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Utility-based weighted multicategory robust

support vector machines

YUFENG L1v*, YIcCHAO WU AND QINYING HE'

The Support Vector Machine (SVM) has been an impor-
tant classification technique in both machine learning and
statistics communities. The robust SVM is an improved ver-
sion of the SVM so that the resulting classifier can be less
sensitive to outliers. In many practical problems, it may be
advantageous to use different weights for different types of
misclassification. However, the existing RSVM treats differ-
ent kinds of misclassification equally. In this paper, we pro-
pose the weighted RSVM, as an extension of the standard
SVM. We show that surprisingly, the cost-based weights do
not work well for weighted extensions of the RSVM. To solve
this problem, we propose a novel utility-based weighting
scheme for the weighted RSVM. Both theoretical and nu-
merical studies are presented to investigate the performance
of the proposed weighted multicategory RSVM.

KEYWORDS AND PHRASES: Multicategory classification, Ro-
bustness, SVM, Utility, Weighted learning.

1. INTRODUCTION

In supervised learning, one important goal is to build
predictive models using a training dataset for future pre-
diction. Among various learning tasks, classification plays
an important role, both theoretically and practically. It has
been widely applied in a wide range of disciplines such as
medicine, engineering, and bioinformatics.

There are numerous classification techniques proposed in
the literature. In particular, several machine learning ap-
proaches become popular and have been increasingly studied
in both machine learning and statistics communities. Impor-
tant examples include the Support Vector Machine (SVM,
Boser et al. (1992); Cortes and Vapnik (1995)), Boosting
(Freund and Schapire, 1997; Friedman et al., 2000), and
others. See Hastie et al. (2009) for a comprehensive survey
of different learning techniques. Many proposals on further
improvements of these methods have been made in recent
years. For example, Lee et al. (2004); Zhu et al. (2009) in-
troduced multicategory versions of SVM and AdaBoost re-
spectively. A more recent learning method, i-learning, was
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first proposed by Shen et al. (2003) as a competitive bi-
nary large margin classifier. Liu and Shen (2006) developed
a multicategory extension of ¢-learning. Wu and Liu (2007)
further generalized v-learning to robust SVMs. Other exam-
ples of machine learning classification methods include the
Import Vector Machine (IVM, Zhu and Hastie (2005)) and
Distance Weighted Discrimination (DWD, Marron et al.
(2007); Qiao et al. (2010)).

To measure the performance of a classifier, one can quan-
tify its prediction accuracy. One commonly used measure is
the probability of misclassification. This measure treats all
types of misclassification equally. Specifically, the cost of
misclassifying a subject of class one into class two is the
same as the cost of misclassifying a subject of class two into
class one. This treatment may not be appropriate for many
applications. One common example is the application of tu-
mor classification. Clearly, misclassifying a cancer patient
as normal is much more severe than the other type of mis-
classification. A misclassification on a normal patient can be
corrected using further diagnosis. However, a wrong diagno-
sis on a cancer patient will delay the necessary treatment
and can be life threatening. Another example is learning
with samples having minority classes. In that case, the re-
sulting classifier tends to sacrifice the minority classes and
tries to classify the training points in majority classes cor-
rectly. Sometimes the classifier may misclassify all points of
a minority class but still give a high overall classification
accuracy (Qiao and Liu, 2009). Therefore, unequal cost as-
signments on different types of misclassification are needed.

To handle the problem of unequal cost assignments,
Lin et al. (2004) generalized the original SVM to nonstan-
dard situations. The nonstandard SVM allows unequal cost
assignments on the two types of misclassification. Lee et al.
(2004) extended this idea further for multicategory prob-
lems. For ¢-learning and robust SVM, the available methods
can only deal with standard binary and multicategory clas-
sification. In this paper, we develop a general robust SVM
technique which allows unequal cost assignments on differ-
ent types of misclassification. The proposed technique covers
the binary 1-learning in Shen et al. (2003), multicategory -
learning in Liu and Shen (2006), and robust SVM (RSVM)
in Wu and Liu (2007) as special cases.

The optimization problem of the standard RSVM in-
volves nonconvex minimization. Wu and Liu (2007) pro-
posed to decompose the nonconvex objective function into
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the difference of two convex functions and then use dif-
ference convex (DC) algorithm through iterative convex
minimization to obtain a local solution. Since the existing
weighted SVMs in the literature are based on the use of
unequal costs of different misclassification, it is natural for
us to use the same idea for the RSVM. Surprisingly, the
resulting weighted RSVM using the unequal cost approach
cannot be solved using the DC algorithm. To solve this dif-
ficulty, we propose the novel utility-based weighted RSVM
which can be implemented via the DC algorithm. We show
the equivalence of cost and utility under the 0-1 loss. Nu-
merical examples are provided to illustrate the effectiveness
of the new methodology.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the standard -learning technique. In
Section 3, we propose the weighted multicategory RSVM
methodology. A computational algorithm using the DC al-
gorithm is provided in Section 4, followed by numerical ex-
amples in Section 5. Some discussions are provided in Sec-
tion 6. The Appendix contains the technical proof of the
theorem.

2. STANDARD 1-LEARNING AND ROBUST
SVM

2.1 General framework

Consider a k-class classification problem. Let
{(xi,yi);i = 1,...,n} denote a training dataset. The
n pairs of observations (x;,y;)’s are assumed to be in-
dependent realizations of a random pair (X,Y), which
has an unknown probability distribution P(x,y). Here
x € S C R? denotes an input vector and y € {1,...,k}
represents an output (class) variable. Throughout the
paper, we use X and Y to denote random variables and x
and y to represent corresponding observations.

Define f = (f1,..., fx), each f; being a mapping from
S to IR, as a decision function vector. These k func-
tions represent k different classes with f; corresponding to
class j; j=1,...,k. Once f is obtained from the train-
ing dataset, a classifier argmax;_; f;j(z) is employed
to predict the class of any input vector & € S. In other
words, fg(x) is the maximum among k values of f(x). One
important goal of multicategory classification is to find a
classifier which minimizes the probability of misclassify-
ing a new input vector X, namely the generalization er-
ror (GE), Err(f) = P[Y # argmax;f;(X)]. Denote the
multiple comparison vector of class y versus the rest as
g(f(@),y) = (fy(@) — i), fy(@) — fy (@), fy(@) -
fyt1(x), ..., fy(x) — fr(zx)). Then f produces correct classi-
fication for (x,y) if min(g(f(x),y)) > 0. Using the notation
of generalized functional margin min(g(f(x),y)), we can
rewrite the classification error rate on the training dataset
as (1/n) >0, I(min(g(f(x;),y:)) <0), where I(-) is an in-
dicator function.
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2.2 Standard -learning

After replacing the indictor function, also known as the
0-1 loss, by a w-loss function, the standard multicategory
1-learning proposed by Liu and Shen (2006) solves the fol-
lowing minimization problem:

k 1 n
W i (A I+ 1Y win(e(t(an. )

k
subject to ij(a:) =0 VxeSs,

j=1

where ¥(u) € (0,1] if v € (0,7) and ¥ (u) = I(u <0)
otherwise. The first term 2521 J(f;) in the objective
function in (1) can be viewed as a roughness penalty
of f. For example, in linear learning where each f;
is a linear function, a common choice of J(f;) is the
squared Lo norm of the corresponding linear coeffi-
cients for «. The penalty term also helps to enforce
maximum separation of the data in the separable case
(Cristianini and Shawe-Taylor, 2000; Liu and Shen, 2006).
The second term L 3" | 4 (min(g(f(w;),;))) in the objec-
tive function is a measure of goodness of fit of f on the
training dataset. The reason to use the t-loss instead of the
01 loss is that problem (1) would be ill-posed if we replace
() by I(+). In fact, the solution argming(A 2?21 J(f;) +
LS I(min(g(f(x;),y;)) < 0)) is essentially O since for
any ¢ € (0,1), cf yields the same training error as f, but
a smaller penalty than f. The positive values of ¢ (u) when
u € (0,1] aim to eliminate the scaling problem of I(-) and
make (1) a well-defined optimization problem. One particu-
lar v-loss suggested by Liu and Shen (2006) is piecewise lin-
ear with ¢(u) = 1ifu <0, 1—uifu € (0, 1], and 0 otherwise.
The tuning parameter A balances the penalty term and the
data fit term. The sum-to-zero constraint Z?Zl fi(x) =0
in (1) helps to solve the potential identifiability problem of
f and reduce the dimension of the optimization problem.
Shen et al. (2003); Liu and Shen (2006) showed that -
learning is robust to outliers and deliver high classification
accuracy by using the 1-loss, a loss that resembles the 0-1
loss closely. However, the methods they proposed only allow
penalizing different types of misclassification equally.

2.3 Standard robust SVM

Wu and Liu (2007) proposed the robust SVM (RSVM)
via truncating the unbounded hinge loss of the SVM. No-
tice that the hinge loss Hy(u) = [1—u]4 grows linearly when
u decreases with v < 1. This implies that a point with large
1—min g(f(x),y) results in large H; and, as a consequence,
greatly influences the final solution. Such points are typically
far away from their own classes and tend to deteriorate the
SVM performance. The RSVM utilizes the truncated hinge
loss function to reduce the influence of outliers. In partic-
ular, the truncated hinge loss function can be expressed as
T(u) = Hy(u) — Hs(u), where Hs(u) = [s — u]+.



The value of s of the truncated loss T (u) specifies the lo-
cation of truncation. We set s < 0 since a truncated loss with
s > 01is constant for u € [—s, s] and cannot distinguish those
correctly classified points with ming(f(x),y) € (0, s] from
those wrongly classified points with min g(f(x),y) € [—s,0].
When s = —oo, no truncation has been performed and
Ts(u) = Hy(u). When s = 0, the truncated loss To(u) be-
comes the 1 loss. As shown in Wu and Liu (2007), the choice
of s is important and affects the performance of the RSVM.
Interestingly, the numerical examples in Wu and Liu (2007)
suggest that s = 0 for i-learning is not the optimal choice.
The best value of s appears to be —1/(k — 1). The corre-
sponding truncated loss enjoys Fisher consistency and also
delivers most accurate classification results compared to the
truncated loss functions with other values of s.

In Section 3, we develop a weighted RSVM methodology
which permits flexible treatments on different types of mis-
classification. Since i-learning is a special case of the RSVM,
our method offers weighted v-learning as a byproduct.

3. WEIGHTED RSVM

To extend the standard RSVM, one can use weights on
different types of misclassification. A common technique
is to use misclassification costs as weights. For example,
Lin et al. (2004); Lee et al. (2004) used costs for extension of
the standard SVM to nonstandard situations. In Section 3.1,
we explore the use of costs for possible extension of the mul-
ticategory SVM based on the generalized functional margin
min(g(f(x),y)). In view of the difficulty on the implementa-
tion of the corresponding method, in Section 3.2, we propose
a new way of weighting using utilities, instead of costs.

3.1 Challenge with the cost formulation

In the standard learning case, we do not distinguish dif-
ferent types of misclassification. The 0-1 loss can be repre-
sented as I(min(g(f(x;),y;)) < 0). A natural way to extend
binary margin loss functions into a multicategory case is to
use the generalized functional margin min(g(f(x;),y;)) as
its argument. For example, the multicategory SVM proposed
by Liu and Shen (2006) uses the loss [1 —min(g(f(x;),v:))]+

and solves the following optimization problem

SN
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To extend standard learning via weighting, we need to con-
sider different types of misclassification. Let ¢(z) : RY —
{1,...,k} be a classifier and Cy4y) represent the cost of
misclassifying input x with class y into class ¢(x). We set
Cys(z) = 0 if ¢(x) = y and Cyyz) > 0 otherwise. This im-
plies that no penalty shall be given for correct classification

and a positive cost can be used when an error occurs. Under
the same framework as in Section 2, our goal is to obtain f
which minimizes the GE Err(f) = E[Cy 4(x)]-

Notice that E[Cy4(x)] = E[Zle Cy;l(o(X) = j)] =
E[Z?:l Cy;I(min(g(f(X),7)) > 0)]. Then an empirical
version of Err(f) based on the training dataset can be writ-
ten as

n k
% Z Z Cy,jI(min(g(f(x;), j)) > 0).

i=1j=1

(3)

Because of the scaling problem of I(-) as discussed in Sec-
tion 2, (3) can not be used for learning directly. However,
one can use a convex approximation to replace the indicator
function. For example, a natural approximation is to replace
I(min(g(£(2;). j)) > 0) by [1+ min(g(F(,). j))]. Then we
can get the following empirical minimization problem

4
( ) k 1 n k
min (WY 0+ % 303 €l + mine(t(a). )L )

k
subject to Z fi(x)=0.

Jj=1

Through the use of costs, (4) can be viewed as a weighted
extension of the multicategory SVM formulation in (2). Sur-
prisingly, unlike (2), (4) is not a convex minimization prob-
lem anymore. To see that, we can first introduce slack vari-
ables &;;, as commonly done in the SVM optimization, to
replace [1 + min(g(f(x;),j))]+ with constraints &; > 0 and
&; > 1+ min(g(f(x;),7)). Note that the region satisfying
the constraints min(g(f(x;),j)) < &;; — 1 is not convex. As
a result, (4) cannot be directly implemented using convex
optimization.

3.2 The new utility formulation

In contrast to the cost formulation discussed in Sec-
tion 3.1, we explore the use of utility in this section. In par-
ticular, we assign the utility amount Uy () for classifying
input @ with class y into class ¢(x). Naturally, one should
set Uj;; a bigger number comparing to other Uj; for I # j.
As a remark, both our costs and utilities are nonnegative.

To generalize the 0-1 loss, instead of minimiz-
ing the total cost, one kshould maximize the util-
ity ElUygx)] = ED ;-1 Uvil(e(X) = Jj)] =
B[y, Uy;I(min(g(f(X),5)) > 0)]. Then an empirical
version of the total utility is as follows

n k
G) 3D Uy Tlmin(g(E(@:). ) > 0).

i=1 j=1

Notice that maximizing E[Uy¢x)] is equivalent to mini-
mizing E[—Uyg4(x)]. Then it is straightforward to see that
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maximizing the total utility (5) is equivalent to minimizing
the following quantity

1 n k

© 2> Uyl min(g(E(:). ) <0).

Therefore, the utility-based multicategory SVM extension
can be written as follows

7

( ) k 1 n k

mjn (WY 0 + 30 U1 - mine(t(a). )L )
j i=1 j—1

— -
k
subject to ij(a:) =0.
j=1

It is easy to see that problem (7) is a natural generaliza-
tion of the standard SVM problem (2) with weights Uy, ;.
Similarly, our proposed weighted RSVM solves the follow-
ing problem

(8) k 1 n k
o (3 SRS U T i), )

i=1 j=1

k
subject to Z fi(x)=0.

j=1
Our  weighted RSVM  uses the  multicate-
gory  weighted  truncated  hinge loss  function
Sy Uy To(min(g(f(a;),5))). To further explore the

proposed loss, we study its consistency. In particular, we
first define weighted Fisher consistency and then study
Fisher consistency of general truncated loss functions. Note
that the Bayes rule ¢*(X) that maximizes the expected
utility E[Uy¢(x)] is ¢*(x) = argmax; Zle Uijpi(x), where
pi(x) = P(Y = l|X = x). Assume that the function £(-)
is non-increasing and ¢'(0) < 0 exists. Then the weighted
Fisher consistency is defined as follows.

Definition 3.1 (Weighted Fisher Consistency). Denote
f*(x) = argmingE[Y.}_, Uy ((min(g(f(X),)))|X = a].
Then the corresponding weighted loss function is weighted
Fisher consistent if argmax f*(x) = argmax; Zle Uijpi(x).

As a remark, we note that our weighted Fisher con-
sistency definition and results are more general than that
of Wu et al. (2010). Essentially, the weights imposed by
Wu et al. (2010) can be viewed as a special case of our
utility-based learning with a diagonal utility matrix.

Let {7, (-) = min(4(+), ¢(s)) with s < 0. The following the-
orem, as an extension of the results in Wu and Liu (2007),
states the weighted Fisher consistent results of the weighted
truncated loss 325 Uy iz, (min(g(f(x), 5)))-
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Theorem 3.1. Assume that the function £(-) is non-
increasing and ¢'(0) < 0 exists. Then a sufficient condi-
tion for the loss Zle Uyjlr,(min(g(f(x),7))) with k > 2 to
be weighted Fisher consistent is that the truncation location
s satisfies that Supy,.,>_s>01(€(0) — £(u))/(€(s) — £(0)) >
(k —1). This condition is also necessary if {(-) is convez.

Similar to the standard learning, the truncation value
s given in Theorem 3.1 depends on the class number k.
For {(u) = Hi(u),e™ ", and log(1l + e~ ™), weighted Fisher
consistency for ¢, (ming(f(x),y)) can be guaranteed for
s € [—715,0], [log(1 — 1),0], and [flog(Qﬁ —1),0], re-
spectively. For the implementation of our weighted RSVM,
we recommend to choose s = same as that for the
standard RSVM.

__1
k-1’

3.3 Construction of the utility matrix

As we mentioned earlier, using costs to extend standard
to nonstandard learning is very common. Weighted loss
functions using costs extend the standard 0-1 loss by al-
lowing unequal costs on different types of misclassification.
Typically, one sets costs for correct classification to be zero
and sets various costs for different types of misclassification
depending on the problem and context. In this section, we
describe one way of constructing a utility matrix based on
a predefined cost matrix and then show their equivalence.

With a prespecified cost matrix {Cj;; 5,1 =1,...,k}, we
can construct the utility matrix with

Un Uik Cn C1k
. :m%X{le}]-k;lz_ T B
U, k1 Ukk J Okl Okk
where 1 is a vector of 1 with length k.

Next we demonstrate that this choice of utility is reason-

able by showing that

k
(9) argming I/ [ Z Cy;I(ming(f,j) > 0)]
j=1

k
= argmaXfE[Z Uy;I(ming(f,j) > O)} .

Jj=1

The equality (9) implies that using our choice of utility ma-
trix, the solution f, which minimizes the expected cost, also
maximizes the expected utility. This justifies the usage of
our utility matrix.

To show (9), we define P; = P(Y = j|X = x). Then we
have

k
argming F/ {Z Cy;I(ming(f,j) > 0)}
j=1
k k
= argming Z P, Z[Cljl(min g(f, ) > 0)]

=1 j=1



k k
= argmaxg Z P, Z[(Ijnf%x Cj1»— Cyj)I(ming(f, j) > 0)]
=1 j=1
k
= argmax; F {Z Uy;I(ming(f,j) > 0)].
j=1

Thus, (9) is proved. As a result, one can construct the utility
matrix directly once the cost matrix is given for the proposed
weighted RSVM.

4. NONCONVEX MINIMIZATION VIA
DIFFERENCE CONVEX ALGORITHM

In this section, we develop a difference convex algorithm
to solve (8). Note that the loss function in (8) is piece-
wise linear. Consequently it can also be solved by devel-
oping a mixed integer programming (MIP) algorithm as
in Liu and Wu (2006). However due to the computational
intensity of the MIP, we use the DC algorithm. The DC
algorithm solves the nonconvex minimization problem via
minimizing a sequence of convex subproblems (An and Tao,
1997; Liu et al., 2005). In particular, to apply the DC al-
gorithm, we first rewrite the nonconvex objective function
as a difference of two convex functions. Then we solve the
original nonconvex optimization problem via iterative con-
vex minimization problems. Each convex minimization sub-
problem serves as an approximation of the original prob-
lem.

For simplicity, we only focus on linear learning. The DC
algorithm for nonlinear learning can be derived using ker-
nel formulation similarly to the idea of iterative approxi-
mation in linear learning. More details on the implementa-
tion of nonlinear learning can be founded in Wu and Liu
(2007). For linear learning, we set f;(x) = w)x + by;
w; € R, b € R, and b = (by,ba,...,b,)T € RF. where
w; = (wij,waj,...,wg)", and W = (wi,ws,...,wg).
With the two-norm penalty J(f;) = ||w;||3, (8) simplifies
to

(10)

min - Z||wj||2+cZZUy,jT (min g (£ (i), 7))

=1 j=1
k
subject to ijm:O,m:1,2,...,d
j=1

b_a.
I Mw
I

k:@

where C' = % and the constraints are adopted to avoid a
non-identifiability issue of the solution.

We denote parameters (W, b) by ©. By noting the fact
that Ty, = Hy; — H,, the objective function in (10) can be
decomposed as

Z”wJ”z +CZZU?J1JH1 (min g(f (z:), 7))

=1 j=1
O3S Uy Haring (). )
i=1 j=1
= Qvew(e)) + Qcav(®>7
where
1 k n k
Ques(©) = 3 Z w3 +C DY UyHi(ming(f (x:). )
j=1 i=1j=1
and
n k
Qear(©) = =C Y Y U, ;Ho(ming(f(x:), 7))
i=1 j=1

denote the convex and concave parts, respectively.
Note that %va(@) and %va(@) can be written
respectively as follows

—CZ{ vis (—L{min g(f(2:).5)<s})

+ Z inj/(I{j:argmaX(fm(a:i): m#j');fj’(mi)_fj(mi)<5}):| £
J'#3

and
CZ{

+ Z inj’(I{j=argmaX(fm(m1:): m#j/)ufj/(wi)_fj(mi)<s}):| )
J'#i

(—Lmin g(f(:),5)<s})

where Iy 4y =1 if event A is true, and 0 otherwise.
Define, for j' # j, Bijj» = C if f} — fjt, < s with j/ =

argmax(f, : m # j) and 0 otherwise. With the help of 3;;,
we have
8 n
Feg. Pear(©) = > (inj > By = inj/ﬂij/j)fﬂ
J i=1 J'#] J'#]
and
Qcav => ( vii O B — Y inj’ﬂij’j)'

i=1 J'#J J'#3

We now describe the iterative procedure of the DC al-
gorithm for minimizing the nonconvex objective function in
(10). For initialization, we can use the solution of (10) when
Ts(u) = Hy(u), i.e., when no truncation is performed on the
loss function with s = —oo. In that case, problem (10) be-
comes a convex minimization problem. Denote O; to be the
solution at the end of step ¢. At the step (¢t + 1), we apply
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the linear approximation to the concave part and then the
objective function becomes

k

k n
=2 lwill3+C) > Uy Hi(ming(f(@:), )

i=1 j=1

l\J|F—‘

Jj=1

+Z< -Qean (1), > zi: i b7 Qcav(O1).

Using slack variable &;;’s for the hinge loss function, the
optimization problem at step (¢t + 1) becomes

mln - Z ||wj||2 + CZZ Uy, j&ij

i=1 j=1

k k
+ Z< Qcav @t > Z Jab Qcav(et)

kK
[CCZTU)j/ + bj/} ,

subject to  &;; >0 z:1,2,...,
gij > 1-— [11ij +bj] +
i=1,2,...,n; 7 #3j.

nyj=12,...

The corresponding Lagrangian is

(11)

L(W b, {)
n k
=5 Z [w; 3 + CZZ Uy,i&ij — Z Zuigfij
i=1j=1 i=1 j=1
- Z Z Z gy (@] wy+ by — @ wy — by + &5 — 1)
i=1j=1j'#]

k

+Z< Quan(® > ij g, Qe (00,

subject to
0 2 T
(12)  g-L= wi = [ > (i — Uy Bigjr )]
J =1 j'#j
Z (vijrj — Uy, g Bijrj)x; } =0
=1 j'#j
(13) —L = [Z > iy = UyiiBisyr)
i=1j'#j
n
DI inj'ﬁij'j)] =0
i=1j'#j
0
(14) 7, L=CUyj—uyy— Y aiy =0,
R 3'#
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where the Lagrangian multipliers are u;; > 0 and o0 > 0
forany i = 1,2,...,m, j = 1,2,...,k, j/ # j. Substituting
(12)—(14) into (11) yields the corresponding dual problem

T
min Z ZZ ijjr — Uy,iBijj ),

J=1"1 =1 j'#]
n n k
- Z (aijrj = Uyij Bigs) Z Z Z Qijj’
i=15'#j i=1j=1j'#j
n n
subject to Z Z(aijj’ - ny,jﬂijj’) — Z Z(O&ij/j
i=1j'#] i=1 j'#j
— Uy Bijrj) =0, j=1,2,...,k
0< ) aij < CU,,;,
J'#j
i=12,...,n; 7=1,2,...,k
o0 >0, 1=1,2,...,n; j=1,2,...,k; 5" #5;

where ;;; is defined as above. Note that the above dual
problem is a quadratic programming (QP) problem similar
to that of the standard SVM. Much optimization software
can be used to solve the above dual problem. Once the so-
lution is obtained, the coefficients w;’s can be recovered as
follows,

(15) wj =Y > (i — Uy Bijy)w]
=1 '
=D (g = Uy Bigry)x!
=1 i

which satisfies the sum-to-zero constraint Z;C:
each 1 < m < d automatically.

After the solution of W is derived, b can be obtained
via solving either a sequence of KKT conditions as used in
the standard SVM or a linear programming (LP) problem.
Denote fj(x;) = xFw;. Then b can be obtained through
the following LP problem:

1 Wmy = 0 for

E

1 nC Z Z vijij
n.e i=1 j=1
Uy,j Z Bijsr — Z inj’ﬁij’j)} b

k
MDY
Jj=1 J'#3 J'#J
subject to 7;; >0,¢=1,2,...,n
ij = 1= (fj(:) +bj) + fir (i) + by,
i=1,2,....n; j' #j

M:

i=1

M-

b =

j=1



We continue iterating the above convex optimization
steps until convergence. Its convergence is guaranteed due
to the fact that the objective function value decreases at
each iteration.

5. NUMERICAL EXAMPLES

We investigate the performance of our weighted RSVM
through simulated examples in Section 5.1. We use three
simulated examples to show the effect of the utility matrix
and the improvement of weighted RSVM over the weighted
SVM. A handwritten digit recognition example is presented
in Section 5.2 to further demonstrate the use of our pro-
posed weighted RSVM. For all examples discussed in this
section, the tuning parameter X is selected over a grid using
an independent tuning data set.

5.1 Simulation

We consider three simulated examples. For Examples 1
and 2, the underlying Bayes decision boundary is piecewise
linear. We perform both linear and kernel nonlinear learn-
ing in Example 1 to demonstrate the change of the decision
boundary with the utility matrix. Example 2 is used to show
the advantage of the weighted RSVM over the weighted
SVM when there are outliers in the data. For Example 3,
the underlying Bayes decision boundary is nonlinear and we
study the performance of our nonlinear weighted RSVM.

Example 1. This example is used to illustrate how bound-
ary moves when we change the utility matrix. The data of
this piecewise linear example are generated as follows: the
class response Y has equal probabilities taking 1,2, or 3;
conditional on Y = y, X ~ N(uy,0.7212) where I is a
2 x 2 identity matrix, pu; = (1,0)7, puy = (=1/2,v/3/2)7,
and pg = (~1/2,-V3/2)".

To study the effect of the utility matrix, we consider four
different configurations of the utility matrix as follows:

1 1

(16)  Uy= |0 . Upa=10
0 0

a

0

1

o = O
—_— o O
O = Q
= o O

_ 77T
) UB,a - U2,a7

)

1
Uso=10
0

O = Q

where 0 < a < 1.

Since the true decision boundary is piecewise linear, we
apply both linear learning and nonlinear kernel learning. For
linear learning, the sample size is set to be n = 1600. Figure
1 shows how the decision boundaries change as we change
the utility matrix. For the utility matrix U; 4, the utility of
classifying points in class 1 into class 2 increases as a in-
creases. As a result, the region for class 1 becomes smaller
while the region for class 2 becomes larger as a increases, as
shown on the left panel of Figure 1. For the utility matrix
Us.q, the utilities of classifying points in class 1 into class

2 or 3 increase as a increases. Thus, the regions for classes
2 and 3 become larger and the region for class 1 becomes
smaller as a increases, as shown on the middle panel of Fig-
ure 1. In contrast to U, 4, for Us 4, the utilities of classifying
points in class 2 or 3 into class 1 increase as a increases.
Consequently, the right panel of Figure 1 shows that the
regions for classes 2 and 3 become smaller and the region
for class 1 becomes larger as a increases. Overall, the results
match our expectation when we change the utility matrix.

Next we apply nonlinear learning via Gaussian kernel and
see how the boundaries move with the change of the utility
matrix. In this case, we set the sample size n = 800. We
show the boundaries for one typical realization in Figure 2.
The first, second and third rows of Figure 2 correspond to
the changes of decision boundaries as we change a in (16).
The pattern changes are similar to that of linear learning.
In particular, for the first row, the region for class 2 gets
larger while that for class 1 gets smaller. For the second
row, the regions for both classes 2 and 3 get larger while
that for class 1 gets smaller. Interestingly, as a gets larger,
the region for class 1 is mixed with the regions for class 2
and 3. This is possibly due to the same value for U;s and
Uis. As a gets larger, the chances of classifying a point in
class 1 into one of the three classes are approximately the
same and thus the decision is close to being random. For the
third row, the region for class 1 gets larger at the expense
of smaller regions for classes 2 and 3.

Example 2. This example is used to demonstrate the per-
formance of weighted SVM and weighted RSVM when there
are outliers in the data. For simplicity, we use a similar data
generation scheme as in Example 1. We first generate (X, }7)
as in Example 1. Then we perform a data contamination step
to generate outliers. Specifically, conditional on Y = 9, ran-
dom flip Y to get the final response Y by setting Y = j with
probability P(j,7), where j = 1,2,3. We set P(j,3) = 0.85
when j = ¢ and 0.075 otherwise. With outliers existing in
the data, we want to examine the effect of truncation of the
hinge loss for the weighted RSVM.

For this example, the sample size is set to be n = 400. We
generate an independent test set of size ni.ss = 100n. For
a utility matrix U = (u,;), we report the average utility on
the test set as defined by Y1 wy, g, /Nest for every (z;,y;)
in the test set with corresponding prediction ;. Means and
standard deviations of the average utilities of over 100 rep-
etition are reported for different methods in Table 1. We
can see that using truncation can help to produce classifiers
with higher utilities than those without truncation in most
cases.

Example 3. Examples 1 and 2 have piecewise linear Bayes
decision boundaries. For Example 3, we consider an ex-
ample with nonlinear Bayes decision boundary. In par-
ticular, predictors X = (X, X5)T are generated with
X1 ~ Uniform[-3,3] and X5 ~ Uniform[—6,6]. Condi-
tional on X = x, the initial reponse Y takes value j with
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Table 1. Utility comparison for the weighted SVM (WSVM) and RSVM (WRSVM) for Example 2

Utility a=0 a=0.2 a=04 a=20.6 a=0.38
Uia 70.67 (0.24) 71.58 (0.36) 72.60 (0.31) 73.90 (0.42) 74.79 (0.94)
WRSVM Uz,a 72.53 (0.34) 74.57 (0.45) 76.42 (0.99) 79.99 (0.29)
Us,a 72.82 (0.28) 75.44 (0.31) 77.39 (1.84) 86.59 (0.09)
Uia 70.62 (0.28) 71.32 (0.47) 72.13 (0.49) 72.88 (0.93) 73.96 (0.71)
WSVM Uz,a 71.98 (0.70) 71.88 (1.04) 74.46 (0.38) 80.04 (0.26)
Us,a 72.60 (0.43) 74.35 (1.08) 75.90 (1.58) 86.61 (0.08)

Note: All table entries are multiplied by 100.

Table 2. Utility comparison for the weighted SVM (WSVM)
and RSVM (WRSVM) for Example 3

Ui0.4 Uz0.4 Us,0.4
WRSVM 43.47 (1.83) 47.09 (1.11) 57.62 (3.10)
WSVM 43.10 (1.76) 47.28 (1.09) 55.13 (2.80)

Note: All table entries are multiplied by 100.

probability exp(f;(@:))/ 32, —; exp(fm(a:)) with fi(@) =
—20x1 + 223 — 23 + 2, fo(x) = —42? + 223 — 4, and
f3(x) = 2021 +223 —23+2. Conditional on Y = g, randomly
flip Y to get the final reponse Y by setting Y = j with prob-
ability P(j,9), where j = 1,2,3. We set P(4,9) = 0.85 when
j =y and 0.075 otherwise.

We choose n = 200, ns.s¢ = 10n, and three specific utility
matrices Ui 0.4, U2,0.4, and Us o.4. Average utility results are
given in Table 2. In general, loss truncation for the weighted
RSVM helps to deliver classifiers with larger utilities except
for the case of Us .4.

5.2 Handwritten digit recognition

In this session, we use one real data example to further
illustrate our proposed method. The real dataset we use is
the “Pen-Based Recognition of Handwritten Digits” avail-
able online at the UCI Machine Learning Repository. See
Alimoglu and Alpaydin (1996) for more information related
to this data set.

For this digit dataset, the response variable is multicat-
egory with class codes being 0,1,2,...,9, representing cor-
responding digits. To simplify the task, we focus on three
classes with class codes of 3, 6, and 9, which are labeled as
class 1, 2, and 3, respectively, in our weighted RSVM. After
combining both the training data and the testing data, we
have 3,166 observations with class codes 3, 6, and 9. There
are 16 predictors available, which are first standardized to
have mean zero and standard deviation one. For each repli-
cation, we randomly select 50 observations from each class
to be used as the training data, another 50 observations
for each class from the remaining to be used as the tuning
data, and the rest as the test data. We repeat this random
splitting 20 times.
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Table 3. Classification results for the hand written digit
recognition data

Percentage
g=1 y=2 =3
y=1 0.9929 0.0005 0.0066
U2, y=2 0.0001 0.9989 0.0010
y=3 0.0130 0.0002 0.9868
y=1 0.9886 0.0034 0.0080
Uz2,0.2 y=2 0.0001 0.9990 0.0009
y=3 0.0109 0.0015 0.9875
y=1 0.4545 0.1573 0.3882
Uz,0.6 y=2 0 0.9990 0.0010
y=3 0 0.0002 0.9998

We report the results based on these 20 splitting in Ta-
ble 3. For each utility matrix and each random splitting, we
calculate the average percentage of predicting observations
of each class to different classes. For the purpose of illustra-
tion, we only report the results for the utility type Us , in
Table 3. For the case of standard learning with utility Us o,
we can see that the correct classification rates for the three
classes are all around 0.99. When we increase a, more and
more data points in class 1 are classified into classes 2 and
3 as the design of this utility matrix encourages such kinds
of misclassification.

6. DISCUSSION

Multicategory classification is an important statistical
problem in practice. In this paper, we propose a weighted
extension of the multicategory RSVM. A novel utility-
based weighting method is proposed. The resulting weighted
RSVM can be implemented using the DC algorithm. The
connections between the cost matrix and the utility matrix
are explored. Our numerical examples demonstrate the ef-
fectiveness of our weighted RSVM.

Our method requires a predefined utility matrix in or-
der to apply the weighted learning. Although we show that
the utility matrix can be constructed using the cost matrix,
the method requires the users to specify the cost or util-
ity matrix. How to best assign sensible costs or utilities for
multicategory classification is an important topic. Further
investigation is necessary.
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Figure 1. Boundaries for three configurations of the utility matrix with different a’s in (16) for Example 1. The left, middle,
and right panels correspond to utility matrices Uy 4, Us o, Us . respectively.

APPENDIX
Proof of Theorem 1. Note that

P[5 Ut tmin€3). )|

j=1

k
— 5| 3 Uyt (min (). ) (X)|.

=1

For any given &, we need to minimize Ele Uiilr,(g;)p1(x)
where g; = ming(f(x), j). By definition and the fact that

25:1 f; = 0, we can conclude that max; g; > 0 and at most
one of g;’s is positive. Assume j, = argmax; Zle Uijpi(x)
is unique. Then using the non-increasing property of /7, and
£'(0) < 0, the minimizer f* satisfies that g; > 0.

We are now left to show 95, # 0, equivalently that
0 cannot be a minimizer. For simplicity, denote A =
Zle wj,pi(x), B=3,; Zle Uijpi(x), and C = A+ B.
Note A > C/k due to the uniqueness of j,. Then it is suf-
ficient to show that there exists a solution with g; > 0.
By assumption, there exists u; > 0 such that u; > —s and

(£(0) — L(uq1))/((s) — £(0)) > k — 1. Consider a solution
£O with 0 = wi(k —1)/k and f) = —uy/k for j # jp.
We want to show that f° yields a smaller expected loss
than 0, i.e., Alp (u1)+ Bl (—u1) < £, (0)C. Equivalently,
(£(0) — £(u1))/(£(s) — £(0)) > B/A, which holds due to the
fact that B/A < (k — 1). This implies sufficiency of the
condition.

To prove necessity of the condition, it is sufficient to show
that if (£(0)—£(w))/(£(s)—£(0)) < (k—1) for all u with —u <
s < 0, 0 is a minimizer of Y1 Uy;lr.(g;)p(x). Equiva-
lently, we need to show that there exists (p1,...,pr) such
that Z;;l Uiilr,(gj)pi(x) > L1, (0)C for all f. Without loss
of generality, assume that j, = k and f; < fo <--- < fi.
Then Yo, Y05, Unitr, (95)p(@) = 32573 Yoy Uiglr, (f =
fop(@) + S5 Unlr, (fe — fr-i)pi(®) > r (fuo1 —
F) S5 S Upi() + Cr, (fe — foe1) Yy Unpi(@) =
br (fr—1—fi)B+er, (fi— fr—1) A since {7, is non-increasing,.
Thus it is sufficient to show 1, (fx — fr—1)A + b1, (fr—1 —
fi)B > 1, (0)C, that is, B({r,(—u) — £(0)) > A(¢(0) —
£(u)) for all w > 0. Since £(-) is convex, B({(—u) —
£(0)) > A(£(0) — £(u)) holds for all 0 < u < —s with
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Figure 2. Boundaries for three utility matrix configuration with different a.

by (—u) = £(—u). For u > —s, it is equivalent to show

B(l(s) — £(0)) > A(¢(0) — l(u )) By assumption, we can
set (U(s) — £(0)) = (£(0) — L(uw))/(k — 1) + a for some
a > 0. Denote (£(0) — ¢(u)) = W. Then we need to have
B(W/(k—1)+a) > AW. Let A = C/k+e. Then it becomes
(k=1)/kC—€e)(W/(k—1)+a) > (C/k+¢€)W, equivalently,

k—1 k
(17) GJC? > mWﬁ-lI

For any given a > 0, C > A > 0 and W > 0, we can always
find a small € > 0 to have (17) satisfied. The desired result
then follows. O
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