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Spline-based models for predictiveness curves and
surfaces
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A biomarker is defined to be a biological characteristic
that is objectively measured and evaluated as an indicator
of normal biologic processes, pathogenic processes, or phar-
macologic responses to a therapeutic intervention. The use
of biomarkers in cancer has been advocated for a variety
of purposes, which include use as surrogate endpoints, early
detection of disease, proxies for environmental exposure and
risk prediction. We deal with the latter issue in this paper.

Several authors have proposed use of the predictiveness
curve for assessing the capacity of a biomarker for risk
prediction. For most situations, it is reasonable to assume
monotonicity of the biomarker effects on disease risk. In this
article, we propose the use of flexible modelling of the predic-
tiveness curve and its bivariate analogue, the predictiveness
surface, through the use of spline algorithms that incorpo-
rate the appropriate monotonicity constraints. Estimation
proceeds through use of a two-step algorithm that represents
the “smooth, then monotonize” approach. Subsampling pro-
cedures are used for inference. The methods are illustrated
to data from a melanoma study.

Keywords and phrases: Active set algorithm, Isotonic
regression, Nonregular asymptotics, Pool adjacent violators
algorithm, Risk prediction, Thin-plate spline.

1. INTRODUCTION

There has been extensive work done on the develop-
ment of methodology for diagnostic testing and screening.
One primary scientific goal in this area is to determine
the discriminatory power of a biomarker for detecting dis-
ease. As an example, we consider prostate cancer. Typically,
prostate-specific antigen (PSA) has been used for detection
of prostate cancer. If a man has a PSA measurement be-
tween 4 and 10 ng/mL, then this leads to a prostate needle
biopsy. While PSA is able to detect prostate cancer when it
is present, it also leads to numerous false positives.

With the difficulty in developing tests and finding
biomarkers that can lead to early detection of aggressive
disease, interest has more recently focused on risk predic-
tion using biomarkers (Huang et al., 2007). The idea is that
it might be more feasible to find one or more biomarkers that
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can stratify patients into risk subgroups that would lead to
better clinical management of these patients. Rather than
dealing with the distribution of biomarker measurements
conditional on disease status as with the receiver operating
characteristic (ROC) curve, the objective has been has been
on studying the distribution of the risk scores themselves.
It is this type of modelling that we focus on in this article.

In the case of one biomarker, Huang et al. (2007) have
proposed a quantity termed the predictiveness curve which
graphically displays the distribution of risk in the pop-
ulation, standardized to the baseline distribution of the
biomarker. We more carefully define this quantity in Sec-
tion 2. Huang et al. (2007) proposed flexibly parametric
and nonparametric estimation and inference procedures for
this quantity. One common assumption that is made in
biomarker contexts is that risk of disease is a monotone
function of level of the biomarker. This leads to simple clin-
ical decision rules. For example, if a man’s PSA is above 4
ng/mL, then he is predicted to have prostate cancer. How-
ever, it remains an open question as to how to extend mono-
tonic estimation procedures to more than one biomarker.
Two proposals in this direction are those of Mukarjee and
Stern (1994) and Beran and Dümbgen (2009).

In this article, we propose two extensions for the mod-
elling of the predictiveness curve. The first is to de-
velop and compare flexible algorithms for estimation of
covariate-adjusted predictiveness curves using smoothing
splines (Ruppert et al., 2003). The second is to generalize
the predictiveness curve to the bivariate setting. This leads
to consideration of a predictiveness surface. While the pre-
dictiveness surface has been considered by Gilbert and Hud-
gens (2008) recently, they modelled the quantity in a causal
inference setting in which they seeked to identify causal es-
timands for evaluating surrogacy. By contrast, we are in-
terested in the use of the predictiveness curve for the same
purposes as Huang et al. (2007); what we wish to explore is
the use of constrained smoothing techniques for estimation.
The structure of this article is as follows. In Section 2, we
outline the data available and give a brief review on predic-
tiveness curves. We then describe estimation and inference
in a semiparametric model for the predictiveness curve us-
ing the approaches given in Ghosh (2007). In Section 3, we
describe the bivariate analog of the predictiveness curve,
termed the predictiveness surface. We then propose an es-
timator that is a bivariate generalization of the “smooth,
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then isotonize” procedure of Ghosh (2007). An illustration
using data from a melanoma study is provided in Section 4.
We conclude with some discussion in Section 5.

2. DATA AND MODEL SETUP

Let S1 and S2 denote two biomarkers, Z a p-dimensional
vector of covariates and Y be an indicator of disease status
(i.e., Y = 1 if subject has disease, Y = 0 otherwise). We
observe the data (Yi, S1i, S2i,Zi), i = 1, . . . , n, a random
sample from (Y, S1, S2,Z). Define S ≡ (S1, S2) and Si ≡
(Si1, S2i), i = 1, . . . , n.

2.1 Predictiveness curves: A review

For the moment, assume that S ≡ S is one-dimensional.
In this situation, Huang et al. (2007) define the predictive-
ness curve as a plot of R(v) versus v, where v takes values
in (0, 1), and

R(v) = P [Y = 1|S = F−1(v)],

where F is the cumulative distribution function (CDF) for
Y . We will be assuming here and throughout that higher
values of Y are associated with increased risk of disease. It
might be the case that one would then have to take nega-
tive the value of Y to satisfy this convention, as was done by
Huang et al. (2007) in the example corresponding to their
Figure 1. The predictiveness curve describes the distribu-
tion of risk in the population. In particular, comparisons
are made between the estimate of R(v) with the estimated
disease prevalence, ρ = P (Y = 1). Note that by the law of
iterated expections, the area under the predictiveness curve
is

∫
R(v)dv = ρ. In the Appendix, we describe an alterna-

tive theory for the predictiveness curve based on the non-
parametric maximum likelihood estimation (NPMLE) pro-
cedure.

We now briefly discuss the difference between the predic-
tiveness curve presented here with the usual metrics of re-
ceiver operating characteristic curves, sensitivity and speci-
ficity that are typically used in diagnostic testing. The lat-
ter quantities can be estimated in both a cohort or a case-
control setting. However, the distribution of the risk, or
equivalently the risk scores, can only be estimated in a co-
hort setting. There is an analogy here with logistic regres-
sion. The estimators for the odds ratios associated with co-
variates do not depend on the study design when the distri-
bution of the covariates is completely unconstrained (Pren-
tice and Pyke, 1979). By contrast, for estimating the disease
risk, one either needs data from a cohort study or external
information on the prevalence.

Huang et al. (2007) proposed a simple-two step procedure
for estimating the predictiveness curve. First, one estimates
P (Y = 1|S) using a regression model and then computes
R̂(v) = P [Y = 1|F̂−1(v)], where F̂ is the empirical distribu-
tion for S. They also suggested a covariate-specific predic-
tiveness curve in the case where Z is discrete. This is done

by computing the predictiveness curve stratified based on
the values of Z. In the case where Z contains both continu-
ous and discrete components, however, such an approach is
not feasible. For this situation, Huang et al. (2007) suggested
using both logistic regression and Box-Cox-type transforma-
tion models for modelling P (Y = 1|S,Z) and to then plug in
F̂ to obtain an estimate of the predictiveness curve. In their
discussion, they left open the possibility of using more flex-
ible estimation procedures such as B-splines. However, such
an approach should also attempt to utilize the monotonicity
asumption relating risk of disease to S. We now explore that
issue.

2.2 A constrained smoothing spline
algorithm

The first model we consider is the following:

(1) logit{P (Y = 1|S,Z)} = g(S) + αT Z,

where g is monotone increasing in S. Given estimates of g
and α from the model, one would estimate the covariate-
adjusted predictiveness curve by R̂(v|Z) ≡ P (Y = 1|S =
F̂−1(v),Z).

The first procedure for predictiveness curve estimation is
an adaptation of the work of Ghosh (2007). The algorithm
proceeds as follows:

1. At the first stage, estimate g and α jointly ignoring the
constraint using the likelihood-based algorithm in Lin
and Zhang (1999).

2. Based on the estimated g from step 1, project it onto the
space of monotonic functions, using the pool adjacent
violators algorithm as described by Robertson et al.
(1988). To be specific, the algorithm finds μ ∈ C that
minimizes

r∑
l=1

(f̂(Sl) − μl)2,

such that f(S(1)) ≤ f(S(2)) ≤ · · · ≤ f(S(r)), where
S(1) ≤ S(2) ≤ · · · ≤ S(r) are the ordered distinct values
of the biomarker.

Based on the estimates from the two-step algorithm, one
can then estimate a covariate-adjusted version of the pre-
dictiveness curve as described above. The approach we are
proposing is an extension of the method proposed for non-
parametric models by Mammen et al. (2001). The algorithm
is computationally quite feasible and can be fit using the spm
and isoreg functions from R. An alternative estimation pro-
cedure would be to replace step 2 by a sorting step. While
the advantage of the procedure is its conceptual simplicity,
there is no objective function that the sorting optimizes.
By contrast, isotonic regression optimizes the least squares
problem given in the second step above.

For inferential purposes, there are two possible options.
One is to use profile likelihood (Murphy and van der Vaart,
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1997) for construction of confidence intervals. We note that
the monotonic effect of g in the model will not converge at
an n1/2 rate (Banerjee and Wellner, 2001); this is an ex-
ample of a nonregular estimation problem. An alternative
approach, and one that we use here, is to employ subsam-
pling techniques (Politis et al., 1999).

1. Sample without replacement (S∗
1 ,Z∗

1), . . . , (S
∗
b0

,Z∗
b0

),
from the controls and (S∗

1 ,Z∗
1), . . . , (S

∗
b1

,Z∗
b1

) from the
cases, where b0 and b1 are the numbers of the subsam-
pled controls and cases in the dataset.

2. Perform the two-stage estimation procedure described
above.

3. Repeat steps 1. and 2. several times.

Further discussion of the inference for this type of model
can be found in Banerjee et al. (2006).

3. BIVARIATE EXTENSION

We now consider the situation where there is more than
one biomarker. Take β = 0 in (3). We define the predictive-
ness surface R(v1, v2) as

(2) R(v1, v2) = P [Y = 1|S1 = F−1
1 (v1), S2 = F−1

2 (v1)],

where F1 and F2 are the marginal distribution functions
for S1 and S2. This quantity was originally proposed by
Gilbert and Hudgens (2008) and termed a predictiveness
surface. While they proposed it in the context of identifying
and performing inference for causal estimands in a surrogacy
problem, our goal is to use the surface to better understand
the behavior of biomarkers for risk prediction purposes. In
addition, there might be covariates we want to adjust for.
This will lead to a covariate-adjusted extension of the pre-
dictiveness surface:

R(v1, v2|Z) = P [Y = 1|S1 = F−1
1 (v1), S2 = F−1

2 (v1),Z].

This quantity was not considered by Gilbert and Hudgens
(2008) in their work.

We formulate the following class of regression models:

(3) logit{P (Y = 1|S,Z)} = f(S) + βT Z,

where β is a p-dimensional vector of unknown regression
coefficients to be estimated, and f is an unspecified bivari-
ate monotone function. Note that in the absence of Z, (3)
reduces to a nonparametric model.

The algorithm of Ghosh (2007) has an obvious bivariate
extension. The algorithm is to perform estimation of (3) in
an unconstrained manner and then to constrain the result-
ing unconstrained estimate of f to satisfy the monotonicity
condition. In the absence of the monotonicity constraint, a
natural method of estimation in (3) is with thin-plate splines

(Green and Silverman, 1994, Ch. 7). This can be formulated
as maximizing the following penalized log-likelihood:

n∑
i=1

yi

{
f(Si) + βT Zi

}
+ log(1 − pi)(4)

− 1
2
λ

∫ b1

a1

∫ b2

a2

{ (
∂2f

∂s2
1

)2

+
(

∂2f

∂s1∂s2

)2

+
(

∂2f

∂s2
2

)2
}

ds1ds2,

where λ > 0 is a smoothing parameter, pi = P (Yi =
1|Si,Zi). We take (a1, b1) and (a2, b2) to define the range
for the observed values of S1 and S2.

We seek to utilize the equivalence between the thin-plate
spline estimation problem (4) and the mixed model frame-
work. However, there is not a direct correspondence between
the two because the derivative constraint cannot be reformu-
lated as a proper covariance function. To do so, we will uti-
lize an approximate bivariate smoothing procedure, which
is an extension of the procedure described in Section 13.5
of Ruppert et al. (2003) to accommodate non-continuous
outcomes. The algorithm works as follows:

1. Determine the number of knots, M , by

M = max{20, min(n/4, 150)}.

2. Use the space filling algorithm (Nychka et al., 1998),
applied to S1, . . . ,Sn to obtain the knots κ1, . . . , κM ∈
R2.

3. Create the matrices W = [1 Zi Si]1≤i≤n,

XK = [‖Si − κk‖2 log ‖Si − κk‖]1≤i≤n,1≤k≤M ,

and

Ω = [‖κk − κl‖2 log ‖κk − κl‖]1≤k,l≤M .

4. Take the singular value decomposition of Ω = UAVT ,
and compute Ω1/2 = UA1/2VT .

5. Compute X = XKΩ−1/2.
6. Use mixed model software to fit the generalized linear

mixed model for logit(p) where W is the design matrix
for the fixed effects and X is the design matrix for the
random effects. The random effects are distributed as
N(0, σ2

uI).

There are several points to note here. First, the estima-
tion procedure is similar in spirit to weighted least squares
estimation procedures. Second, we are representing f using
both fixed and random effects. Based on the resulting so-
lutions for the estimated fixed and random effects, we can
estimate the parametric and nonparametric components of
(3). Note that the smoothing parameter λ can be estimated
automatically using restricted maximum likelihood (Lin and
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Zhang, 1999). The procedure exploits the fact that λ is re-
lated to the variance of the random effects as λ−1 = σ2.
Another issue is the impact of the number of knots in step 1
and their locations in step 2 of the algorithm. An excellent
discussion of how to select them can be found in Chapter 17
of Ruppert et al. (2003). They argue for a sufficiently large
number of knots; they find that while changes in this quan-
tity can have an effect on the estimate of f when M is small,
it is less for larger values of M . The effect of the location of
the knots on the estimate of f appears to still be a question
that has no satisfactory resolution within this framework.
As noted in Section 17.3 of Ruppert et al. (2003), one could
perform an optimization based on a grid search of values
for M and locations of the M knots, but this is currently
computationally prohibitive.

We next describe constraining the unconstrained esti-
mate of f to satisfy the monotonicity constraint. The sand-
wich isotonic block class (SIBC) algorithm of Qian and
Eddy (1996) is applied to the unconstrained estimator of
f , f̂ , described in the previous paragraph. The SIBC al-
gorithm is a modification of the algorithm of Dykstra and
Robertson (1982). Let (S∗

11, . . . , S
∗
1r) and (S∗

21, . . . , S
∗
2m) de-

note the r and m unique ordered values of S1 and S2. De-
fine H = {(S∗

1i, S
∗
2j) : i = 1, . . . , r; j = 1, . . . , m}. Define

E(s, t) = {(S∗
1i, S

∗
2j) : i = 1, 2, . . . , s, j = t, t + 1, . . . , m}.

We define g∗(·, ·), the isotonic regression is defined as the
solution to the following minimization problem:

min
g

∑
u,v

{g(u, v) − f̂(u, v)}2w(u, v)

subject to g(·, ·) isotonic in both variables, where w(u, v) is
a weight function. Define g∗s,t(·, ·) to be the isotonic regres-
sion on E(s, t). Let Ux and Lx be the expanded upper and
expanded lower sets of g∗s,t+1:

Ux = {(i, j) ∈ E(s, t) : i = s or g∗s−1,t(i, j) ≥ x};
Lx = {(i, j) ∈ E(s, t) : j = t or g∗s,t+1(i, j) ≤ x}.

The SIBC algorithm works as follows:

1. Use isotonic regression to find g∗1,t(·, ·) on E(1, t), t =
m, m − 1, . . . , 1.

2. For i = 2, . . . , r,

(a) Compute g∗i,m(·, ·), the isotonic regression of
E(i, m);

(b) For j = m, m − 1, . . . , 1

i. c0 = median{f̂(i, j), g∗i−1,j(i, j), g
∗
i,j+1(i, j +

1)}.
ii. For k = 0, 1, 2, . . . compute ck+1 =

max{h(xk) : g∗i−1,j(s, t) < xk}, where h(x)
is the average value of g∗ on the intersection
of Ux and Lx;

iii. Define g∗ by

g∗(s, t) =

⎧⎪⎨
⎪⎩

g∗i−1,j(s, t) if g∗i−1,j(s, t) < x;
x if x is in Ux ∩ Lx;
g∗i,j+1(s, t) if g∗i,j+1(s, t) > x.

While the notation for the algorithm may seem cumber-
some, in fact the crucial steps involve the univariate pool
adjacent violators algorithm (Robertson et al., 1988) and
taking the median. There are several advantages of the SIBC
algorithm relative to other bivariate isotonic regression algo-
rithms. First, the algorithm involves univariate isotonic re-
gressions. Second, the algorithm is guaranteed to converge in
a finite number of iterations. Finally, the algorithm is com-
putationally quite fast. A comparison of the SIBC procedure
with the algorithms of Moonesinghe and Wright (1994) and
Block et al. (1994) through simulation studies revealed the
SIBC algorithm to be at least five times faster.

To summarize the two-step algorithm, at the first stage,
we fit the unconstrained estimate given using the mixed
model framework and at the second stage, we compute the
bivariate isotonic estimator using the algorithm of Qian and
Eddy (1996).

As before, the results of Banerjee and Wellner (2001) sug-
gest that estimation of the nonparametric component will
not converge asymptotically at the usual rate. We again use
subsampling to perform inference. The algorithm is a slight
modification of that presented in §2.2. The procedure yields
an empirical distribution for f and β from which we can
construct confidence intervals.

4. NUMERICAL EXAMPLES

4.1 Melanoma data

The data analyzed here come from a prospective database
maintained by the second author. They are on patients with
cutaneous melanoma who underwent sentinel lymph node
(SLN) biopsy at the University of Michigan during a period
from August 1997 to March 2004. There were two exclusion
criteria. The first was that patients who were aged less than
16 years at the time of surgery were excluded because it is
believed that the biology of pediatric melanomas is quite dif-
ferent from that of adult melanomas. Second, patients with
multiple primary melanomas that went to the same lymph
node basin were excluded from the dataset. It is thought
that these patients will have a greater likelihood of being
SLN-positive.

A variety of demographic and clinical covariates were col-
lected. For illustration, we use the following variables: pa-
tient age at biopsy and gender, Breslow depth and mitotic
rate. The dependent variable is SLN-positivity (0=SLN-
negative; 1=SLN-positive). Previous analyses have focused
on modelling the effects of mitotic rate and Breslow depth
parametrically (Sondak et al., 2004). Preliminary descrip-
tive analyses suggested the following transformations:
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Figure 1. Left-hand figure: Plot of the effect of Breslow depth (on a natural log scale) on risk of SLN-positivity. Right-hand
figure: Plot of the effect of mitotic rate (on a natural log scale after adding one for handling zero values) on risk of

SLN-positivity. The tick marks denote the observed data points. While the solid line denotes the fitted value from the model,
the shaded area denotes the 95% pointwise confidence intervals for the estimated function. Note that Breslow depth and

mitotic rate have been transformed using the natural logarithm function.

1. The Breslow depth and mitotic rate were log-
transformed in order to reduce skewness. In addition,
one was added to the mitotic rate before taking the
logarithmic transformation.

2. Age at biopsy had a negative association with risk of
positive sentinel lymph nodes. Thus, the negative of
age was used in the nonparametric modelling of the
predictiveness curve and surface.

We begin by showing the plots of fits for disease risk as
a function of Breslow depth and mitotic rate from step 1
of the algorithm of Ghosh (2007). These are given in Fig-
ure 1. Based on the plots, we see that there while risk
of sentinel lymph node-positivity is increasing as a func-
tion of Breslow depth up to values of 2.5, the effect of mi-
totic rate is strongly monotonic. Thus, step 2 in the algo-
rithm of Ghosh (2007) would not change the result for mi-
totic rate but would monotonize the tail region for Breslow
depth.

One could calculate these curves separately for men and
women. Qualitatively, the stratified regression curves and
corresponding predictiveness curves are not different from
those in the entire population (data not shown).

Next, we considered using age as a covariate to adjust
for in the predictiveness curve calculations. Unlike Huang
et al. (2007), we use a more flexible model (1) in which the
effect of age is modelled parametrically and we model Bres-
low depth and mitotic rate nonparametrically. Note that
this involves fitting two models, one with Breslow depth in

the nonparametric component, the other with mitotic rate.
The association between age and risk of SLN-positivity is
negative adjusting for Breslow depth (α̂ = −0.02, 95%CI =
(−0.028,−0.015)) and mitotic rate (α̂ = −0.02, 95%CI =
(−0.031,−0.012))

We now consider modelling the effects of Breslow depth
and mitotic rate jointly. We fit a model in which the only
term is a nonparametric function of Breslow depth and
mitotic rate, again suitably transformed as previously de-
scribed. We assume the function to be monotonic in both
arguments and use the proposed methodology in the pa-
per. The proposed algorithm is applied, and contours from
the fitted function are presented in Figure 2. We also per-
formed the same analysis using Breslow depth and age;
this is also given in Figure 2. Comparing the two con-
tour plots, we find that the monotonicity constraint makes
the contours be straight lines, which is more easily inter-
pretable than nonlinear contours. We also performed an
analysis in which Breslow depth and mitotic rate where
modelled nonparametrically but age was modelled para-
metrically. The covariate effect of age on risk of SLN-
positivity and its associated 95% CI are approximately the
same as in the previous analyses (α̂ = −0.025, 95%CI =
(−0.035,−0.015)).

As before, it is of interest to determine if there a difference
in these estimates by gender. We repeated the calculations
for males and females separately. Again, the contours did
not change much qualitatively.
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Figure 2. Contours for predictiveness curves for bivariate nonparametric monotonic models. Left-hand figure shows contours
for the model with Breslow depth and mitotic rate. The right-hand figure shows contours for the model with Breslow depth

and age. Recall that the negative value of age is being used so that disease risk is a monotonically increasing function of age.
Also, Breslow depth and mitotic rate have been transformed as in Figure 1.

4.2 Simulation studies

We performed some limited simulation studies to assess
the finite-sample properties of the proposed methodology.
First, the situation with one-dimensional biomarker was
considered, in which we compared the proposed method
from Section 2 to the method of Huang et al. (2007). Data
were generated from the simulation model presented in their
Table 1 using the following model:

Pr(D = 1|S) = Φ(−0.486 + 0.793S0.4),

where Φ denotes the standard normal cumulative distri-
bution. We considered sample sizes of n = 100 and n =
2, 000; 5,000 simulation samples were generated for each sce-
nario. The subsampling was done using 50% of the samples.
The results are summarized in Table 1. We find that the
proposed procedure has better finite-sample properties for
smaller sample sizes. For larger sample sizes, the proposed
method gives similar answers to the method of Huang et
al. (2007). Intuitively, this seems reasonable, as the con-
straint has less effect for larger sample sizes; equivalently,
the difference between the unconstrained and constrained
estimators goes to zero as the sample size gets larger. We
also performed simulation studies about the predictiveness
surface in the case of two-dimensional biomarkers. While
no analog of the Huang et al. (2007) method exists for

two dimensions, the proposed procedures from Section 3
exhibited satisfactory finite-sample performance (data not
shown).

5. DISCUSSION

In this article, we have developed some computationally
feasible spline-based algorithms for estimation of the pre-
dictiveness curve, whose use has been recently advocated
for risk prediction by Huang et al. (2007). They left open
the problem of how to model the quantity using spline-based
procedures. We have developed procedures for both the pre-
dictiveness curve and surface that employ splines in conjunc-
tion with isotonic regression-based adjustments. As seen in
the example from Section 4, incorporating the monotonic-
ity constraint leads to very interpretable predictivness curve
estimates.

While the asymptotic properties of the proposed meth-
ods were not studied, we make two observations. First, we
would expect the asymptotics to follow those of Banerjee
and Wellner (2001), which implies that the convergence of
the profile likelihood ratio statistic to be nonregular. Sec-
ond, our intuition suggests that imposing a monotonicity
constraint matters more in small samples than in large sam-
ples. As the sample approaches infinity, most regular non-
parametric estimation procedures will be able to identify
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Table 1. Simulation results for the predictiveness case for the case of one-dimensional biomarker. Huang refers to method of
Huang et al. (2007); results are taken from their Table 1. Proposed refers to methodology in Section 2.

v = 0.1 v = 0.3 v = 0.5 v = 0.7 v = 0.9

R(v) 0.100 0.194 0.313 0.491 0.800

Bias

% bias in R̂(v)
n = 100, Huang −1.636 −3.058 −0.969 −0.493 −0.749
n = 100, Proposed −0.981 −1.523 −0.858 −0.232 −0.613
n = 2000, Huang −0.279 −0.240 −0.152 −0.095 −0.033
n = 2000, Proposed −0.275 −0.238 −0.154 −0.097 −0.031
95% CI Coverage Probabilities
n = 100, Huang 86.53 92.09 92.91 92.87 89.99
n = 100, Proposed 96.10 94.38 95.01 94.78 94.65
n = 2000, Huang 94.24 94.77 94.57 94.39 94.25
n = 2000, Proposed 94.45 94.51 94.79 95.16 94.58

the correct relationship. If the true relationship is mono-
tonic, then the probability of any nonparametric estimator
satisfying the constraint will have probability approaching
one.

While a bivariate version of the predictiveness curve has
been studied here, in practice there will be situations in
which more than two biomarkers will be considered. For
this situation, it would be desirable to have computation-
ally feasible procedures that can simultaneously incorporate
the nonparametric and monotonicity simultaneously. This is
currently under investigation.

R scripts implementing the proposed methodology are
available from the first author upon request.
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APPENDIX

Nonparametric estimation of predictiveness
curve for univariate biomarkers

To keep ideas concrete, we will assume that there are
no covariates Z. We again consider data on (Di, Si), i =
1, . . . , n. The log-likelihood for the sample is given by

(A.1)

l(F ) =
n∑

i=1

di log G(si) + (1 − di) log{1 − G(si)} + log f(si)

where G(s) = P (D = 1|S) and f denotes the density of
S. We now consider nonparametric maximization of (A.1).
Note that because of the contstraint on G being monotone
increasing, the theory from Prentice and Pyke (1979) is not
directly applicable here.

A precise characterization of the maximizer Ĝ in this sit-
uation is found in Groenenboom and Wellner (1992, pp.

38–40). Let s(1) ≤ s(2) ≤ · · · ≤ s(n) denote the observed
order statistics for (S1, . . . , Sn), and let s(i) (i = 1, . . . , n)
denote the corresponding value of d. Define s(0) = 0 and
d(0) = 0. The nonparametric maximum likelihood estimator
(NPMLE) of G corresponds to the point x̃ ≡ (x̃1, . . . , x̃n)
that maximizes

h(x1, . . . , xn) =
n∑

i=1

{s(i) log xi + (1 − s(i)) log(1 − xi)}

over (x1, . . . , xn) ∈ Rn subject to the constraint

0 ≤ x1 ≤ · · · ≤ xn ≤ 1.

We derive the NPMLE of G, Ĝ∗, through the relationship
x̃i = Ĝ∗(s(i)), i = 0, . . . , n. Note that the NPMLE of G is
defined only up to the set of observed times. The solution
to this optimization problem can be characterized in one of
two ways. The first is using the so-called “max-min formula”
(Groenenboom and Wellner, 1992, p. 40):

x̃m = max
i≤m

min
k≥m

∑
i≤j≤k d(j)

k − i + 1
,

m = 0, . . . , n. A second representation of the maximizer is
more graphical in nature. One plots the points {i,

∑
j≤i d(j)}

(i = 0, . . . , n) and draws the greatest convex minorant of
these points, defined as the function H∗ such that

H∗(t) = sup
{

H(t) : H(i) ≤
∑
j≤i

d(j), H(0) = 0, H is convex
}

.

Then x̃i is the left derivative of H∗ at i = 0, . . . , n. Based
on the estimator Ĝ, the predictiveness curve at v is given by

R̂(v) = Ĝ∗(F̃−1(v)),

where F̃ is the empirical estimator of the quantile function
for S. Using the arguments in Chapter 5 of Groenenboom
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and Wellner (1992), we can prove the following asymptotic
result:

Lemma 1. Let z0 be such that 0 < FS(z0) < 1 and
0 < G(z0) < 1. Assume that F and G are differentiable at
z0 with strictly positive derivatives f(z0) and g(z0), respec-
tively. Then n1/3{Ĝ∗(z0)−G(z0)} converges in distribution
to the random variable CZ, where

C =
[
4G(z0){1 − G(z0)}g(z0)

f(z0)

]1/3

and Z ≡ argmin{W (t) + t2}, and W is two-sided Brownian
motion starting from zero.

Remark 1. The result presented in Lemma 1 differs con-
siderably from those in Huang et al. (2007). In particular,
they derive asymptotic normality results. By contrast, we
are completely nonparametric except for the monotonicity
constraint. This type of result is very common for isotonic
regression estimators of the sort presented above.

Remark 2. An alternative approach would be to treat
the values of G at the unique values of S as a pri-
ori parameters. In this case, the problem would reduce
to a finite-dimensional model, and the resulting estima-
tor would have a limiting distribution that is a mixture
of chi-squared random variables (Sen and Silvapulle, 2002)
and is different from the limiting distribution in Lemma 1.
However, for this situation, the number of parameters in
the model would depend on the particular dataset, which
would appear to a very undesirable feature of the ap-
proach.

Remark 3. The result of Lemma 1 implies that n1/3(R̂(v)−
R(v)) will also have the same form for the limiting distribu-
tion as n1/3(Ĝ(s)−G(s)). This is given heuristically by the
following argument:

n1/3{R̂(v) − R(v)} = n1/3[Ĝ{F̃−1(v)} − G{F−1(v)}]
≈ n1/3[Ĝ{F−1(v)} − G{F−1(v)}]
→ G′(F−1(v))CZ,

where we assume that sufficient regularity conditions apply
for F̂−1 to converge uniformly to F−1. The above argument
uses the delta-method.
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Boston. MR1180321

Huang, Y., Pepe, M. S. and Feng, Z. (2007). Evaluating the pre-
dictiveness of a continuous marker. Biometrics 63, 1181–1188.
MR2414596

Lin, X. and Zhang, D. (1999). Inference in generalized additive mixed
models by using smoothing splines. Journal of the Royal Statistical
Society Series B 61, 381–400. MR1680318

Mammen, E., Marron, J. S., Turlach, B. A. and Wand, M. P.

(2001). A general projection framework for constrained smoothing.
Statistical Science 16, 232–248. MR1874153

Moonesinghe, R. and Wright, F. T. (1994). Likelihood ratio tests
involving a bivariate trend in two-factor designs: the level probabil-
ities. Communications in Statistics – Computation and Simulation
23, 143–156.

Mukarjee, H. and Stern, S. (1994). Feasible nonparametric esti-
mation of multiargument monotone functions. JASA 89, 77–80.
MR1266288

Murphy, S.A. and Van der Vaart, A.W. (1997). Semiparamet-
ric likelihood ratio inference. Annals of Statistics 25, 1471–1509.
MR1463562

Nychka, D., Bailey, B., Ellner, S., Haaland, P. and O’Connell,

M. (1996). FUNFITS data analysis and statistical tools for estimat-
ing functions. In Case Studies in Environmental Statistics (Ed: D.
Nychka, W. W. Piegorsch and L. H. Cox), Springer-Verlag, New
York, pp. 159–179.

Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence mod-
els and case-control studies. Biometrika 66, 403–411. MR0556730

Qian, S. and Eddy, W. F. (1996). An algorithm for isotonic regres-
sion on ordered rectangular grids. Journal of Computational and
Graphical Statistics 5, 225–235. MR1411315

Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order
Restricted Statistical Inference. New York: Wiley. MR0961262

Ruppert, D. Wand, M. P. and Carroll, R. J. (2003). Semi-
parametric Regression. Cambridge University Press: Cambridge.
MR1998720

Sen, P. K. and Silvapulle, M. J. (2002). An appraisal of some as-
pects of statistical inference under inequality constraints Journal of
Statistical Planning and Inference 107, 3–43. MR1927753

Sondak, V. K., Taylor, J. M., Sabel, M. S., Wang, Y., Lowe, L.,

Grover, A. C., Chang, A. E., Yahanda, A. M., Moon, J. and
Johnson, T. M. (2004). Mitotic rate and younger age are predictors
of sentinel lymph node positivity: lessons learned from the genera-
tion of a probabilistic model. Annals of Surgery 11, 247–258.

Speed, T. (1991). Discussion to “BLUP is a good thing: The estimation
of random effects” by Robinson, G. K., Statistical Sciences 6, 50–51.
MR1108815

452 D. Ghosh and M. Sabel

http://www.ams.org/mathscinet-getitem?mr=1891743
http://www.ams.org/mathscinet-getitem?mr=2300910
http://www.ams.org/mathscinet-getitem?mr=1292119
http://www.ams.org/mathscinet-getitem?mr=0663427
http://www.ams.org/mathscinet-getitem?mr=1270012
http://www.ams.org/mathscinet-getitem?mr=1180321
http://www.ams.org/mathscinet-getitem?mr=2414596
http://www.ams.org/mathscinet-getitem?mr=1680318
http://www.ams.org/mathscinet-getitem?mr=1874153
http://www.ams.org/mathscinet-getitem?mr=1266288
http://www.ams.org/mathscinet-getitem?mr=1463562
http://www.ams.org/mathscinet-getitem?mr=0556730
http://www.ams.org/mathscinet-getitem?mr=1411315
http://www.ams.org/mathscinet-getitem?mr=0961262
http://www.ams.org/mathscinet-getitem?mr=1998720
http://www.ams.org/mathscinet-getitem?mr=1927753
http://www.ams.org/mathscinet-getitem?mr=1108815


Debashis Ghosh
Department of Statistics, Penn State University
University Park, PA 16802
USA
E-mail address: ghoshd@psu.edu

Michael Sabel
Department of Surgery, University of Michigan
Ann Arbor, MI 48109
USA
E-mail address: msabel@umich.edu

Spline-based models for predictiveness curves and surfaces 453

mailto:ghoshd@psu.edu
mailto:msabel@umich.edu

	Introduction
	Data and Model setup
	Predictiveness curves: A review
	A constrained smoothing spline algorithm

	Bivariate extension
	Numerical examples
	Melanoma data
	Simulation studies

	Discussion
	Acknowledgements
	Appendix
	References
	Authors' addresses

