AICc for selecting an
appropriate mean model in a linear model context under the
normality assumption. As an estimate of expected estimated
Kullback-Leibler divergence, AICc is exactly unbiased and
has the same variance as the asymptotically unbiased AIC.
Hence Burnham and Anderson [10] recommended routine
use of AICc over AIC.

However, such analytic small sample bias correction has
to be dealt with case by case, i.e., the correction will be
different for different models. For example, the correction
under a heterogeneous variance assumption is different than

under a homogeneous variance assumption. Unfortunately,
to our knowledge, implementations in common statistical
software do not acknowledge such differences.

Under the fully heteroscedastic model across K datasets,
the correct AICc formula is

−2
K∑

k=1

(log REMLk) + 2
K∑

k=1

dk

dk − 2
,

where REMLk is the maximized residual likelihood for
dataset k. To see why this formula makes sense, first con-
sider the kth dataset alone, where the homoscedastic AICc is
known to be −2 log REMLk +2dk/(dk − 2). That is, the bias
in using maximized residual log likelihood to estimate the
expected mean prediction log likelihood for the kth dataset
is exactly dk/(dk−2). Since the K datasets are independent,
their log likelihoods are additive and the final bias is simply
the sum of the bias of each individual maximized residual log
likelihood, which justifies the heteroscedastic AICc formula.

Because 2dk/(dk −2) is always greater than 2 when dk >
2, the AICc penalty is larger than the AIC penalty 2K.
When dk → ∞ ∀ k, the two criteria are equivalent. However,
the SAS/STAT PROC MIXED procedure with the GROUP option
for specifying heterogeneous variance across datasets uses
2K(

∑K
k=1 dk)[(

∑K
k=1 dk) − K − 1]−1 as the penalty term,

which converges to AIC if dk → ∞ for any k. Hence we
would expect that this incorrect AICc will not perform well
when some dk’s are small but others are large.

2.4 Combining model selection criteria from
multiple genes

In a usual gene-by-gene analysis of microarray data, one
can compute information criteria for each gene separately.
For better interpretability, it is often desirable to fit the
same model to each gene, and hence an overall criterion for
choosing one model based on data from all genes is needed.

We suggest using the sum of gene specific information
criteria as an overall measure for model selection. This is a
sensible strategy in general and the obvious strategy for the
special case of independence across genes. For AIC, the log
likelihood is additive under independence and the penalty
term (the number of parameters) is also additive. So the sum
of gene specific AIC’s equals the AIC directly calculated by
assuming an independence model on all G genes. The same
argument also applies to prediction log likelihood CV and
the correct AICc developed in the last subsection, but not
for the AICc reported by SAS/STAT, nor for BIC, CAIC, or
HQIC since their penalty terms cannot be added directly.

The Akaike’s weights [10] can be used to justify the use of
sums as an overall model selection criterion for BIC, CAIC,
and HQIC, in addition to AIC and AICc. Considering q
candidate models, the Akaike’s weight for model m and gene
g is defined as

wmg =
exp{−0.5ΔICmg}∑q

m′=1 exp{−0.5ΔICm′g}
,
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where ΔICmg = ICmg − min1≤m′≤q ICm′g, and ICmg is
the information criterion for model m and gene g, m =
1, 2, . . . , q, and g = 1, 2, . . . , G. This weight can be easily
interpreted as the posterior probability of model m for gene
g, and the choice of different information criteria is equiva-
lent to choosing a different prior probability for each model
(see [10] for details).

Hence, by assuming independence across genes, the pos-
terior probability of selecting model m for all G genes
is the product wm· =

∏G
g=1 wmg, which is a monotoni-

cally decreasing function of the sum of information crite-
ria

∑G
g=1 ICmg. In other words, the model selected with

the smallest sum of information criteria across genes always
matches the model with the largest posterior probability
among the q − 1 alternative overall models.

To combine gene-specific PRESS into an overall model se-
lection measure, the sum is not as reasonable because genes
with large variances tend to have large PRESS and the sum
may be dominated by such genes. Hence, we use gene voting
to select the overall model, so that the model selected for
all genes will be the one selected by the plurality of gene-
specific PRESS statistics.

Although the above arguments rely on independence
across genes, these combination procedures are still natu-
ral intuitive measures under dependence. We do not expect
that dependence will seriously bias the selection of mod-
els. Taking the most extreme case as an example, suppose
we only have two genes which are nearly completely depen-
dent. Then the gene-wise model selection criteria will almost
always select the same model, and the combination of cri-
teria using either the sum or the votes will also select the
same model. Hence the combination does not favor either
simpler or more complex models, even in this highly depen-
dent case. Therefore, these combination procedures remain
sensible and useful in practice. Furthermore, although our
approach was developed under the assumption of indepen-
dence across genes, note that we evaluate its performance
using a simulation procedure that includes correlation across
genes as described in the next subsection.

2.5 Simulation based on real microarray data

Simulation studies to evaluate the performance of model
selection methods often generate data from parametric mod-
els. Although such results are helpful to aid understanding
the pros and cons of each method, they provide little in-
formation about actual performance on real datasets, espe-
cially when we have few clues about the general dependence
structure among a large number of genes. To overcome such
difficulties, we replace traditional model-based simulation
with subsampling from an actual microarray dataset that
involves at least one large treatment group. Treating the
large treatment group as a population, we can simulate var-
ious multiple-dataset scenarios by drawing subsamples from
the population and perturbing the data as described below.

Table 1. Simulation setting for the ratio of variances

μr σ2
r E(rg)

0 0 1 (null)
−0.057800 0.3422 1

1.040812 0.3422 3
1.551638 0.3422 5
2.244785 0.3422 10

Details about the populations actually used in our study are
provided at the end of this subsection.

Let G denote the number of genes and n the number of
biological samples in the population. Let E denote a G × n
residual matrix obtained by subtracting the gene-specific
mean log-scale expression value from the log-scale expression
values of each gene. Because the population size n is large,
we ignored the small dependence across the columns of E.
Also, we computed the sample standard deviation for each
gene g as σ0g, and treated these as known values due to the
large number of degrees of freedom.

To generate two datasets, each involving two treatments,
we first randomly sampled 2n1 + 2n2 columns from E with-
out replacement to form a G× (2n1 +2n2) matrix, with the
first 2n1 columns Y1 denoted as dataset 1 and the other
2n2 columns Y2 denoted as dataset 2. Within each dataset,
a balanced 2-treatment comparison design was used. Sample
sizes n1 and n2 were set to 3, 5, or 7, which are similar to
those used in many microarray studies.

Next, we independently generated G random variables
rg, g = 1, 2, . . . , G, from a log Normal(μr, σ

2
r) distribu-

tion, where the settings of μr and σ2
r are listed in Table 1.

Then the gth row of Y2 was multiplied by √
rg for all

g = 1, 2, . . . , G. Hence rg is the ratio of the error variance
in the 2nd dataset to the error variance in the 1st dataset
for the gth gene. Note that, when μr = σ2

r = 0, all rg = 1,
i.e., the error variances are equal across the two datasets.
When σ2

r > 0, μr was chosen such that E(rg) was 1, 3, 5,
or 10 respectively. σ2

r = 0.3422 was used here such that the
error variance correlation between the two datasets on the
log scale is about 0.8, which is very similar to the observed
log variance correlations between different treatments in the
real microarray datasets we examined. In other words, our
simulation setup acknowledges that genes with small error
variances in one dataset also tend to have small variances
in the other dataset, which is also a biologically rational
assumption.

In order to assess the ability of different model selection
methods to detect differentially expressed genes and to con-
trol false discovery rates, we perturbed the mean of a subset
of genes in each dataset to mimic responses to the treat-
ment. Since we believe that in real biological systems the
standardized effective sizes are probably not related to the
error variances, we added to each row g of the first treatment
group in the kth dataset σ0gr

(k)
g ugk, where ugk was indepen-

dently sampled from a mixture of zero with probability 0.8
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and a standard normal distribution with probability 0.2 for
all g = 1, 2, . . . , G and k = 1, 2, and r

(k)
g = 1 when k = 1 and

r
(k)
g = √

rg when k = 2. Thus on average, 20% of genes in
each dataset were simulated to be differentially expressed.

For each of the 15 simulation settings (3 sample sizes
× 5 variance ratios), 100 independent dataset-pairs were
simulated. Gene-wise linear models were fit to each simu-
lated dataset-pair in the statistical computing environment
R [30] using the model selection methods proposed in subsec-
tions 2.1 through 2.3. The accuracy in ranking differentially
expressed genes was assessed through the area under the re-
ceiver operating characteristic (AUROC) curves using the
package ROCR [35]. False discovery rate control procedures
of Benjamini and Hochberg (BH) [7] and Storey and Tib-
shirani (ST) [40] were used.

For each method, both results from selecting a variance
model for each individual gene and results from selecting
an overall variance model for all genes were obtained. For
AIC, AICc assuming heterogeneity of variances, BIC, CAIC,
HQIC, and the cross-validated prediction log likelihood, the
overall model was determined through sums of these criteria.
For PRESS, the overall model was determined through gene-
wise voting. For our modified MRPP procedure, three p-
value cutoffs 1/35 ≈ 0.03, 2/35 ≈ 0.06, or 4/35 ≈ 0.11
were examined, and the overall model was determined by
the multivariate test applied to all genes instead of from
summarizing gene-wise MRPP tests.

In addition to the variance model selection approaches,
the very popular limma method [36] was also included as a
representative of the variance shrinkage approaches. Limma
assumes an inverse gamma prior on the gene-wise variances
and performs well in our experience. Furthermore, an easy
to use R package is available for the necessary computation.
Although there could be differences in terms of performance
between limma and other shrinkage methods, we believe the
general conclusions would be very similar when compared
with our model selection methods. In our simulation study,
all default parameter settings in the limma package (version
2.18.3) were used.

To further compare our proposed modified MRPP pro-
cedure to other commonly used tests of heterogeneity of
variances for univariate data, we conducted a separate two-
sample comparison study, again using subsamples from real
microarray data, except that the subsampling of each gene
was performed separately to break the correlation across the
genes. In this way, the resulting gene-wise p-values across
genes can be pooled to provide clearer information about
the properties of these tests under the null and under the al-
ternative hypotheses. The alternative tests being compared
are Levene’s test, the Brown-Forsythe test, the F -test, and a
new test, denoted hereafter as reduced Levene’s test, which
applies ANOVA on the absolute values of the decorrelated
and reduced datasets, as in our modified MRPP.

To measure departure from uniformity under the null for
each of the tests, the resulting G p-values were first binned

into B bins, with bin boundaries determined as the non-
redundant set of observed MRPP p-values, together with
two natural boundaries 0 and 1. This binning is intended
to remove the difference caused by the discrete nature of
MRPP p-values, so that results from all tests are compa-
rable. Next, Kullback-Leibler divergence from uniformity
as a function of the likelihood ratio was computed for p-
values from each method separately, as

∑B
b=1 wb[log wb −

log(Cb/G)], where wb is the width of bin b and Cb is the
number of p-values falling in bin b. Larger Kullback-Leibler
divergence indicates larger departure from uniformity.

Under the alternative hypotheses, samples from one
treatment are multiplied by √

rg as before. Because the ac-
tual sizes of these approximate tests are not exactly the
same, using a fixed cutoff for nominal p-values does not pro-
vide fair comparisons. So we computed the probability (i.e.,
the proportion among the G genes) of the observed test
statistic under the alternative hypothesis being at least as
extreme as the observed test statistic under the null hypoth-
esis for each simulation. The larger the probability is, the
more powerful the test to detect heterogeneities. This mea-
sure is in the same spirit as AUROC or the signed rank test.
All these simulations were repeated 50 times, and different
sample sizes for each treatment were used (Tables 9 to 11).

Our entire simulation process was repeated using three
different populations, each derived from a real microarray
dataset. The datasets are all publicly available in the GEO
database hosted by the National Center for Biotechnol-
ogy Information (http://www.ncbi.nlm.nih.gov/geo/)
with accession numbers GSE755 [42], GSE4115 [39] and
GSE5406 [18], respectively. The normalized “series” matrix
files were downloaded from the GEO website, and the base-
2 logarithm was taken to produce our raw data. For each
dataset, only the treatment group with the largest sample
size was used as the population from which to simulate mul-
tiple datasets, as described previously in this subsection.

3. SIMULATION RESULTS AND
DISCUSSION

Our simulation results from the three real populations
differed only slightly. Thus, we only report results from the
population derived from dataset GSE5406 here. To save
space, results with different sample sizes are not all reported,
but we will mention the trend of change as sample sizes in-
crease.

3.1 Proportion of correctly selected models

The proportion of correctly selected models using each
of the model selection procedures is in Tables 2 and 3 for
sample sizes 3 and 7, respectively. For all following tables,
standard errors are shown in parentheses.

We can see from Table 2 that the PRESS criterion gen-
erally prefers larger models in small samples. That is, if the
correct model is homogeneous, PRESS has lower probability
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Table 2. Proportion (×100) of correctly selected models from dataset GSE5406 when sample size n1 = n2 = 3

Method
rg ≡ 1 E(rg) = 1 E(rg) = 3 E(rg) = 5 E(rg) = 10

overall per gene overall per gene overall per gene overall per gene overall per gene

AIC 98.0(1.4) 75.7(0.4) 4.0(2.0) 26.4(0.4) 70.0(4.6) 41.1(1.0) 97.0(1.7) 55.3(1.1) 100.0(0.0) 74.4(0.9)

AICc 100.0(0.0) 94.7(0.2) 0.0(0.0) 6.1(0.2) 0.0(0.0) 13.4(0.6) 2.0(1.4) 22.9(0.9) 39.0(4.9) 41.5(1.2)

BIC 98.0(1.4) 76.6(0.4) 1.0(1.0) 25.4(0.4) 61.0(4.9) 40.1(1.0) 97.0(1.7) 54.3(1.1) 100.0(0.0) 73.6(0.9)

CAIC 100.0(0.0) 85.4(0.3) 0.0(0.0) 16.1(0.3) 13.0(3.4) 28.9(0.9) 53.0(5.0) 42.4(1.1) 99.0(1.0) 63.3(1.1)

HQIC 62.0(4.8) 68.0(0.4) 61.0(4.9) 34.1(0.4) 100.0(0.0) 49.1(1.0) 100.0(0.0) 62.8(1.0) 100.0(0.0) 79.9(0.8)

CV-lik.full 100.0(0.0) 74.1(0.3) 0.0(0.0) 27.5(0.3) 0.0(0.0) 38.8(0.8) 0.0(0.0) 49.8(0.9) 13.0(3.4) 65.0(0.8)

PRESSfull 92.0(2.7) 55.3(0.4) 16.0(3.7) 46.6(0.4) 85.0(3.6) 58.7(0.8) 99.0(1.0) 69.6(0.8) 100.0(0.0) 82.9(0.6)

MRPP0.03 91.0(2.9) 95.6(0.1) 8.0(2.7) 4.9(0.1) 70.0(4.6) 8.8(0.3) 92.0(2.7) 13.5(0.5) 100.0(0.0) 22.6(0.6)

MRPP0.06 83.0(3.8) 91.8(0.2) 14.0(3.5) 9.0(0.2) 81.0(3.9) 14.8(0.5) 96.0(2.0) 21.5(0.6) 100.0(0.0) 33.3(0.7)

MRPP0.11 70.0(4.6) 84.8(0.3) 25.0(4.3) 16.4(0.3) 88.0(3.2) 24.9(0.7) 99.0(1.0) 34.2(0.8) 100.0(0.0) 48.9(0.8)

Table 3. Proportion (×100) of correctly selected models from dataset GSE5406 when sample size n1 = n2 = 7

Method
rg ≡ 1 E(rg) = 1 E(rg) = 3 E(rg) = 5 E(rg) = 10

overall per gene overall per gene overall per gene overall per gene overall per gene

AIC 74.0(4.4) 72.1(0.5) 50.0(5.0) 31.9(0.4) 100.0(0.0) 62.6(1.1) 100.0(0.0) 82.0(0.8) 100.0(0.0) 95.6(0.3)

AICc 99.0(1.0) 78.4(0.4) 5.0(2.2) 25.4(0.4) 98.0(1.4) 56.4(1.1) 100.0(0.0) 77.7(0.9) 100.0(0.0) 94.1(0.4)

BIC 100.0(0.0) 82.7(0.4) 1.0(1.0) 20.9(0.4) 91.0(2.9) 51.2(1.1) 100.0(0.0) 73.8(1.0) 100.0(0.0) 92.6(0.5)

CAIC 100.0(0.0) 88.0(0.3) 0.0(0.0) 15.0(0.3) 68.0(4.7) 43.1(1.2) 99.0(1.0) 66.9(1.1) 100.0(0.0) 89.6(0.6)

HQIC 96.0(2.0) 75.5(0.4) 19.0(3.9) 28.4(0.4) 100.0(0.0) 59.4(1.1) 100.0(0.0) 79.8(0.9) 100.0(0.0) 94.8(0.4)

CV-lik.full 100.0(0.0) 75.6(0.4) 0.0(0.0) 28.2(0.4) 81.0(3.9) 56.2(1.0) 100.0(0.0) 75.1(0.9) 100.0(0.0) 90.5(0.5)

PRESSfull 96.0(2.0) 59.1(0.5) 11.0(3.1) 45.1(0.4) 100.0(0.0) 72.5(0.9) 100.0(0.0) 87.6(0.6) 100.0(0.0) 97.1(0.2)

MRPP0.03 93.0(2.5) 95.0(0.2) 14.0(3.5) 6.8(0.2) 97.0(1.7) 25.2(0.8) 100.0(0.0) 45.5(1.0) 100.0(0.0) 73.5(0.9)

MRPP0.06 87.0(3.4) 91.3(0.2) 21.0(4.1) 11.3(0.3) 99.0(1.0) 34.8(1.0) 100.0(0.0) 57.0(1.0) 100.0(0.0) 82.4(0.7)

MRPP0.11 77.0(4.2) 84.5(0.3) 23.0(4.2) 19.1(0.4) 100.0(0.0) 47.1(1.0) 100.0(0.0) 69.1(1.0) 100.0(0.0) 89.6(0.5)

of selecting such a model; but if the correct model is hetero-
geneous, PRESS performs best to choose the larger model.
This is most obvious for gene-by-gene model selection, but
when we consider selecting an overall model for all genes by
voting, PRESS still picks out the correct model > 90% of
the time even if the true model is homogeneous. Table 3 ver-
ifies this and further shows that, when sample size increases,
the performance of PRESS also improves accordingly.

On the contrary, the AICc, CAIC and the CV log likeli-
hood criteria seem to prefer smaller models (Table 2). They
mostly pick the right model when the true model has ho-
mogeneous variances across datasets, but they tend not to
choose the correct model when the true variance model is
heterogeneous until E(rg) is fairly large. However, when
sample size increases (Table 3), their performance also im-
proves, in particular AICc. This is reasonable because AICc
converges to AIC asymptotically.

The performance of AIC, BIC and HQIC generally lies
between the two extremes (Tables 2 and 3). However, when
sample size increases, AIC still shows a relatively higher
probability of overfitting, whereas the overfitting for HQIC
in small samples diminishes as sample size increases. This
is because the penalty for AIC is independent of sample
size, whereas BIC and HQIC use sample size as auxiliary
information to achieve model dimension consistency.

For the model selection criteria other than PRESS and
modified MRPP, the use of sum of individual gene-wise cri-
teria seems to have good performance (Tables 2 and 3). For
all methods, except CV log likelihood under small sample
sizes, the probability of selecting the correct overall model
is generally larger than the corresponding probability of se-
lecting the correct individual gene model. This demonstrates
the advantage of sharing information across genes, especially
when the majority of genes provide concordant informa-
tion about which model is preferred. The CV log likelihood
prefers smaller models too often and using the sum does not
help much. However, when sample size increases, it performs
similarly to other criteria.

For the modified MRPP test, when the null hypothesis
is true, i.e., when the correct model is homogeneous, the
probability of selecting the right model is generally slightly
smaller than 1 − α (Tables 2 and 3), which indicates that
the test is only approximate, tending to produce slightly
liberal p-values. This problem is more severe for the mul-
tivariate version of the test to select an overall model, but
less so for univariate tests to select individual gene mod-
els. Theoretically, when the responses are indeed normally
distributed, the decorrelation in our modified MRPP offers
complete independence. The better control for type I error
shown in univariate tests than multivariate tests suggests
that the marginal distribution of each gene’s expression is
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probably not far from normality, but the joint distribution
of all genes deviates further from multivariate normality due
to complicated unknown dependencies among genes. How-
ever, when sample size increases, the control of type I error
for the multivariate test also gets tighter gradually.

Another phenomenon to note is that the univariate mod-
ified MRPP tests do not yield a high proportion of rejected
hypotheses when the true model is heterogeneous (Tables 2
and 3), which suggests the use of other model selection cri-
teria for individual gene models. However, when we consider
the multivariate test to choose an overall model, the power
of the modified MRPP increases considerably. This is be-
cause the test statistic we use is very sensitive when the
direction of variability change is generally the same for the
majority of genes. In this case, the high-dimensionality am-
plifies such a concordant directional change, and the test
power is actually improved by the high dimensionality.

Although there seem to be some shortcomings, i.e., being
approximate and not powerful in the univariate case, our
modified MRPP test actually suffers less severely from such
problems than other tests, as shown in Subsection 3.4.

Lastly, from the results shown in Tables 2 and 3, we see
that when the variances across the two datasets are different
but E(rg) = 1, none of the model selection procedures work
well. However, this is not necessarily a disadvantage, because
even if the correct model is heterogeneous, we need enough
data to support the use of such a larger model. If the correct
but larger model differs little from the smaller model, the
cost in losing precision of estimates may not justify the use
of the correct model. This will be further demonstrated in
the next subsection.

3.2 Ranking genes in terms of differential
expression

Although the proportion of correctly selected models is
a good intuitive measure of performance of model selection
procedures and is used in many simulation studies, it can-
not reveal how well each procedure can pick the differentially
expressed genes out of the other tens of thousands of equiv-
alently expressed genes. Hence, we next conduct gene-wise
F -tests under the model selected by each procedure to rank
the genes according to their p-values and compare the area
under the corresponding ROC curves to see how methods
differ in terms of detecting differential expression. Results
from study GSE5406 when models are selected for each in-
dividual gene are shown in Tables 4 and 5, with Table 4
showing results with sample size = 7, and Table 5 showing
results with sample size = 3. These results are summarized
by contrasts of interest. Contrast k represents the compari-
son of treatment means within the kth dataset, k = 1 or 2.
By simulation, the first dataset generally has smaller vari-
ance than the second dataset. Further, to ease the direct
comparison of the AUROC’s across different methods, the
standard errors reported in parentheses are computed after

removing the common dataset effects by assuming a two-
way (dataset & methods) linear model on the AUROC’s.
Note that although the differences in AUROC values shown
in these tables are small, they are still important because
1) compared with standard errors, the difference is usually
significant, and 2) the total number of genes is quite large
so that even a small difference in AUROC may reflect sub-
stantial changes in the rankings of a large number of genes.

Tables 4 and 5 show that using the correct model does
not necessarily give the best ranking of genes, even if sam-
ple sizes are not small. When E(rg) is large, the correct
model, i.e., the “separate” row in the tables, generally per-
forms well and the AUROC’s are big. But when the true
model is heterogeneous but E(rg) is close to 1, the correct
model is actually the worst in terms of AUROC. In both
this case and when the true model is homogeneous, the best
procedure is to always perform a pooled analysis of the two
datasets, whether it is the correct model or not. A partial
explanation is that when E(rg) is close to 1, we need much
larger sample sizes to get stable estimates from using the
larger, but correct, model.

However, this is not the whole story. A special feature
shown in Tables 4 and 5 is that, for contrast 2, no matter
what the correct model is, performing a pooled analysis is
always better than performing a separate analysis, even if
E(rg) is very large. The same phenomenon is also observed
in the other two datasets GSE4115 and GSE755. Further,
when we greatly increase the sample size, the same phe-
nomenon still occurs (results not shown). Hence, this is not
a phenomenon that can be explained by the lack of stable
estimates under small sample sizes.

Since this phenomenon only occurs for the contrast in the
second dataset, which has larger variances than the first,
one might conjecture that the pooled variance estimate in
this case is a shrinkage estimate that actually has smaller
squared error risk and/or Stein-type risk. However, this does
not fully explain the phenomenon either. A related obser-
vation by [43] demonstrated that optimal shrinkage estima-
tion of variances does not always perform best. Our results
confirm this observation using real datasets; using pooled
estimates of variances is better in terms of AUROC for con-
trast 2 even if the variance estimates are far from the true
parameters in the heterogeneous model. Hence our tenta-
tive conclusion is that AUROC is simply a different criterion
than the usual loss functions for the variances. The AUROC
tries to estimate the probability of giving higher ranking to
a random differentially expressed gene than to a random
equivalently expressed gene. It may or may not correspond
to using good variance estimates, and it does depend upon
which contrast is of interest. Further studies on methods
optimizing AUROC should be valuable.

One can also see from Tables 4 and 5 that, for the cross-
validation procedures, criteria based on full data and criteria
only based on specific parts of the data do not necessarily
select the same model. For contrast 1, contrast-specific CV
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Table 4. Area (×1000) under the ROC curve for selecting individual gene model from dataset GSE5406 and n1 = n2 = 7

Method
Contrast 1 Contrast 2

rg≡1 E(rg)=1 E(rg)=3 E(rg)=5 E(rg)=10 rg≡1 E(rg)=1 E(rg)=3 E(rg)=5 E(rg)=10

AIC 715.9(0.0) 717.6(0.0) 716.5(0.1) 716.5(0.1) 716.9(0.0) 717.5(0.0) 712.3(0.1) 710.8(0.0) 710.7(0.0) 711.6(0.0)

AICc 716.1(0.0) 717.6(0.0) 716.0(0.1) 715.9(0.1) 716.7(0.0) 717.7(0.0) 712.4(0.0) 710.6(0.0) 710.3(0.0) 711.3(0.0)

BIC 716.4(0.0) 717.7(0.0) 715.5(0.1) 715.4(0.1) 716.4(0.0) 717.9(0.0) 712.5(0.0) 710.4(0.0) 709.9(0.0) 711.0(0.0)

CAIC 716.7(0.0) 717.8(0.0) 714.8(0.1) 714.2(0.1) 715.5(0.1) 718.1(0.0) 712.5(0.0) 710.3(0.1) 709.3(0.1) 710.4(0.0)

HQIC 716.0(0.0) 717.6(0.0) 716.3(0.1) 716.2(0.1) 716.8(0.0) 717.6(0.0) 712.4(0.0) 710.7(0.0) 710.5(0.0) 711.4(0.0)

CV-lik.full 716.0(0.0) 717.6(0.0) 715.3(0.1) 714.5(0.1) 714.5(0.1) 717.6(0.0) 712.2(0.0) 710.7(0.0) 710.2(0.0) 710.8(0.0)

CV-lik.specific 715.9(0.0) 717.5(0.0) 714.6(0.1) 713.1(0.1) 712.7(0.1) 717.5(0.0) 712.2(0.0) 711.2(0.0) 711.2(0.0) 711.8(0.0)

PRESSfull 715.5(0.0) 717.4(0.1) 716.9(0.1) 716.8(0.0) 717.1(0.0) 717.2(0.1) 712.2(0.1) 711.3(0.0) 711.4(0.0) 711.9(0.0)

PRESSspecific 716.0(0.1) 717.7(0.1) 717.5(0.1) 717.3(0.0) 717.2(0.0) 717.7(0.1) 712.6(0.1) 710.9(0.1) 710.5(0.1) 711.1(0.1)

MRPP0.03 717.3(0.1) 718.2(0.1) 712.6(0.2) 708.6(0.2) 707.3(0.2) 718.4(0.1) 712.6(0.1) 711.1(0.1) 709.0(0.1) 708.2(0.1)

MRPP0.06 717.0(0.1) 718.0(0.1) 713.2(0.1) 710.9(0.1) 711.3(0.1) 718.1(0.1) 712.6(0.1) 710.7(0.1) 709.2(0.1) 709.3(0.1)

MRPP0.11 716.5(0.1) 717.7(0.0) 714.4(0.1) 713.5(0.1) 714.6(0.1) 717.9(0.1) 712.5(0.1) 710.7(0.0) 709.8(0.0) 710.5(0.0)

separate 715.2(0.1) 717.3(0.1) 717.3(0.1) 717.3(0.0) 717.3(0.0) 716.9(0.1) 712.2(0.1) 712.2(0.0) 712.2(0.0) 712.2(0.0)

pool 717.9(0.1) 718.4(0.1) 715.4(0.2) 713.7(0.3) 711.8(0.3) 718.9(0.1) 712.8(0.2) 714.1(0.1) 714.0(0.1) 713.5(0.1)

limma 715.7(0.1) 717.8(0.1) 717.8(0.1) 717.8(0.1) 717.8(0.1) 718.5(0.1) 713.3(0.1) 713.3(0.1) 713.3(0.1) 713.3(0.1)

Table 5. Area (×1000) under the ROC curve for selecting individual gene model from dataset GSE5406 and n1 = n2 = 3

Method
Contrast 1 Contrast 2

rg≡1 E(rg)=1 E(rg)=3 E(rg)=5 E(rg)=10 rg≡1 E(rg)=1 E(rg)=3 E(rg)=5 E(rg)=10

AIC 641.0(0.1) 631.2(0.1) 636.3(0.1) 635.2(0.2) 634.9(0.2) 636.1(0.1) 637.3(0.1) 633.9(0.1) 631.8(0.1) 630.7(0.1)

AICc 643.0(0.1) 632.9(0.1) 634.3(0.2) 630.1(0.2) 625.4(0.2) 638.3(0.1) 638.7(0.1) 637.2(0.1) 634.2(0.1) 629.5(0.2)

BIC 641.0(0.1) 631.2(0.1) 636.2(0.1) 635.1(0.2) 634.7(0.2) 636.2(0.1) 637.4(0.1) 633.9(0.1) 631.7(0.1) 630.6(0.1)

CAIC 641.6(0.1) 631.8(0.1) 635.2(0.1) 633.0(0.1) 631.9(0.2) 636.9(0.1) 637.9(0.1) 634.9(0.1) 632.0(0.1) 629.5(0.1)

HQIC 640.6(0.1) 630.8(0.1) 637.0(0.1) 636.3(0.2) 635.9(0.2) 635.6(0.1) 637.1(0.1) 633.6(0.1) 632.0(0.1) 631.5(0.1)

CV-lik.full 641.2(0.1) 631.5(0.1) 635.2(0.1) 632.6(0.1) 629.1(0.2) 636.4(0.1) 637.4(0.1) 634.6(0.1) 632.5(0.1) 630.7(0.1)

CV-lik.specific 640.9(0.1) 631.1(0.1) 634.7(0.1) 631.5(0.2) 626.8(0.2) 636.0(0.1) 637.2(0.1) 634.3(0.1) 632.9(0.1) 632.2(0.1)

PRESSfull 640.2(0.1) 630.5(0.1) 636.8(0.1) 636.0(0.2) 635.3(0.2) 635.3(0.1) 636.8(0.1) 633.7(0.1) 632.6(0.1) 632.2(0.1)

PRESSspecific 640.8(0.1) 631.0(0.1) 638.1(0.2) 637.6(0.2) 637.2(0.2) 635.9(0.1) 637.4(0.1) 634.4(0.1) 632.8(0.1) 631.2(0.1)

MRPP0.03 643.6(0.1) 633.4(0.1) 635.7(0.2) 631.1(0.3) 622.9(0.5) 638.8(0.1) 639.3(0.1) 638.5(0.1) 636.6(0.1) 633.2(0.1)

MRPP0.06 643.0(0.1) 633.0(0.1) 635.0(0.2) 630.2(0.3) 622.6(0.5) 638.2(0.1) 638.9(0.1) 637.5(0.1) 635.2(0.1) 631.8(0.1)

MRPP0.11 642.2(0.1) 632.3(0.1) 634.5(0.2) 630.5(0.3) 624.8(0.3) 637.5(0.1) 638.3(0.1) 636.0(0.1) 633.5(0.1) 630.5(0.1)

separate 639.1(0.2) 629.6(0.2) 637.0(0.2) 637.0(0.2) 637.0(0.2) 634.3(0.2) 635.9(0.1) 634.9(0.1) 634.9(0.1) 634.9(0.1)

pool 644.4(0.2) 634.0(0.2) 638.1(0.3) 636.1(0.3) 633.5(0.4) 639.7(0.2) 640.1(0.2) 640.5(0.1) 639.8(0.1) 638.6(0.1)

limma 643.1(0.3) 633.2(0.3) 641.1(0.4) 641.1(0.4) 641.1(0.4) 641.0(0.2) 642.1(0.3) 641.1(0.2) 641.1(0.2) 641.1(0.3)

log likelihood deteriorates the AUROC compared with the
full CV log likelihood, whereas contrast-specific PRESS im-
proves AUROC compared with the full PRESS. However, for
contrast 2, this is further complicated by E(rg); when E(rg)
is large, the contrast-specific CV log likelihood also improves
AUROC, but on the contrary, contrast-specific PRESS pro-
duces worse results this time; and the conclusion reverses
when E(rg) = 1 or is close to 1. Hence, these cross-validation
procedures that are based on only part of the data are pre-
ferred to the ordinary ones only under some but not all
situations, and care has to be taken in practice to choose a
good procedure.

Conclusions from selecting an overall model for all genes
(data not shown) generally agree with those from gene-wise
model selection (Table 4). Moreover, when E(rg) is larger,
most of the model selection procedures will choose the cor-

rect model, and hence their differences in AUROC’s are
largely indiscernible from each other.

When comparing model selection procedures with the
variance shrinkage procedure limma, sample size plays an
important role. When sample size is small (Table 5), vari-
ance shrinkage often outperforms model selection proce-
dures by a large margin, except in a few cases where it
is slightly worse than the best performing procedure. On
the other hand, when sample sizes increase (Table 4), the
advantage of variance shrinkage gradually fades away and
shrinkage performs similarly to model selection procedures.
This phenomenon is intuitive, because when sample sizes
are small, the total information contained in the additional
data is still relatively scarce compared with the informa-
tion contained in the large number of genes from a single
dataset. In this case, pooling information across genes is
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Table 6. False discovery proportions and number of rejections for contrast 1 from individual gene model selection on dataset
GSE5406 using the BH method when n1 = n2 = 3 and r ≡ 1 for all genes

Method
FDR = 5% FDR = 10% FDR = 15% FDR = 20%

FDP% #Rej FDP% #Rej FDP% #Rej FDP% #Rej

AIC 5.9(1.1) 10.8(2.4) 11.6(1.4) 56.2(14.1) 16.9(1.6) 143.3(31.0) 21.2(1.6) 264.1(50.0)

AICc 6.7(1.2) 13.3(2.4) 11.5(1.4) 53.6(10.4) 16.7(1.5) 133.8(24.7) 20.4(1.5) 242.6(43.0)

BIC 5.9(1.1) 11.2(2.4) 11.6(1.4) 56.8(14.2) 16.7(1.6) 144.2(30.9) 21.2(1.6) 265.7(50.0)

CAIC 6.6(1.2) 13.1(2.7) 11.7(1.4) 60.1(13.6) 17.3(1.6) 150.5(29.6) 21.1(1.6) 271.3(48.4)

HQIC 5.7(1.2) 9.3(1.9) 11.1(1.4) 50.2(13.6) 16.6(1.6) 131.6(30.4) 21.0(1.7) 249.8(50.0)

CV-lik.full 5.5(1.0) 9.6(1.7) 11.3(1.6) 45.3(10.5) 15.7(1.6) 119.0(26.3) 20.1(1.6) 226.3(44.6)

CV-lik.specific 5.4(1.4) 6.9(1.2) 10.6(1.6) 32.3( 7.8) 15.2(1.7) 88.5(20.9) 19.1(1.6) 168.4(35.3)

PRESSfull 5.6(1.4) 7.0(1.3) 11.0(1.7) 35.9( 9.8) 16.9(1.9) 100.2(26.0) 21.0(1.8) 198.8(44.3)

PRESSspecific 4.7(1.0) 5.9(0.9) 12.7(1.7) 38.2(10.5) 16.7(1.8) 110.1(28.8) 21.4(1.9) 233.2(52.4)

MRPP0.03 5.7(1.0) 9.9(1.6) 9.3(1.3) 42.1( 8.1) 13.6(1.4) 109.8(21.6) 17.6(1.5) 205.9(39.5)

MRPP0.06 6.0(1.1) 10.2(1.7) 10.2(1.3) 44.4( 9.0) 14.7(1.5) 116.0(23.4) 18.4(1.6) 216.6(40.9)

MRPP0.11 6.0(1.1) 10.3(1.8) 11.4(1.4) 47.9(10.3) 15.2(1.5) 124.2(25.6) 19.2(1.6) 228.3(43.1)

separate 3.8(1.6) 0.6(0.1) 4.8(1.5) 3.4( 1.8) 11.9(2.4) 14.0( 9.2) 13.4(2.3) 34.9(20.3)

pool 3.4(0.7) 8.4(1.4) 6.0(1.0) 31.0( 6.0) 9.4(1.4) 87.0(17.7) 12.4(1.5) 174.7(36.4)

limma 4.0(1.5) 14.6(5.4) 5.4(1.4) 54.2(17.1) 8.3(1.6) 119.1(34.4) 10.0(1.7) 200.7(53.6)

more beneficial. On other hand, when sample sizes increase
(or when more datasets are incorporated into the joint anal-
ysis), more and more information can be obtained from ad-
ditional datasets and the estimates of gene-wise variance
become more and more precise. Of course, the number of
genes within the dataset from a single study does not in-
crease for a fixed microarray platform, so there is no more
information to be borrowed from other genes within a single
dataset. Hence shrinkage is not necessarily preferred in such
cases. Although we cannot arbitrarily increase sample size
in our simulations due the constraints of total population
sample size, it is reasonable to believe that when we greatly
increase the sample size by including more datasets for a
joint analysis, shrinkage methods would eventually have lit-
tle impact on the results.

So, our general recommendation for pooling variance es-
timates across datasets to rank genes from most significant
to least significant is 1) to use pooled analysis when vari-
ances are judged using our methods to be approximately
equal across datasets, 2) to use a pooled analysis even when
variances differ across datasets if the contrasts of interest
are within the datasets with larger variance, and 3) to use a
separate analysis when variances differ across datasets and
the contrasts of interest are within the datasets with smaller
variances. In our experience, shrinking variance estimates
by borrowing information across genes is seldom harmful
and usually helpful. Thus, whether gene-specific variance
estimates are obtained by pooling across datasets or not,
we recommend shrinking gene-specific variance estimates by
borrowing information across genes using a procedure like
limma.

3.3 Control of FDR

For the massive amount of hypothesis testing in microar-
ray data, controlling family-wise type I errors is too con-

servative. One often chooses to control FDR at some pre-
specified level. It is of interest to see whether FDR is still
under control after selecting the variance part of the model.
Selected results of the mean false discovery proportions
(FDP%) and the number of rejected hypotheses (#Rej) are
shown in Tables 6 to 8.

Table 6 shows results when the true model is homoge-
neous and sample size is small for the contrast in dataset 1,
using the BH procedure and with model selection performed
on a gene-by-gene basis. We see that always using the correct
model, i.e., the pooled analysis, generally controls the FDR
below the desired level. Although always using the separate
analysis also successfully controls the FDR, the number of
rejections (i.e., power) is much lower compared with using
the correct model.

Also note in Table 6 that, although both the separate
analysis and the pooled analysis control FDR, this is no
longer the case when some genes use a separate analysis
and others use the pooled analysis. For most model selection
procedures, gene-by-gene model selection tends to increase
the false discovery proportions. Because the BH procedure
does not estimate the proportion of null hypotheses, it is
generally considered as a conservative method compared to
methods that are more adaptive, e.g., the ST procedure. Not
surprisingly, if we use the ST procedure after gene-by-gene
model selection, the actual FDPs increase further above the
desired level (results not shown).

However, as sample size increases (Table 7), the liberal-
ness of p-values is largely alleviated and the control of FDR
is still successful for BH, even if after gene-wise model selec-
tion. The ST method is still slightly liberal when sample size
increases, but the severity is lower and probably ignorable
in practice (results not shown). Moreover, variance shrink-
age through limma generally outperforms model selection
when sample size is small (Table 6), but is not as powerful
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Table 7. False discovery proportions and number of rejections for contrast 1 from individual gene model selection on dataset
GSE5406 using the BH method when n1 = n2 = 7 and r ≡ 1 for all genes

Method
FDR = 5% FDR = 10% FDR = 15% FDR = 20%

FDP% #Rej FDP% #Rej FDP% #Rej FDP% #Rej

AIC 4.8(0.5) 479.8(17.2) 9.1(0.9) 737.5(27.0) 13.2(1.1) 977.2(39.1) 17.1(1.3) 1220.1(53.1)

AICc 4.8(0.5) 485.3(16.5) 9.0(0.8) 740.5(26.1) 13.1(1.1) 980.4(37.7) 17.1(1.2) 1225.0(51.9)

BIC 4.8(0.5) 487.5(16.1) 8.9(0.8) 740.0(25.4) 13.0(1.1) 978.6(36.9) 16.9(1.2) 1224.2(51.4)

CAIC 4.6(0.5) 485.8(15.6) 8.7(0.8) 735.6(24.6) 12.8(1.1) 970.3(35.8) 16.6(1.2) 1214.1(50.4)

HQIC 4.8(0.6) 483.4(16.9) 9.1(0.9) 740.8(26.6) 13.2(1.1) 979.8(38.3) 17.1(1.3) 1224.5(52.5)

CV-lik.full 4.7(0.6) 476.4(16.6) 8.9(0.9) 728.1(26.3) 13.0(1.1) 966.7(38.2) 17.0(1.3) 1212.8(52.7)

CV-lik.specific 4.3(0.5) 439.4(16.1) 8.3(0.8) 677.9(25.0) 12.0(1.0) 896.6(35.3) 15.8(1.2) 1125.5(48.4)

PRESSfull 4.6(0.5) 453.3(17.6) 8.9(0.8) 707.2(27.6) 13.0(1.1) 946.7(40.1) 16.8(1.3) 1189.7(54.7)

PRESSspecific 5.0(0.6) 497.2(17.9) 9.6(0.9) 778.1(29.4) 14.1(1.1) 1044.9(44.0) 18.4(1.3) 1320.2(60.8)

MRPP0.03 4.2(0.5) 465.2(15.0) 8.0(0.8) 707.8(24.1) 11.9(1.1) 933.6(35.5) 15.6(1.3) 1173.2(50.7)

MRPP0.06 4.4(0.5) 470.7(15.3) 8.4(0.8) 717.2(24.8) 12.3(1.1) 947.3(36.2) 16.1(1.3) 1189.5(51.2)

MRPP0.11 4.6(0.5) 474.3(15.8) 8.7(0.8) 724.3(25.6) 12.7(1.1) 957.7(37.5) 16.5(1.3) 1202.8(52.4)

separate 3.5(0.5) 296.3(16.4) 6.6(0.7) 522.9(25.6) 10.2(0.9) 736.5(36.6) 13.6(1.1) 954.9(49.8)

pool 3.5(0.5) 442.5(14.8) 7.1(0.8) 676.8(23.5) 10.8(1.1) 897.6(35.0) 14.5(1.3) 1130.7(50.1)

limma 3.2(0.5) 371.4(19.4) 6.4(0.8) 601.1(29.8) 10.1(1.1) 823.9(41.7) 13.6(1.3) 1047.4(56.3)

Table 8. False discovery proportions and number of rejections for contrast 2 from individual gene model selection on dataset
GSE5406 using the BH method when n1 = n2 = 3 and E(rg) = 10 for all genes

Method
FDR = 5% FDR = 10% FDR = 15% FDR = 20%

FDP% #Rej FDP% #Rej FDP% #Rej FDP% #Rej

AIC 31.9(1.3) 164.6(13.7) 39.2(1.2) 332.1(26.1) 43.5(1.2) 498.7(38.0) 46.8(1.1) 674.7(51.1)

AICc 32.8(1.3) 386.4(29.2) 41.6(1.2) 795.8(54.7) 47.1(1.2) 1204.4(77.7) 51.0(1.1) 1632.3(100.6)

BIC 31.9(1.3) 171.2(14.1) 39.4(1.2) 343.8(26.8) 43.7(1.2) 515.6(39.0) 47.0(1.1) 698.0(52.5)

CAIC 32.3(1.3) 244.5(19.3) 40.1(1.2) 494.6(36.1) 45.2(1.1) 742.8(52.4) 48.6(1.1) 996.3(69.0)

HQIC 31.1(1.4) 122.6(10.6) 38.7(1.2) 250.4(20.6) 42.6(1.1) 383.1(30.7) 45.5(1.1) 523.8(42.2)

CV-lik.full 31.2(1.3) 182.9(15.2) 38.5(1.2) 388.8(30.0) 43.3(1.2) 603.7(45.0) 46.5(1.1) 831.8(60.9)

CV-lik.specific 29.4(1.4) 90.8( 8.4) 36.7(1.2) 193.8(17.1) 40.5(1.1) 299.9(25.9) 43.5(1.1) 423.1(36.3)

PRESSfull 28.9(1.5) 83.7( 7.9) 36.6(1.2) 181.6(16.1) 40.3(1.2) 286.9(25.1) 43.2(1.1) 406.7(35.6)

PRESSspecific 29.5(1.3) 172.3(14.7) 37.3(1.2) 394.9(31.5) 42.1(1.2) 639.1(48.8) 45.9(1.1) 910.8(68.3)

MRPP0.03 32.5(1.3) 441.8(33.3) 41.3(1.2) 959.6(65.9) 47.0(1.2) 1487.6(94.5) 51.4(1.1) 2048.0(121.9)

MRPP0.06 32.5(1.3) 376.0(28.8) 40.9(1.2) 809.9(55.8) 46.2(1.2) 1250.3(81.0) 50.3(1.1) 1723.9(106.2)

MRPP0.11 31.7(1.3) 282.6(22.1) 39.7(1.2) 598.2(43.3) 44.9(1.2) 927.5(63.7) 48.7(1.1) 1279.2(85.1)

separate 5.0(1.9) 0.3( 0.1) 8.7(2.5) 0.6( 0.1) 10.0(2.4) 1.6( 0.4) 12.2(2.2) 5.7( 1.5)

pool 32.6(1.3) 557.9(42.1) 42.0(1.3) 1239.8(84.5) 48.2(1.2) 1958.4(121.0) 52.9(1.2) 2717.2(153.9)

limma 1.9(1.2) 2.6( 0.7) 5.0(1.5) 19.6( 5.3) 6.9(1.4) 50.6(12.7) 8.7(1.5) 103.2(23.8)

as the best model selection procedures when sample size in-
creases (Table 7). This is consistent with the observation on
ranking genes in the previous subsection.

When E(rg) increases to 10, the FDRs are all controlled
at the desired levels, even after gene-by-gene model selec-
tion (results not shown). However, the pooled analysis is
extremely under powered for contrasts in dataset 1. This is
because dataset 1 is simulated with smaller variances than
dataset 2 and the pooled analysis for contrasts in dataset
1 always vastly overestimates the variances and reduces
power. At higher FDR levels, the CV log likelihood and the
MRPP procedure for gene-by-gene analysis result in lower
power than the other model selection methods, probably due
to their preference for the smaller model under this simu-
lation situation. The variance shrinkage approach is not se-

riously affected by E(rg) but is affected mainly by sample
size.

However, when we consider the contrast within the sec-
ond dataset, where the true variances are much larger than
the first, the only method that controls the FDR properly
uses a separate analysis for all genes (Table 8). Pooled anal-
ysis and all model selection procedures produce mean FDP
far above the desired level. Note, however, that in this situ-
ation the pooled analysis is able to produce the best ranking
of genes, in terms of AUROC.

When variance model selection is conducted on the whole
genome scale, the final FDP is largely dependent on how of-
ten the procedure chooses the separate model. For example,
in the case shown in Table 8 but with model selection meth-
ods applied to all genes together, only AICc and CV log
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Table 9. Estimated Kullback-Leibler divergence of nominal to
theoretical p-value distributions

Sample Kullback-Leibler divergence ×1000
sizes Lev RLev BF F MRPP

3,3 88.0(0.4) 3.0(0.1) 104.4(0.5) 4.4(0.1) 2.0(0.1)

3,4 67.2(0.3) 4.7(0.1) 18.2(0.2) 7.7(0.1) 2.9(0.1)

3,7 40.9(0.3) 6.0(0.1) 106.8(0.8) 10.6(0.1) 2.9(0.1)

3,10 32.4(0.2) 8.2(0.1) 34.4(0.3) 11.7(0.1) 3.0(0.1)

4,4 48.2(0.3) 4.9(0.1) 2.9(0.1) 11.0(0.1) 3.7(0.1)

4,7 31.8(0.2) 7.6(0.1) 11.8(0.1) 18.8(0.2) 5.8(0.1)

4,10 28.9(0.2) 11.4(0.1) 9.7(0.1) 24.2(0.2) 8.3(0.1)

7,7 31.4(0.2) 18.1(0.1) 46.3(0.5) 41.3(0.3) 16.6(0.1)

7,10 27.1(0.2) 17.9(0.2) 22.2(0.2) 46.5(0.2) 17.3(0.1)

Table 10. Probability that the test statistic under the
alternative is at least as extreme as the test statistic under

the null when E(rg) = 1

Sample Probability ×1000
sizes Lev RLev BF F MRPP

3,3 530.2(0.4) 530.0(0.4) 530.4(0.5) 530.4(0.5) 530.0(0.4)

3,4 527.7(0.4) 531.1(0.4) 520.6(0.4) 533.3(0.4) 531.0(0.4)

3,7 523.6(0.5) 532.5(0.5) 515.7(0.5) 534.8(0.5) 532.2(0.5)

3,10 521.3(0.5) 532.5(0.5) 510.8(0.5) 535.7(0.4) 532.2(0.5)

4,4 538.0(0.5) 537.6(0.5) 537.5(0.4) 538.4(0.5) 537.6(0.5)

4,7 535.4(0.5) 540.9(0.5) 535.8(0.5) 541.9(0.5) 540.6(0.5)

4,10 533.7(0.5) 540.7(0.4) 531.3(0.4) 542.1(0.4) 540.4(0.4)

7,7 552.8(0.5) 552.1(0.6) 553.1(0.5) 552.8(0.5) 552.2(0.6)

7,10 553.5(0.4) 555.3(0.5) 550.9(0.4) 556.1(0.4) 555.1(0.5)

likelihood choose the pooled model frequently, and hence
their AUROC’s are better but FDR is not controlled. Other
methods mostly choose a separate model, and their FDR is
below the desired level, although their lists of differentially
expressed genes are worse than using the pooled model.

Hence, one faces the dilemma of whether we should care
more about gene ranking or care more about control of
FDR. Similar to the recommendation in [12], we suggest
the following strategy: when combined sample size is small
or when model selection procedures suggest that the vari-
ances are too different to be combined across studies, use a
separate analysis to determine the number of genes that can
be declared differentially expressed and a pooled analysis to
determine which of the genes are declared as differentially
expressed. This hybrid approach will both control FDR well
below the desired level and provide a good list of candidate
genes for further study.

3.4 Size and power of modified MRPP
compared with alternative univariate
tests

Among other model selection procedures considered in
this study, our modified MRPP is the only one that is based
on hypothesis testing, and behaves largely different than

Table 11. Probability that the test statistic under the
alternative is at least as extreme as the test statistic under

the null when E(rg) = 10

Sample Probability ×1000
sizes Lev RLev BF F MRPP

3,3 730.7(0.4) 724.6(0.5) 732.0(0.4) 733.0(0.5) 730.1(0.5)

3,4 775.1(0.3) 743.1(0.4) 826.4(0.3) 754.4(0.4) 768.0(0.4)

3,7 827.8(0.4) 769.8(0.4) 876.1(0.3) 782.6(0.4) 816.1(0.4)

3,10 850.3(0.3) 782.8(0.4) 904.4(0.2) 796.9(0.4) 836.5(0.3)

4,4 773.8(0.5) 768.2(0.5) 769.6(0.5) 778.8(0.4) 774.9(0.5)

4,7 832.4(0.4) 798.0(0.4) 829.0(0.4) 815.1(0.3) 831.8(0.4)

4,10 854.4(0.3) 809.1(0.3) 864.6(0.3) 829.6(0.3) 854.0(0.3)

7,7 852.0(0.4) 847.1(0.4) 855.7(0.4) 855.0(0.4) 853.3(0.4)

7,10 877.9(0.3) 862.6(0.4) 896.7(0.3) 875.5(0.3) 883.5(0.4)

other information criteria based methods. Hence it is more
reasonable to compare our modified MRPP with other com-
monly used hypothesis tests for unequal variances in the
univariate setting, where all such tests are applicable.

Table 9 shows the estimated Kullback-Leibler divergence
of the nominal p-value distribution under the null hypoth-
esis of each test compared to the theoretical uniform dis-
tribution, from a two-sample comparison design, with vary-
ing sample sizes. One can see that both methods based on
our decorrelated and reduced dataset, i.e., the reduced Lev-
ene’s test (“RLev”) and MRPP, have small Kullback-Leibler
distances under all sample sizes. The original Levene’s test
(“Lev”) generally has a poor null distribution. The F -test
approximates the null well when sample sizes are small, but
not when sample sizes increase. The Brown-Forsythe test
(“BF”) has a close to uniform null distribution when both
sample sizes are even, but it becomes worse if one of the sam-
ple sizes is odd, and is usually the worst compared to other
methods when both sample sizes are odd. This is because
the definition of median depends on the parity of sample
size. In terms of null distribution, our proposed RLev and
MRPP outperform other methods under our realistic simu-
lation settings.

Table 10 shows the probability that the test statistic un-
der the alternative is at least as extreme as the test statis-
tic under the null when E(rg) = 1. This corresponds to
small departure of the alternative from the null. We can
see that whenever the two sample sizes are the same, all
five tests have similar power. Otherwise, the F -test, the
modified MRPP, and the reduced Levene’s test have bet-
ter power than the original Levene’s test and the Brown-
Forsythe test.

Table 11 shows the same probability when E(rg) = 10,
which corresponds to a large difference between the null and
the alternative. In this case, the reduced Levene’s test does
not perform well, but the Brown-Forsythe test is often the
best, usually closely followed by Levene’s test and the modi-
fied MRPP. The performance of the F -test seems to depend
on the balancedness of the design—when sample sizes are

Variance model selection 489



equal, its power is high; but when sample sizes are different,
its power deteriorates greatly.

Considering both small and large departures from the
null hypotheses, the modified MRPP is the only one that
always has relatively good power. Since it also controls type
I error better than others (Table 9) and directly applies to
any high dimensional situation, it is our recommended test
for heterogeneity in practice to replace the aforementioned
alternatives.

4. SUMMARY

In this study, we proposed several new model selection
procedures for selecting the variance part of linear models.
Our modified MRPP test has tighter control of type I errors
and also has good power compared to other methods. Our
cross-validation procedures are able to differentiate linear
models that only differ in the variance assumptions. We also
give the correct AICc formula that removes the bias in AIC
when multiple variances need to be estimated independently.

Through real data based simulation, we found that us-
ing the correct models does not necessarily provide the best
separation between differentially and equivalently expressed
genes, although using the correct models can control FDR
at desired levels. A hybrid procedure to decouple FDR con-
trol and differential expression detection is recommended,
as in [12].

Variance model selection for mixed linear models is more
complicated, primarily because the estimated variance com-
ponents may lie on the boundary of the parameter space
with positive probability [16]. We may envisage using some
of our methods, e.g., AICc, in special types of mixed mod-
els, but it would be valuable in future studies to extend our
methods to general mixed models.

Our simulations suggest that neither shrinkage estima-
tion within a dataset nor model selection across several
datasets is always preferred to the other. Fortunately, it is
straightforward to combine both approaches by first pool-
ing across datasets (if our proposed methods suggest that
pooling will be beneficial) and then shrinking the result-
ing estimates by borrowing information across genes using
a procedure like limma.

In summary, for microarray data analysis, our general
recommendation for ranking genes is to use a pooled anal-
ysis only when variances are judged to be equal or when
variances differ but the contrasts of interest are within the
datasets with larger variance. For control of FDR, pooled
analysis should only be applied when variances are judged to
be equal and the combined sample size is moderately large,
irrespective of which analysis has been used to rank genes.
For both ranking genes and controlling FDR, shrinkage esti-
mation of variances across genes is recommended, irrespec-
tive of whether additional datasets will be used to estimate
variances. If homogeneity of variances will be tested sepa-

rately for each gene, then the modified MRPP procedure is
preferred to other univariate tests.
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