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Empirical likelihood confidence intervals for ratio
of hazard rates under right censorship∗

Shan Jiang and Dongsheng Tu
†

Hazard ratio is an important measure for relative dif-
ference between treatment groups in clinical trials or other
types of studies with time-to-event as an endpoint. Nonpara-
metric confidence intervals for hazard ratio were derived in
[26] based on asymptotic normality of the kernel estimate
for hazard ratio. Simulation studies found that, however,
the actual coverage probabilities of these confidence inter-
vals were still below the nominal level. In this paper, empir-
ical likelihood ratio method is used to construct confidence
intervals for hazard ratio functions under right censorship.
The asymptotic distribution of the empirical likelihood ra-
tio is established and simulation studies show that empiri-
cal likelihood method improves the coverage probabilities of
confidence intervals based on asymptotic normality.
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1. INTRODUCTION

Hazard ratio is the most used statistical measure to assess
the differences between treatments [21]. It is defined as the
ratio of two hazard rate functions. For a subject in j-th
group with a survival time Tj , hazard rate function at time
t is defined as:

hj(t) =
fj(t)

1 − Fj(t)
,

where Fj(t) and fj(t) are respectively the distribution func-
tion and density function of Tj . The hazard ratio function
at time t is, therefore, defined as:

ρ(t) =
h1(t)
h2(t)

.

Several procedures have been proposed in the literature
to construct confidence intervals for hazard ratios based on
data with potential censoring. The Cox proportional haz-
ard model [3] has been the most widely used procedure over

∗Supported by a grant from the Natural Sciences and Engineering
Research Council of Canada.
†Corresponding author.

many years to estimate hazard ratio as well as construct
its confidence interval, but the crucial assumption behind
this procedure, proportional hazard assumption, may not
be satisfied by data from epidemiologic studies or clinical
trials, see the example provided by [25]. [26] derived two
types of undersmoothed kernel confidence intervals for haz-
ard ratio at a given time point t: one based on directly the
asymptotic normality of kernel hazard ratio estimate and
the other on the Fieller’s transformation of hazard ratio
estimator. It was found that, in terms of coverage proba-
bility, both undersmoothed confidence intervals performed
reasonably well when proportional hazard assumption was
violated. However, these procedures are still not very satis-
factory, because when sample size is small, the true coverage
probability is still far from the stated nominal level. This
was not improved by linear transformation of kernel esti-
mate. The requirement of estimating variance for a hazard
ratio estimator may be the reason for the low accuracy of
confidence intervals based on asymptotic normality.

In this paper, we explore the applications of an empirical
likelihood method on construction of a confidence interval
for hazard ratio. Empirical likelihood ratio confidence inter-
val was first introduced by [16] for a single functional. A
comprehensive introduction of empirical likelihood method
can be found in [19]. Based on a data-driven likelihood ratio
function expressed through constraints, empirical likelihood
method does not need to estimate variance when construct-
ing a confidence interval, which leads to very favorable small
sample properties in comparison with its competitors. This
method has been applied to some statistical problems with
censored data, for example, construction of confidence in-
terval for survival function [12], density and hazard function
[24], difference of survival functions [14] and ratio of survival
functions [23].

In this paper, empirical likelihood ratio function is de-
fined for hazard ratio and shown to have a chi-square asymp-
totic distribution with one degree of freedom. The cover-
age probability of confidence interval based on this result
is closer to nominal level in comparison to that based on
normal approximation.

This paper is organized as follows: empirical likelihood
ratio function and associated confidence interval for hazard
ratio are defined in section 2. Section 3 presents results of
simulation studies and application to data from a clinical
trial. Proof of the major result is given in the Appendix.
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2. METHODOLOGY

Denote Tji and Cji(j = 1, 2; i = 1, 2, . . . , nj) the true
survival and censoring times of subjects in two groups, re-
spectively. The data we observe from a clinical trial or cohort
study are the pairs (Xj1, δj1), (Xj2, δj2), . . ., (Xjnj , δjnj ),
where

(1)

{
Xji = min(Tji, Cji)
δji = I(Tji ≤ Cji)

Here and thereafter, I(A) stands for the indicator function
of A. The total sample size from two groups is n = n1 + n2.
Write 0 ≤ Xj(1) ≤ Xj(2) ≤ · · · ≤ Xj(nj) < ∞ as the ordered
statistics of sample {Xji} and δj(i) the concomitant of Xj(i)

for i = 1, 2, . . . , nj and j = 1, 2. Let

(2) rji =
nj∑

k=1

I(Xjk ≥ Xj(i)) = nj − i + 1

be the number of subjects that are still at risk before Xj(i).
Now we will make some assumptions on the distribu-

tion of the true survival and censoring times. Suppose that
{Tji : i = 1, 2, . . . , nj} are independently distributed with
distribution function Fj(t). The survival function of Tji is
defined as: F̄j(t) = 1−Fj(t). We also assume that Fj(t) has
continuous density fj(t). The hazard function of Tji can be
written as

hj(t) =
fj(t)
F̄j(t)

.

Suppose that {Cji : i = 1, 2, . . . , nj} are independently dis-
tributed with distribution function Gj(t) and write

Hj(t) = 1 − (1 − Fj(t))(1 − Gj(t)),

then Hj is the distribution functions of {Xji : i =
1, 2, . . . , nj}, j = 1, 2.

The likelihood function based on censored data (1) is de-
fined as:

L(F1, F2)

=
2∏

j=1

nj∏
i=1

(Fj(Xji) − Fj(Xji−))δji(1 − Fj(Xji))(1−δji).

From [12], this likelihood function can be rewritten as:

L(F1, F2) =
2∏

j=1

nj∏
i=1

λ
δj(i)
ji (1 − λji)rji−δj(i) ,

where

λji =
F (Xj(i)) − F (Xj(i)−)

1 − F (Xj(i)−)
, i = 1, 2, . . . , nj , j = 1, 2.

Therefore, we may express cumulative hazard function
Λj(t) = − ln F̄j(t) in terms of {λji : i = 1, 2, . . . , nj , j =
1, 2}:

Λj(t) = −
nj∑
i=1

ln(1 − λji)I(Xj(i) ≤ t).

Let Kj(t) be a kernel function and aj = a(nj) a bandwidth
parameter. By the kernel smoothing method, an estimator
of hazard function could be chosen from the following esti-
mation family:

h̃j(t) = −
nj∑
i=1

ln(1 − λji)Kji(t),

where

(3) Kji(t) =
1
aj

Kj

(
t − Xji

aj

)
.

Note that different {λji} will lead to a different estimate of
hj(t). It is easy to show that L(F1, F2) can be maximized
by choosing:

λ̂ji =
δj(i)

rji
,

and this λ̂ will give one of the estimators from the estimation
family h̃j(t) defined as:

(4) ĥj(t) = −
nj∑
i=1

ln
(

1 −
δj(i)

rji

)
Kji(t), j = 1, 2.

Hazard ratio ρ(t) = h1(t)/h2(t) is then estimated by:

(5) ρ̂(t) =
ĥ1(t)

ĥ2(t)
.

Under constraint η = h̃2(t) and ηρ(t) = h̃1(t), we can define
the following empirical likelihood ratio for ρ(t):

R(ρ(t), η, t)

=
supλji

{
L(F1, F2) : ρ(t)η − h̃1(t) = 0, η − h̃2(t) = 0

}
supλji

{L(F1, F2)}
.

Then the log likelihood can be written as:

ln(R(ρ(t), η, t))

= sup
λji

{
2∑

j=1

nj∑
i=1

(δj(i) lnλji + (rji − δj(i)) ln(1 − λji)) :

ρ(t)η − h̃1(t) = 0, η − h̃2(t) = 0

}

−
2∑

j=1

nj∑
i=1

δj(i) ln
(

δj(i)

rji

)
+ (rji − δj(i)) ln

(
1 −

δj(i)

rji

)
.
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By Lagrange Multiplier Method, we can get:

ln(R(ρ(t), η, t))

=
2∑

j=1

nj∑
i=1

{
(rji − δj(i)) ln

(
1 +

μjKji(t)
rji − δj(i)

)

− rji ln
(

1 +
μjKji(t)

rji

)}
,

where the Lagrange Multipliers μj , j = 1, 2, should satisfy:

ρ(t)η +
n1∑
i=1

ln
(

1 −
δ1(i)

r1i + μ1K1i(t)

)
K1i(t) = 0,(6)

η +
n2∑
i=1

ln
(

1 −
δ2(i)

r2i + μ2K2i(t)

)
K2i(t) = 0.(7)

We denote the left hand sides of equations (6) and (7) as
Q1n(η, μ1, μ2, t) and Q2n(η, μ1, μ2, t), respectively. Define

Lj(t) = max
i

{
δj(i) − rji

Kji(t)

}
.

Assume τ1, τ2 are two numbers such that

cF1 ∨ cF2 < τ1 < τ2 < dH1 ∨ dH2 ,

where cFj = inf{x : Fj(x) > 0} and dFj = sup{x : Fj(x) <

1}. We restrict t in interval [τ1, τ2]. The reason t has to be re-
stricted to this interval is that the law of iterated logarithm
for Kaplan-Meier estimator [4] and kernel hazard estimator
[27], major tool in the proof of Theorem 2.1 below, may not
be valid outside this interval. It can be shown that for each
t ∈ [τ1, τ2], Q1n is a strictly increasing function of μ1 on
interval (L1(t),∞) for fixed n1. When μ1 approaches L1(t),
we can find Q1n decreasing to −∞; when μ1 approaches ∞,
the limit of Q1n will be η, which is positive. Therefore equa-
tion (6) has a unique root, and we can write it as μ1(η, t).
Similarly, we can show that equation (7) has a unique root
μ2(η, t). By implicit function theorem, we get:

∂μ1(η, t)
∂η

= −ρ(t)

(
n1∑
i=1

δ1(i)K
2
1i(t)

(r1i + μ1K1i(t))(r1i + μ1K1i(t) − δ1(i))

)−1

,

∂μ2(η, t)
∂η

= −
(

n2∑
i=1

δ2(i)K
2
2i(t)

(r2i + μ2K2i(t))(r2i + μ2K2i(t) − δ2(i))

)−1

.

Therefore, the equation:

∂ ln(R(ρ(t), η, t))
∂η

=
∂ ln(R(ρ(t), η, t))

∂μ1

∂μ1

∂η
+

∂ ln(R(ρ(t), η, t))
∂μ2

∂μ2

∂η

= −
2∑

j=1

nj∑
i=1

δj(i)K
2
ji(t)μj

(rji − δj(i) + μjKji(t))(rji + μjKji(t))
∂μj

∂η

= 0

can be simplified into

ρ(t)μ1(η, t) + μ2(η, t) = 0,

which is equivalent to

(8)
ρ(t)μ1(η, t)
n1a1 + n2a2

+
μ2(η, t)

n1a1 + n2a2
= 0

We will show in our main theorem that unique root ηE of
equation (8) can be found so that log likelihood ratio func-
tion ln(R(ρ(t), η, t)) reaches its maximum.

Denote the left hand side of equation (8) as
Q3n(η, μ1, μ2, t). Define the following conditions for kernel
function, bandwidth and hazard function:

1. Kj(t)(j = 1, 2) are bounded functions with compact
support [−c, c] such that:

∫ ∞

−∞
uiKj(u)du =

⎧⎪⎨
⎪⎩

= 1, if i = 0,

= 0, if i = 1,

�= 0, if i = 2.

The first order derivative of Kj(t) exists.
2. Assume that h1(t) > 0 and h2(t) > 0 hold for t ∈

[τ1, τ2]. The derivative h′
j(t) of hj(t) exists and is con-

tinuous.
3. As nj → ∞, we have aj → 0, njaj → ∞,

nja
5
j → 0, lim infn→∞ n1/3aj > 0, ln a−1

j /njaj → 0,
ln a−1

j / ln lnnj → ∞, and njaj/(n1a1+n2a2) → ρj > 0,
j = 1, 2.

Specifically, we have the following theorem.

Theorem 2.1. Assuming conditions 1–3, for each t ∈
[τ1, τ2], there exists a solution ηE(t) to equation (8) almost
surely as n → ∞, such that R(ρ(t), η, t) attains its maximum
value at η = ηE, and we have for fixed t

−2 ln R(ρ(t), ηE , t) → χ2
1, in distribution

Proof. In the Appendix.

Remark 2.1. It is very important to select a bandwidth
in our kernel smoothing estimate. [2] proposed an under-
smoothing kernel bandwidth for construction of a confidence
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Table 1. Actual coverage probability of confidence interval for hazard ratio (h1(t) = λ)

h2(t) λ t True ratio Cel Ctu Ccox

λ 0.075 6 1.000 0.941 0.925 0.953
12 1.000 0.946 0.914 0.950
24 1.000 0.950 0.901 0.950

0.05 6 1.000 0.951 0.929 0.952
12 1.000 0.952 0.932 0.951
24 1.000 0.938 0.917 0.950

0.025 6 1.000 0.947 0.930 0.942
12 1.000 0.951 0.915 0.954
24 1.000 0.955 0.908 0.944

2λ2t 0.075 6 1.111 0.945 0.928 0.699
12 0.556 0.948 0.917 0.168
24 0.278 0.948 0.907 0.000

0.05 6 1.667 0.928 0.924 0.059
12 0.833 0.944 0.929 0.884
24 0.417 0.928 0.901 0.003

0.025 6 3.333 0.856 0.916 0.002
12 1.667 0.913 0.912 0.637
24 0.833 0.935 0.910 0.507

t exp(−λt)/
∫∞

t
u exp(−λu)du 0.075 6 3.222 0.943 0.936 0.671

12 2.111 0.945 0.922 0.825
24 1.556 0.930 0.900 0.189

0.05 6 4.333 0.950 0.927 0.312
12 2.667 0.944 0.927 0.950
24 1.833 0.925 0.907 0.417

0.025 6 7.667 0.952 0.908 0.158
12 4.333 0.939 0.921 0.865
24 2.667 0.906 0.917 0.824

interval for a hazard function, which is defined as:

aj =
exp{(λCj + λTj)t/3}

{λTj(λCj + λTj)2nj}1/3
,

where

λTj =
∑nj

i=1 δij∑nj

i=1 Xij

and

λCj =
nj −

∑nj

i=1 δij∑nj

i=1 Xij

.

This undersmoothing bandwidth alleviates estimation
difficulties caused by bias and is shown to minimize the cov-
erage error of a confidence interval for hazard rate function.
This bandwidth satisfies the condition 3 for Theorem 2.1
and can be used in practice, although any bandwidth of or-
der O(n−1/3) can also be used. We used this bandwidth in
our simulation studies and applications to real data from
clinical trials.

From Theorem 2.1, an empirical likelihood confidence in-
terval for hazard ratio function ρ(t) at fixed t ∈ [τ1, τ2] with
asymptotical coverage accuracy 1 − α can be defined as:

In,α(t) = {ρ(t) : −2 ln R(ρ(t), ηE , t) ≤ Cα}

where Cα satisfies:

P(χ2
1 ≤ Cα) = 1 − α.

Remark 2.2. The confidence interval defined above is for
a hazard ratio at a fixed time t. In practice, it may also
be useful to have a simultaneous confidence interval over
a given time interval. There is a technical difficulty to di-
rectly generalize the procedure developed in this paper to
construct simultaneous confidence intervals since, as pointed
out by [6], the stochastic process defined by kernel estimate
of hazard rate is not tight. For the density function, Hall
and Owen [8] derived empirical likelihood based simultane-
ous confidence intervals by following the technique used by
Bickel and Rosenblatt [1]. Application of the same technique
to construct simultaneous confidence intervals for a hazard
ratio is an interesting problem for further investigation.

3. NUMERICAL STUDIES

Simulations are conducted following the same scenarios
in [26]. Specifically, true survival times are assumed in the
first group from an exponential distribution with parameter
λ and in the second group from respectively, exponential dis-
tribution with parameter λ and Weibull and Gamma distri-
butions with shape and scale parameters respectively γ and
λ. The censoring distribution is assumed to be uniformly
distributed over interval [Tf , Ta + Tf ], which corresponds
to a clinical trial process with patients accrued uniformly
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Table 2. Expected length of confidence interval for hazard ratio (h1(t) = λ)

h2(t) λ t Lel Ltu Lcox

λ 0.075 6 1.000 1.441 1.603 0.617
12 1.000 1.716 2.053 0.619
24 1.000 3.549 32.083 0.618

0.05 6 1.000 1.477 1.558 0.658
12 1.000 1.597 1.901 0.657
24 1.000 2.419 3.144 0.660

0.025 6 1.000 1.853 1.692 0.788
12 1.000 1.685 1.848 0.780
24 1.000 2.060 2.580 0.778

2λ2t 0.075 6 1.111 1.455 1.715 0.558
12 0.556 0.823 0.906 0.557
24 0.278 109.996 12.984 0.555

0.05 6 1.667 2.308 2.988 0.627
12 0.833 1.135 1.325 0.625
24 0.417 0.907 0.903 0.624

0.025 6 3.333 5.926 12.938 0.979
12 1.667 2.368 3.452 0.979
24 0.833 1.681 1.611 0.979

t exp(−λt)/
∫∞

t
u exp(−λu)du 0.075 6 3.222 5.909 5.837 1.725

12 2.111 3.410 3.635 1.729
24 1.556 36.834 3.722 1.737

0.05 6 4.333 10.583 9.742 2.101
12 2.667 4.775 4.979 2.108
24 1.833 4.338 3.995 2.109

0.025 6 7.667 114.150 2421.374 3.856
12 4.333 13.937 13.478 3.857
24 2.667 8.472 6.379 3.824

into the study from time 0 to time Ta and all patients fol-
lowed for at least Tf time unit before the end of the study.
λ ranges from 0.075, 0.05, and 0.025 but γ is fixed at 2.
In addition, we fix Ta and Tf respectively at 60 and 6, as λ
varies from 0.075, 0.05 to 0.025, which gives us the censoring
rate of respectively 14%, 23%, and 45% when the distribu-
tion of the survival time is exponential, 10%, 20%, and 48%
when the distribution of the survival time is Weibull, and
34%, 50%, and 77% when the distribution of the survival
time is Gamma. For each parameter configuration, 3,000
random samples of sizes n1 = 100 and n2 = 100 are gen-
erated. The proportion of confidence intervals covering the
true hazard ratio over 3,000 samples are used to estimate the
coverage probability for each confidence interval, and the av-
erage length of confidence intervals to estimate the length
of the proposed confidence interval. The nominal significant
level α used in all simulations is 0.05 and the following kernel
function is used for all kernel estimates:

(9) K(x) =
15
16

(1 − x2)2I(|x| ≤ 1)

The results of simulations are presented in Table 1 and
2 respectively for the true coverage probability and length
of proposed confidence intervals. In these tables, Cel, Ctu,
Ccox and lel, ltu, lcox represent respectively the coverage

probabilities and lengths of confidence intervals based on
empirical likelihood method, asymptotic normality and Cox
proportional hazard model. It can be seen from these tables
that empirical likelihood method improves the confidence
interval based on normal approximation in almost all cases
and the lengths of these two intervals are also comparable
at the majority of cases.

From Table 1, we can notice that when h2 = 2λ2t,
λ = 0.025 and t = 6, the coverage probability based on
empirical likelihood procedure is only 0.856. This may be
caused by relatively few events observed at this earlier time.
[26] recommended to avoid making inference on hazard ra-
tio at the time when there are too few events observed. The
same recommendation may be made for use of the proposed
confidence interval based on empirical likelihood.

We also applied the proposed empirical likelihood method
to the same data set from a randomized clinical trial con-
sidered by [26]. This trial was designed to compare two
chemotherapy regimens (CEF v.s. CMF) in women with
early stage breast cancer. 710 pre-menopausal women with
axillary node positive breast cancer were recruited in this
trial with a median follow-up 8.8 years for all patients at
end of trial.

Table 3 presents confidence intervals for a hazard ratio
of death at respectively 2, 4, 6 and 8 years after randomiza-
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Table 3. Estimate of hazard ratio and 95% CI of treatment CEF to CMF

Years from Number at risk Hazard rate KHR1 CIna
2 CIel

3

randomization CEF CMF CEF CMF

2 323 326 0.0696 0.0897 0.78 0.44-1.11 0.46-1.07
4 284 265 0.0472 0.0782 0.60 0.28-0.92 0.39-0.99
6 251 239 0.0578 0.0437 1.32 0.55-2.09 0.80-2.12
8 216 207 0.0403 0.0537 0.75 0.28-1.21 0.45-1.52

tion based on respectively normal approximation and empir-
ical likelihood methods. The empirical likelihood confidence
interval is slightly shorter except at 8 years from random-
ization. Although both methods would conclude that CEF
is significantly better than CMF at 4 years after random-
ization, the upper endpoint of the empirical likelihood con-
fidence interval is closer than 1, which confirms the results
from the simulation study that the confidence interval based
on normal approximation may be more liberal than the em-
pirical likelihood confidence interval.

APPENDIX A. PROOF OF THEOREM 2.1

In what follows, we assume the conditions of Theorem 2.1
are satisfied.

Lemma A.1.

ĥj(t) − hj(t) = O

(√
ln nj

njaj

)
, j = 1, 2.

Proof of Lemma A.1. Lemma A.1 can be proved following
the same arguments in the proof of Theorem 2.3 in [27].

Lemma A.2. As n → ∞,
√

njaj(hj(t)−ĥj(t)) → N(0, σ2
j (t)), (j = 1, 2) in distribution,

where

σ2
j (t) =

hj

H̄j

∫ c

−c

K2
j (t)dt.

Proof of Lemma A.2. Lemma A.2 can be proved from The-
orem 4.2 in [13].

Lemma A.3. Define εn = n−s, with 1
3 < s < 1

2 . Let η0 =
h2(t) and assume that t ∈ [τ1, τ2], then for any η satisfies
|η − η0| ≤ a

−1/2
1 εn, the solutions μ1(η, t) and μ2(η, t) of

equations (6) and (7), respectively, satisfy:

(A.1)
μ1(η, t)

n1
= O(a

1
2
1 εn) and

μ2(η, t)
n2

= O(a
1
2
2 εn) a.s.

Proof of Lemma A.3. For j = 1, 2, define

(A.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ̂2
j (t) = ajnj

nj∑
i=1

δj(i)K
2
ji

rji(rji − δj(i))
,

σ̃2
j (t) = ajnj

nj∑
i=1

δj(i)K
2
ji

r2
ji

.

Similar to the proof of Proposition 3.3.1 of [20], we can show
that

σ̂2
j (t) → σ2

j (t) a.s.

σ̃2
j (t) → σ2

j (t) a.s.

Denote

(A.3)

{
A1n(η, t) = ĥ1(t) − ηρ(t)
A2n(η, t) = ĥ2(t) − η

Since we have from (6) and (7)

ηρ(t) = −
n1∑
i=1

ln
(

1 −
δ1(i)

r1i + μ1K1i(t)

)
K1i(t)

η = −
n2∑
i=1

ln
(

1 −
δ2(i)

r2i + μ2K2i(t)

)
K2i(t)

using inequality | ln(1 − x) − ln(1 − y)| ≥ |x − y| for x, y ∈
(0, 1), we can get

μ1A1n(η, t)

= μ1

[
−

n1∑
i=1

ln
(

1 −
δ1(i)

r1i

)
K1i(t)

+
n1∑
i=1

ln
(

1 −
δ1(i)

r1i + μ1K1i(t)

)
K1i(t)

]

= |μ1|
∣∣∣∣∣

n1∑
i=1

K1i(t)

[
ln
(

1 −
δ1(i)

r1i

)

− ln
(

1 −
δ1(i)

r1i + μ1K1i(t)

)]∣∣∣∣∣
≥ |μ1|

n1∑
i=1

K1i(t)
∣∣∣∣δ1(i)

r1i
−

δ1(i)

r1i + μ1K1i(t)

∣∣∣∣
= μ2

1

n1∑
i=1

K2
1i(t)

δ1(i)

r1i(r1i + μ1K1i(t))

≥ μ2
1

1 + maxi

(
μ1K1i(t)

r1i

) n1∑
i=1

K2
1i(t)δ1(i)

r2
1i

=
μ2

1σ̃
2
1(

1 + maxi

(
μ1K1i(t)

r1i

))
n1a1

.
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From condition 1, we have |Kj(x)| ≤ M , for an M > 0 and
j = 1, 2, which leads to

μ1A1n(η, t) ≥ μ2
1σ̃

2
1

a1n1 + M |μ1|maxi( n1
r1i

)
.

Since for sufficiently large n1 and n2, we have almost surely
((4.6) in [24])

max
i

∣∣∣∣ nj

rji

∣∣∣∣ ≤ 2
H̄j(τ2)

, j = 1, 2,

and

σ̃2
1(t) ≥ 1

2
σ2

1(τ1).

Therefore, we have

(A.4) |A1n(η, t)| ≥ |μ1|σ2
1(τ1)

2
(
a1n1 + 2M |μ1|H̄−1

1 (τ2)
) .

On the other hand, from definition h2(t) = η0, we have by
lemma A.1

A1n(η, t) = ĥ1(t) − ρ(t)η0 + ρ(t)η0 − ρ(t)η(A.5)

= ĥ1(t) − h1(t) + ρ(t)(η0 − η)

≤ o(a− 1
2

1 εn) + O(a− 1
2

1 εn)

= O(a− 1
2

1 εn).

Combining (A.4) and (A.5), we get

μ1(η, t)
n1

= O(a
1
2
1 εn) a.s. for fixed t ∈ [τ1, τ2].

Similarly, we can prove

μ2(η, t)
n2

= O(a
1
2
2 εn) a.s. for fixed t ∈ [τ1, τ2].

Lemma A.4. Almost surely, for large n1 and n2, equation
(8) has a solution ηE(t), such that R(ρ(t), η, t) reaches its
maximum value R(ρ(t), t) at η = ηE(t).

Proof of Lemma A.4. For any pair (j, i) which satisfies
Xji < τ2, we have almost surely for sufficiently large n

nj

rji
≤ nj∑nj

k=1(Xjk ≥ τ2)
≤ 2

H̄j(τ2)
.

By Taylor Expansion and Lemma A.3, we get

ln
[
1 −

δj(i)

rji + μjKji(t)

]
Kji(t)

= ln

[
1 −

δj(i)

rji

(
1 +

μjKji(t)
rji

)−1
]

Kji(t)

= Kji(t) ln

[
1 −

δj(i)

rji

(
1 − μjKji(t)

rji
+ O

(
μ2

jK
2
ji(t)

r2
ji

))]

= Kji(t) ln

[
1 −

δj(i)

rji
+

μjδj(i)Kji(t)
r2
ji

− δj(i)

× O

(
μ2

jK
2
ji(t)

r3
ji

)]

= Kji(t) ln

{(
1 −

δj(i)

rji

)[
1 +
(

1 −
δj(i)

rji

)−1

δj(i)

×
(

μjKji(t)
r2
ji

+ O

(
μ2

jK
2
ji

r3
ji

))]}

= Kji(t) ln
(

1 −
δj(i)

rji

)
+ Kji(t) ln

[
1 +

δj(i)μjKji(t)
(rji − δj(i))rji

+ O

(
μ2

jK
2
ji(t)

r2
ji(rji − δj(i))

)]

= Kji(t) ln
(

1 −
δj(i)

rji

)
+ K2

ji(t)
δj(i)μj

(rji − δj(i))rji

+ O

(
μ2

jK
3
ji(t)

r3
ji

)

= Kji(t) ln
(

1 −
δj(i)

rji

)
+ K2

ji(t)
δj(i)μj

(rji − δj(i))rji

+ O

(
ε2
n

na2
j

)
.

Therefore, from (6), (A.2) and the above equation, we have
almost surely

ηρ(t) = −
n1∑
i=1

K1i(t) ln
(

1 −
δ1(i)

r1i + μ1K1i(t)

)

= −
n1∑
i=1

K1i(t) ln
(

1 −
δ1(i)

r1i

)

−
n1∑
i=1

K2
1i(t)

δ1(i)μ1

(r1i − δ1(i))r1i
+ O

(
ε2
n

a2
1

)

= ĥ1(t) −
μ1(η, t)σ̂2

1

n1a1
+ O

(
ε2
n

a2
1

)
.

Similarly, we can show that, almost surely

η = ĥ2(t) −
μ2(η, t)σ̂2

2

n2a2
+ O

(
ε2
n

a2
2

)
.

Hence, from (A.3), we get

μ1(η, t) =
n1a1(ĥ1(t) − ηρ(t))

σ̂2
1

+ O

(
n1ε

2
n

a1

)
(A.6)

=
a1n1A1n(η, t)

σ̂2
1

+ O

(
n1ε

2
n

a1

)
a.s.,
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μ2(η, t) =
a2n2A2n(η, t)

σ̂2
2

+ O

(
n2ε

2
n

a2

)
a.s.

From (1), Lemma A.3 and using Taylor Expansion again,
we have

− 2 ln(R(ρ(t), η, t))

(A.7)

= −2
2∑

j=1

nj∑
i=1

{
(rji − δj(i)) ln(1 +

μjKji(t)
rji − δj(i)

)

− rji ln(1 +
μjKji(t)

rji
)

}

= −2
2∑

j=1

nj∑
i=1

{
(rji − δj(i))

[
μjKji(t)
rji − δj(i)

− μjKji(t)
2(rji − δj(i))2

+ O

(
μ3

jK
3
ji(t)

(rji − δj(i))3

)]
− rji

[
μjKji(t)

rji
−

μ2
jK

2
ji

2r2
ji

+ O

(
μ3

jK
3
ji(t)

r3
ji

)]}

= 2
2∑

j=1

nj∑
i=1

{
μ2

jK
2
ji(t)

2(rji − δj(i))
+ O

(
μ3

jK
3
ji(t)

(rji − δj(i))2

)

−
μ2

jK
2
ji(t)

2rji
− O

(
μ3

jK
3
ji(t)

r2
ji

)}

=
2∑

j=1

nj∑
i=1

{
δj(i)K

2
ji(t)μ

2
j

rji(rji − δj(i))
+ O

(
ε3
nnja

−3/2
j

)}

=
μ2

1(η, t)σ̂2
1

n1a1
+

μ2
2(η, t)σ̂2

2

n2a2
+ O

(
nε3

na
−3/2
1

)
.

From (A.6) and (A.7)

−2 ln R(ρ(t), η, t) =
a1n1A

2
1n(η, t)

σ̂2
1

+
a2n2A

2
2n(η, t)

σ̂2
2

(A.8)

+ O(nε3
na

−3/2
1 ).

If we write ηn = η0 + Δ = h2(t) + Δ, such that Δ → 0,
Δ2a

5/2
1 /ε3

n → ∞, and Δ2a1n1/ ln lnn → ∞, using Taylor
Expansion of A2

jn(ηn, t), j = 1, 2 at η0, we have almost surely

−2 ln R(ρ(t), ηn, t) =
a1n1

σ̂2
1

(A1n(η0, t) − ρ(t)Δ)2(A.9)

+
a2n2

σ̂2
2

(A2n(η0, t) − Δ)2

+ O(nε3
na−3/2).

Since from Lemma A.1, we have almost surely

A1n(η0, t) = ĥ1 − η0ρ(t) = O(n−1/2a
−1/2
1

√
lnn),(A.10)

A2n(η0, t) = ĥ2 − η0 = O(n−1/2a
−1/2
1

√
ln n),

from (A.9) and (A.10), we have almost surely

−2 ln R(ρ(t), ηn, t) = O(naΔ2).

On the other hand, for sufficiently large n1 and n2, we have
from (A.8) almost surely

−2 ln R(ρ(t), η0, t) = O(ln lnn) + O(nε3
na−3/2)

= o(naΔ2) (from assumption on Δ.)

Therefore, for sufficiently large n1 and n2, we have

(A.11) − 2 lnR(ρ(t), η0 + Δ, t) > −2 ln R(ρ(t), η0, t), a.s.

Similarly, we can obtain

(A.12) − 2 lnR(ρ(t), η0 − Δ, t) > −2 ln R(ρ(t), η0, t), a.s.

Combining (A.11) and (A.12), we know that
−2 ln R(ρ(t), η, t) attains its minimum in the region
(η0 − Δ, η0 + Δ), say at ηE .

Proof of Theorem 2.1. Denote ν1 = μ1(η, t)/(n1a1), ν2 =
μ2(η, t)/(n2a2), ν1E = μ1(ηE , t)/(n1a1) and ν2E =
μ2(ηE , t)/(n2a2). From (6)–(8), together with n1a1/(n1a1 +
n2a2) → p1 and n2a2/n1a1 + n2a2 → p2, we have

Sn(η, t) =
∂(Q1n, Q2n, Q3n)

∂(η, ν1, ν2)

∣∣∣∣
(η,ν1,ν2,t)=(η,0,0,t)

=

⎛
⎜⎜⎜⎝

ρ(t) σ̂2
1(t) 0

1 0 σ̂2
2(t)

0
n1a1ρ(t)

n1a1 + n2a2

n2a2

n1a1 + n2a2

⎞
⎟⎟⎟⎠ ,

and

Sn(η, t) → S(η, t) :=

⎛
⎜⎝

ρ(t) σ2
1(t) 0

1 0 σ2
2(t)

0 p1ρ(t) p2

⎞
⎟⎠

in probability. By Taylor expansion we get

⎛
⎜⎝

0

0

0

⎞
⎟⎠ =

⎛
⎜⎝

Q1n(ηE , ν1E , ν2E , t)

Q2n(ηE , ν1E , ν2E , t)

Q3n(ηE , ν1E , ν2E , t)

⎞
⎟⎠

=

⎛
⎜⎝

Q1n(η0, 0, 0, t)

Q2n(η0, 0, 0, t)

0

⎞
⎟⎠+ Sn(η0, t)

⎛
⎜⎝

ηE − η0

ν1E

ν2E

⎞
⎟⎠+ o(1).
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Therefore,

⎛
⎜⎝

ηE − η0

ν1E

ν2E

⎞
⎟⎠ ≈ S−1

n (η0, t)

⎛
⎜⎜⎝

ĥ1(t) − h1(t)

ĥ2(t) − h2(t)

0

⎞
⎟⎟⎠

≈

⎛
⎜⎝
−p1ρ(t)σ2

2(t) −p2σ
2
1(t) ∗

−p2 p2ρ(t) ∗
p1ρ(t) −p1ρ

2(t) ∗

⎞
⎟⎠

×

⎛
⎜⎜⎝

ĥ1(t) − h1(t)

ĥ2(t) − h2(t)

0

⎞
⎟⎟⎠ 1

det(S(η0, t))
,

where

det(Sn(η0, t)) = −p1ρ
2(t)σ2

2(t) − p2σ
2
1(t).

This leads to

ν1E ≈
(
−p1ρ

2(t)σ2
2(t) − p2σ

2
1(t)
)−1

×
(
p2(h1(t) − ĥ1(t)) − p2ρ(t)(h2(t) − ĥ2(t))

)
=

p2

p1ρ2(t)σ2
2(t) + p2σ2

1(t)

×
(
ρ(t)(h2(t) − ĥ2(t)) − (h1(t) − ĥ1(t))

)
=

p2

p1ρ2(t)σ2
2(t) + p2σ2

1(t)
W (t),

where

W (t) = ρ(t)(h2(t) − ĥ2(t)) − (h1(t) − ĥ1(t)).

From Lemma A.2, we have
√

n1a1 W (t) is asymptotically
normal distributed with mean 0 and variance

(A.13) var(
√

n1a1 W (t)) =
p1ρ

2(t)σ2
2(t) + p2σ

2
1(t)

p2
.

On the other hand, from (A.7) and (8), we can get

− 2 ln(R(ρ(t), ηE , t))

≈ μ2
1(ηE , t)σ2

1

n1a1
+

μ2
2(ηE , t)σ2

2

n2a2

=
μ2

1(ηE , t)σ2
1

n1a1
+

ρ2(t)μ2
1(ηE , t)σ2

2(t)
n2a2

= ν1En1a1σ
2
1(t) + ν2En2a2σ

2
2(t)

≈ n1a1p
2
2σ

2
1(t)

(p1ρ2(t)σ2
2(t) + p2σ2

1(t))2
W 2(t)

+
ρ2(t)n1a1p1p2σ

2
2(t)

p1ρ2(t)σ2
2(t) + p2σ2

1(t)
W 2(t)

=
p2

p1ρ2(t)σ2
2(t) + p2σ2

1(t)
(
√

n1a1W (t))2.

Combining the above with (A.13), we have

−2 ln R(ρ, ηE , t) → χ2
1, in distribution.
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