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Robust neural network with applications to credit
portfolio data analysis
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In this article, we study nonparametric conditional quan-
tile estimation via neural network structure. We proposed
an estimation method that combines quantile regression and
neural network (robust neural network, RNN). It provides
good smoothing performance in the presence of outliers and
can be used to construct prediction bands. A Majorization-
Minimization (MM) algorithm was developed for optimiza-
tion. Monte Carlo simulation study is conducted to assess
the performance of RNN. Comparison with other nonpara-
metric regression methods (e.g., local linear regression and
regression splines) in real data application demonstrate the
advantage of the newly proposed procedure.
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1. INTRODUCTION

Nonparametric regression models are useful in explor-
ing the fine features in the data. Many methods were pro-
posed in the literature, including local polynomial (Fan,
1992, 1993), splines smoothing (Fan and Gijbels, 1996;
Stone et al., 1997), neural network (Ripley, 1993; Haykin,
1994; Bishop, 1995) and etc. Most of these existing works
focus on the estimation of the mean regression function
originally. While the mean function characterizes the im-
portant central information of the response, in many sit-
uations, conditional quantiles may reveal a more compre-
hensive view of the distribution, especially when it is non-
normal and/or in the presence of outliers. Quantile regres-
sion (Koenker and Bassett, 1978) may be viewed as an ex-
tension from estimation of conditional mean under least
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squared loss to conditional quantiles under general quan-
tile loss. Later, Koenker et al. (1994) proposed an estima-
tion for nonparametric quantile regression function using
splines, and Yu and Jones (1998) developed an estimation
for nonparametric quantile regression function using local
linear techniques.

In this article, we propose to use a neural network method
to estimate the nonparametric quantile regression function.
The newly proposed method is motivated by an empirical
analysis of credit card portfolio data. Figure 1 depicts the
scatter plots of credit card portfolio data for two typical
segments. The vertical axis stands for the charge-off (i.e.,
customers defaulted their loan) rate, and horizontal axis is
the age of the loan since the time of origination (in months),
which is often called months on book. Since the regression
curve shows how the charge-off rate changes over the age of
the loan, it is also called maturation curve.

Both local linear regression with a selected optimal band-
width and cubic regression splines are employed to estimate
maturation curve. From Figure 1 it can be seen that they
are wiggling over the month on book. This is an undesired
feature because it is believed from our business experience
that the maturation curve is stable after a ceratin number
of months on book. This motivates us to seek other non-
parametric estimation procedure for estimation of the mat-
uration curve which naturally provides desirable smoothness
characteristics. Thus, we further use a neural network to es-
timate the maturation curve. The estimated curves are also
displayed in Figure 1. Unlike the estimates of local linear
and cubic regression splines, the neural network estimate is
smooth and does not wiggle around.

In addition, the scatter plots clearly show that there are
some outliers in both data sets, and the second set seems
to contain more outliers than the first set. This leads us
to further develop nonparametric quantile regression with a
neural network, which we call robust neural network (RNN)
which will be discussed in detail in later sections. With the
aid of RNN, we can also obtain prediction intervals based
on the estimated quantile functions.

Computation is the major challenge in the implemen-
tation of neural network quantile regression because the
objective function is a nonlinear and nonconvex function
of high dimensional parameters. We develop an algorithm
to estimate the nonparametric quantile regression func-
tion using the Majorization-Minimization (MM) algorithm
(Hunter and Lange, 2000).
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Figure 1. Comparison of three nonparametric methods under least squared loss. Dots are the scatter plot of data. Solid,
dashed and dotted-dashed curves are the estimated mean functions by cubic splines, local linear regression and neural network,

respectively. Note that solid curve and dashed curve are almost identical.

This paper is organized as follows. Section 2 outlines the
RNN methodology. The MM algorithm for RNN is proposed
along with technical details of its implementation. In Sec-
tion 3, Monte Carlo simulation studies are conducted to as-
sess the performance of the proposed estimation procedure
and algorithm. Thereafter, we apply RNN to analyze credit
card portfolio data. Conclusion remarks and some discus-
sions are given in Section 4.

2. ROBUST NEURAL NETWORKS

2.1 Some preliminary

Suppose that (x1, y1), . . . , (xn, yn) is a random sample
from

(1) y = m(x) + ε,

where m(·) is an unknown smoothing function to be esti-
mated, and ε is a random error with mean zero. We will
employ a neural network model known as multi-layer per-
ceptron (MLP) network to estimate the m(x). In particular,
we will use a 3-layer perceptron neural network where it con-
sists of three components as depicted in Figure 2:

• An input layer – used to input information from the
explanatory variable {xi}n

i=1;
• A hidden layer – used to process the summation from

an input layer via some nonlinear transformation and
each layer contains certain amount of neurons;

• An output layer – used to output the estimation of re-
sponse variable {yi}n

i=1.

Let νij be the weighted summation of each input xi

(2) νij = xiωj + ω0j , j = 1, . . . , M.

where ωj is the connection weight between input and jth

neuron while ω0j is a bias adjusted at the jth neuron. Fur-
thermore, g(·) is an activation function, which is typically
chosen to be a logistic-type function:

g(νij) =
1

1 + exp(−νij)
or g(νij) = tanh(νij).

The 3-layer perceptron neural network with M neurons ap-
proximate m(xi) by

(3) m(xi) ≈ m̂(xi; β,ω1, . . . ,ωM ) = β0 +
M∑

j=1

βjg(νij),

where β0 is a bias adjusted for the output, and βj is the
weight connecting jth neuron and the output.

From (2) and (3), it can be seen in the 3-layer network
that the role of a hidden layer is to expand the input space
into sigmoidal basis functions where the output layer calcu-
lates the superposition of the constructed basis functions.
The parameters of the network (i.e. weights) are estimated
by optimizing an objective function (e.g., via minimizing
least square error).

2.2 Robust neural network via MM
algorithm

Define the quantile loss function for a given quantile q ∈
(0, 1) as

(4) ρq(r) = |r| + (2q − 1)r.
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Figure 2. Three-layer perceptron.

The RNN is obtained via minimizing the quantile loss

E = E(β,ω1, . . . ,ωM )(5)

=
n∑

i=1

ρq

⎡
⎣yi −

⎧⎨
⎩

M∑
j=1

βjg(xiωj + ω0j) + β0

⎫⎬
⎭

⎤
⎦ ,

with respect to weights β = (β0, β1, . . . , βM )T and
ωj = (ω0j , ωj), j = 1, . . . ,M . Let (β̂q, ω̂q1, . . . , ω̂qM ) be
the minimizer of equation (5). The resulting m̂q(x) =
m̂(xi; β̂q, ω̂q1, . . . , ω̂qM ) estimates the qth conditional quan-
tile at point x. In particular, when q = 1/2, the RNN be-
comes the least absolute deviation regression for the neural
network, a robust estimate for the mean and median func-
tion when the error ε has a symmetric distribution about
the origin.

The major challenge in the implementation of RNN
is computation because the objective function E is
a high-dimensional, nonconvex, and nonlinear function
of the parameters β and ωj . Here we propose an
algorithm for the neural network quantile regression
adopted from a Majorization-Minimization (MM) algorithm
(Hunter and Lange, 2000) for optimization. It creates a sur-
rogate function that majorizes the objective function. Then,
optimizing the objective function is driven by optimizing the
surrogate function instead. Denote the residual of yi at the
kth step iteration by

rki = yi −

⎧⎨
⎩β

(k)
0 +

M∑
j=1

β
(k)
j g

(
xiω

(k)
j + ω

(k)
0j

)
⎫⎬
⎭ .

In the “majorization” step, we use a quadratic function,
namely ρq,m(r), to approximate the quantile loss function
ρq(r),

(6) ρq,m(r) =
r2

2|rki|
+

|rki|
2

+ (2q − 1)r.

By the Cauchy-Schwarz inequality, it follows that ρq,m(r) ≥
ρq(r) and ρq,m(rki) = ρq(rki). As a result, ρq,m(r) majorizes
ρq(r), and therefore,

Ek,m =
n∑

i=1

ρq,m

⎡
⎣yi −

⎧⎨
⎩

M∑
j=1

βjg(xiωj + ω0j) + β0

⎫⎬
⎭

⎤
⎦

majorizes E in (5) at the kth step. In practice, when rki

is very close to zero, then the ith data point will receive
too much weight. As advocated by Fan and Li (2001), we
consider a perturbed-version of majorization in which we
replace ρq,m(r) in (6) by ρq,m(r, an) as

(7) ρq,m(r, an) =
r2

2|rki| + an
+

|rki| + 0.5an

2
+ (2q − 1)r,

with an being the (2/
√

n)-th sample percentile of
|rk1|, . . . , |rkn|.

In the “minimization” step, back propagation algorithm
(Rumelhart et al., 1986) is applied for the perturbed ma-
jorization function

Ek,m =
n∑

i=1

ρq,m(rki, an),
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at the kth step. Back propagation algorithm propagates in-
formation forward once it studies predictor x given some ini-
tial weights. After calculating the errors between observed
and predicted y’s, it goes back to adjust the weights and
starts the next round of study. In this way, back propaga-
tion updates the connecting weights one at a time. Since
the number of parameters (weights) grows rapidly as hid-
den neurons increase, it actually avoids the action of inver-
sion of a large dimensional matrix. The procedure of back
propagation in neural network quantile regression can be
summarized as an algorithm below.

Step 1. Set initial value of β and ωj to be β
(1)
j and ω

(1)
j ,

and set a learning rate. In our numerical study, constant
learning rate η = 0.01 is used.

Step 2. Let k = 1, and set β(k,1) = β(k) and ω
(k,1)
j = ω

(k)
j .

Step 2a. For ith observation (xi, yi), define Ei =
ρq,m(rki, an). Calculate the gradient �iβ and
�iω: for j = 1, . . . , M,

(8) �iβ0 = −η
∂Ei

∂β0
, �iβj = −η

∂Ei

∂βj
,

and

(9) �iω0j = −η
∂Ei

∂ω0j
, �iωj = −η

∂Ei

∂ωj
.

Step 2b. Update weights

(10)

β
(k,i+1)
0 = β

(k,i)
0 + �iβ0,

β
(k,i+1)
j = β

(k,i)
j + �iβj ,

ω
(k,i+1)
0j = ω

(k,i)
0j + �iω0j ,

ω
(k,i+1)
j = ω

(k,i)
j + �iωj ,

where �iβ0, �iβj , �iω0j and �iωj (j =
1, . . . , M) are from (8) and (9).

Step 2c. Repeat Steps 2a and 2b for i = 1, . . . , n, and
update the weights

(11)
β

(k+1)
0 = β

(k,n+1)
0 , β

(k+1)
j = β

(k,n+1)
j ,

ω
(k+1)
0j = ω

(k,n+1)
0j , ω

(k+1)
j = ω

(k,n+1)
j ,

Step 3. Let k = 2, 3, . . . , and repeat Step 2 until convergent
criterion meets.

Remark. The ρq,m(r, an) does not majorize ρq(r). Thus,
the descent property of MM algorithm may not be valid
here. It can be shown that

1
n

E(β(k+1),ω
(k+1)
1 , . . . ,ω

(k+1)
M )

≤ 1
n

E(β(k),ω
(k)
1 , . . . ,ω

(k)
M ) +

an

4
.

if {β(k+1),ω
(k+1)
1 , . . . ,ω

(k+1)
M } is the minimizer of Ek,m, and

{β(k),ω
(k)
1 , . . . ,ω

(k)
M }is the minimizer of Ek−1,m. Note that

an → 0, the descent property of MM algorithm may be
approximately valid when n is large enough.

2.3 Some practical issues

Some practical issues of network training such as the se-
lections of initial value, learning rate, network structure and
training algorithm can be found in Haykin (1994); Hassoun
(1995); Bishop (1995). Here we provide a brief summary for
these issues.

Our experience indicates that a small learning rate is
more successful in searching for the optimum parameters.
Using a small learning rate prevents taking large steps in
the gradient direction although it means longer computa-
tional time. In our numerical study, constant learning rate
η = 0.01 is used. There are proposals for dynamically ad-
justing the learning rate to improve convergence rate; see,
for example, (Darken et al., 1992; LeCun et al., 1993; Roy,
1993).

Since the objective function in the network learning is
nonlinear and nonconvex, we have to deal with issues of
local minima and stationary points. Several trials of different
initial values are beneficial to avoid local minima. We set our
initial values randomly between 0 and 1.

Numerical stability may benefit from standardization of
variables. In our numerical study, we standardize both in-
dependent and dependent variables. The number of hidden
neurons is important because too many or too few hidden
neurons may result in over-fitted or under-fitted models re-
spectively. Therefore, it is necessary to choose a proper num-
ber of neurons in every case study. This can be evaluated
by monitoring prediction errors using cross validation, for
example. In our credit card case study, the data and busi-
ness experience suggest that there is a period of increasing,
decreasing, and relatively constant rate of charge-off. Thus,
we select two or three hidden units to sufficiently capture
the dynamics of consumer default rate.

3. NUMERICAL STUDY AND
APPLICATIONS

In this section, we explore the behavior of robust neural
network via a simulation study and the credit card portfolio
data example previously mentioned. In the simulation ex-
ample, three types of random errors are used to illustrate
the robustness of our method. For the real data study, we
compare neural network with other nonparametric function
approximation methods.

3.1 Simulation study

It is well known that a neural network is a good smoother
in general, however, its performance can be sensitive to the
presence of extreme observations in the training data set,
similar to other regression methods that utilize squared loss
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as objective functions. RNN alleviates the aforementioned
problem of sensitivity to outliers.

We now conduct a Monte Carlo simulation study to assess
the performance of the proposed procedure. In our simula-
tion, we generate 1000 data sets, each having the sample
size n = 200, from

(12) yi = m(xi) + εi, i = 1, . . . , n,

where xi is generated from uniform distribution over [0,1],
and

(13) m(x) = e−x {sin(2πx + 1) + 2} .

In our simulation, we consider three scenarios for random
error ε’s:

• Normal error, ε ∼ N(0, 0.22),
• Mixtures of normals error, 0.9N(0, 0.22) + 0.1N(0, 1),
• Laplace Distribution with μ = 0 and σ = 0.2.

In our simulation, we use 3-Layer MLP network with
5 neurons in the hidden layer and g(x) = tanh(x) as the
activation function. A typical fitted curve selected from
1,000 simulations is depicted in Figure 3, from which it
is shown that the fitted curve is very close to the true
curve. The proposed algorithm and estimation procedure

performed very well in all three scenarios for error distribu-
tion.

The true quantiles and their estimates are summarized
in Table 1. The standard deviations of conditional quantile
estimations are provided in parentheses. The true qth con-
ditional quantile evaluated at x is calculated by

(14) F−1
Y |X=x(q) = F−1

e (q) + m(x)

where F−1
Y |X=x, and F−1

e is the quantile functions of corre-
sponding conditional distribution Y |X = x and the error
distributions, respectively. Due to the difficulty of obtaining
the quantile function of a mixture of normal distributions,
we calculate the estimate of true quantile values via Monte
Carlo method instead.

The column labeled “Est(SE)” in Table 1 is the sam-
ple average and the standard error of 1,000 estimates over
1,000 simulations. To gauge the performance of the pro-
posed estimation procedures in a specific point of x, we
select three representative x-values: x = 0.3, 0.6, 0.9. Note
that x = 0.3 lies in the interval where m(x) sharply de-
creases; x = 0.6 is in the neighborhood of a local mini-
mum of m(x) ; x = 0.9 is located in the interval where the
curve is relatively flat. At each grid point, we compare the
estimate with the true value at 5 different quantiles with
q = 0.05, 0.25, 0.50, 0.75, 0.95.

Figure 3. A typical median fit under different error distributions. Dots are scatter plot of simulated data, thick dashed line is
the true median function, and solid line is the estimated median using five neurons.
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Table 1. Simulation results

x = 0.3 x = 0.6 x = 0.9

quantile True Est(SE) True Est. (SE) True Est.(SE)

Normal error - N(0, 0.22)

5% 1.2512 1.2261 (0.0809) 0.2207 0.3516 (0.0695) 0.6318 0.4290 (0.0908)
25% 1.5348 1.4668 (0.0741) 0.4148 0.3733 (0.0544) 0.8259 0.7322 (0.0766)
50% 1.6697 1.7126 (0.0885) 0.5497 0.5682 (0.0630) 0.9608 0.9420 (0.0819)
75% 1.8046 1.9052 (0.742) 0.6846 0.7464 (0.0625) 1.0957 1.1728 (0.0858)
95% 1.9986 2.0581 (0.962) 0.6846 0.9186 (0.0715) 1.2898 1.2963 (0.0761)

Mixture of normals error - 0.9N(0, 0.22) + 0.1N(0, 12)

5% 1.2520 1.1124 (0.1452) 0.1324 0.1318 (0.0932) 0.5459 0.3750 (0.1310)
25% 1.5201 1.5546 (0.0754) 0.4014 0.4054 (0.0516) 0.8146 0.7891 (0.0670)
50% 1.6707 1.7432 (0.0786) 0.5503 0.5928 (0.0431) 0.9643 0.9406 (0.0564)
75% 1.8174 1.9111 (0.0784) 0.6977 0.7554 (0.0604) 1.1105 1.1241 (0.0714)
95% 2.0902 2.2263 (0.1590) 0.9709 1.2162 (0.1190) 1.3843 1.4386 (0.1257)

Laplace error - Laplace Distribution with μ = 0 and σ = 0.2

5% 1.2092 1.2482 (0.1239) 0.0892 0.0316 (0.1508) 0.5003 0.4747 (0.1266)
25% 1.5310 1.4021 (0.1007) 0.4111 0.5315 (0.0687) 0.8222 0.8158 (0.0891)
50% 1.6697 1.7222 (0.0536) 0.5497 0.5670 (0.0420) 0.9608 0.9590 (0.0619)
75% 1.8083 1.8575 (0.0627) 0.6883 0.7282 (0.0534) 1.0994 1.1131 (0.0697)
95% 2.1302 2.1958 (0.1583) 1.0102 1.0145 (0.1190) 1.4213 1.4578 (0.1378)

The estimates for a median are the best among all quan-
tiles regardless of the error distributions. This is expected
since the estimate for median has the smallest asymptotic
variance among the quantile regression with q ∈ (0, 1). As
a quantile goes more extreme toward 0 or 1, the quality of
the estimates are degrading though they still include the
true value within 2 standard errors in most cases. Compar-
ing the performance at different grid values, the estimate at
x = 0.6 is not as good as those at x = 0.3 and x = 0.9. Also
it is notable that, for heavy tail distributions (e.g., mixtures
of normals and Laplace), when the quantiles are more ex-
treme, the estimated quantiles have larger standard errors
than that in the normal error case.

3.2 Credit card portfolio data analysis

In this section, we apply the proposed methodology to
model the performance of credit card portfolio which con-
sists of hundreds of credit card loans. For an illustrative
purpose, we selected data from two segments. Each segment
consists of pools of credit card loans from monthly origi-
nation. That is, each pool within a segment is a collection
of credit cards that are issued in a particular month. We
tracked the monthly performance of each pool in terms of
default or charge off rates from the time of issuance to date.
The charge off rate is defined as the number of charge off
accounts given the number of active (i.e., at risk) accounts
at any given month. The oldest vintage in this analysis has
48 months on book. Subsequently, newer monthly pools will
have shorter monthly performance data. The purpose of the
analysis is to model the maturation characteristic of each
segment. That is, to model the charge off rate as the credit
card pool aged in terms of number of months on book (MoB).

Let x be the MoB and y be the charge-off rate, respectively,
and consider the following nonparametric model

y = m(x) + ε.

The regression function, m(x), is called the maturation
curve because it represents the maturation characteristic of
the pool of loans as it aged. Typically, one would like to
represent the maturation effect m(x) as a smooth function
over x so that a reasonable extrapolation can be made to
project future performance.

There are several practical nonparametric methods for
function approximation that can be used to fit maturation
curve, such as kernel regression, local polynomial, spline re-
gression, etc. For this particular application, the neural net-
work (i.e., sigmoidal basis functions) are desirable because it
naturally provides a well regularized smooth representation
of a maturation curve while other nonparametric methods
are lacking the desired smooth representation over month
on book. For an illustrative purpose, we choose a local lin-
ear and cubic spline as competitors to the neural network
approach. A 3-Layer MLP with 3 hidden neurons is em-
ployed in this study. Figure 1 gives the graphical results
of data fitting for all three methods under least squared
loss. Figure 1(a) has less potential outliers in the data while
the other set (i.e., segment) in Figure 1(b) contains more
outliers. As opposed to smooth behavior of a neural net-
work, local linear (in dashed line) and cubic spline (in solid
line) both have undesirable wiggly curve fit. In the presence
of outliers, however, all these three methods have a draw-
back because of their lack of robustness of least squares es-
timate. Note the fit at large month on book where the data
is sparser, the estimations are highly influenced by outliers.
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Figure 4. Robust neural network estimation under general Quantile Loss. Dots are the scatter plot of data. The curves from
bottom to top are 5%, 50% and 95% quantile estimates respectively.

In particular, the case for more outliers shown in Figure
1(b), local linear and cubic spline estimation are significantly
more impacted by the outliers. Hence, we go further and al-
ter the setting from the least squared loss to the quantile
loss.

To alleviate the robustness issue of least square objective
function, we applied the quantile learning objective func-
tion. Figure 4 shows the estimation results for both data
sets under a general quantile loss. The bottom, middle, and
top curves represents 5%, 50% and 95% quantile estimates,
respectively. Notice that the fit at a larger MoB are no longer
affected by the outliers. Thus, the robust neural network es-
timates are rather robust to the outliers. Additionally, the
fitted curve is desirable of parametric-like smoothness of
maturation characteristics. In particular, the upper quan-
tile (e.g., 90% quantile) estimate at given MoBs can be used
as the downside risk estimate of a charge-off rate of a seg-
ment.

4. DISCUSSION

In this paper we proposed the robust neural network for
conditional quantile function estimation. We develop an al-
gorithm for training RNN based on the MM algorithm. We
empirically test the proposed algorithm by simulation stud-
ies, and illustrate the proposed procedure by an analysis of
credit portfolio data. In our real data analysis, we compare
the performance of local linear regression, regression splines
and the neural network estimates. The comparison indicates
that the robust neural network approach provides desirable
characteristics of both smooth function approximation as
well as its robustness to outliers. Additionally, by apply-
ing quantile loss estimate, the approach produces interval
estimates of the approximation curve. Its ability to provide
the estimation of a potential downside risk of charge-off rate

upper quantile curve is very useful for risk management pur-
pose.

Received 18 September 2009
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