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A penalized maximum likelihood approach to

sparse factor analysis

JANG CHol, Hut Zou* AND GARY OEHLERT

Factor analysis is a popular multivariate analysis method
which is used to describe observed variables as linear combi-
nations of hidden factors. In applications one usually needs
to rotate the estimated factor loading matrix in order to
obtain a more understandable model. In this article, an
{1 penalization method is introduced for performing sparse
factor analysis in which factor loadings naturally adopt
a sparse representation, greatly facilitating the interpreta-
tion of the fitted factor model. A generalized expectation—
maximization algorithm is developed for computing the ¢
penalized estimator. Efficacy of the proposed methodology
and algorithm is demonstrated by simulated and real data.
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1. INTRODUCTION

Factor analysis [7] models the observed multivariate ran-
dom variables as linear combinations of some unobserved
(hidden) factors plus error terms. Factor analysis was first
introduced by Charles Spearman in 1904 [12] to support his
psychological theory of intelligence. Since then, factor anal-
ysis has been widely used in many research fields such as
psychometrics, behavioral sciences, social sciences, political
sciences, marketing, economics, finance and so on.

Suppose we have m independent and identically dis-
tributed (i.i.d.) random vectors in R?: {Y7,...,Y,}. With-
out loss of generality, assume the mean of Y; is zero and its
covariance is ¥. The factor model is represented by

(1)

where X; is an unobserved random vector of length ¢, 3 is
a ¢ X p matrix and e; represents a p-dimension random er-
ror vector whose mean is zero and covariance is a diagonal
matrix denoted by 7% = diag(7Z,... 77'3). 72 is called the
uniqueness matrix. It is assumed that X; has zero mean
and covariance I,. As a consequence, the covariance of Y;

Y, =8"X; + e,
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can be expressed as Ty = 878 + 72. In a matrix form we
write the model as

(2)

where the i-th rows of Y, X and € are Y;, X; and e;, respec-
tively. In factor analysis, X is called the factor score matrix
and 3 is called the factor loading matrix. For statistical in-
ference, it is usually assumed that the hidden factors are
normal distributed and hence Y;s are i.i.d. N(0,3" 3 + 72).
The maximum likelihood estimation can be carried out by
using the Expectation-Maximization algorithm [11].

The factor model (2) is invariant under an orthogonal ro-
tation, so is the maximum likelihood estimator. This prop-
erty makes it possible to rotate the estimated factor loading
matrix such that the rotated loading matrix exhibits some
interesting structure/pattern that can help interpret the fit-
ted factor model. In fact, rotation is often necessary in real
applications of factor analysis when the number of factors
is not small. The most common rotation technique is vari-
max that aims to yield either large or small loadings. Often,
small loadings are further truncated at some threshold (e.g.
0.01), for zero loadings greatly enhance the interpretability.
We can understand the idea behind varimax rotation as fol-
lows. Suppose that the factor model can be represented by
some sparse 3 matrix that makes the factor model easy to
interpret. The MLE 3 is an estimator of U3 with U being
an unknown orthonormal matrix. Varimax aims to find U”
such that hopefully we can recover the sparse 8 matrix by
U™ 3, the varimax rotated loading matrix.

In this article we introduce a new approach to sparse
factor analysis by taking advantage of sparse penalization
methods. In recent years penalization methods have been
explored in various sparse estimation and modeling prob-
lems. The ¢; penalization (a.k.a. the lasso) [13] is one of the
most popular sparse learning techniques. We propose to fit
an /7 penalized factor model with an ¢; penalty imposed on
the factor loadings. Due to the sparse shrinkage property of
the /1 penalty, some factor loadings are estimated by exact
zero when the penalization parameter is properly chosen.
Besides sparsity, the ¢ penalization also brings a regular-
ization effect, producing a more accurate model. We also
consider using the adaptively weighted ¢; penalty (a.k.a.
the adaptive lasso) [14] to further improve the ¢; penalized
estimator.

Yn><p = anqﬁqxp + Enxp
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The rest of this article is organized as follows. In Section 2
we present the ¢; penalized factor analysis method. In Sec-
tion 3 we develop a generalized Expectation-Maximization
(GEM) algorithm to compute the ¢; and adaptive ¢; penal-
ized estimators. Numerical examples are presented in Sec-
tion 4.

2. ¢1-PENALIZED FACTOR ANALYSIS

In this section we define the ¢; penalized factor analysis.
Under the normality assumption, the log-likelihood can be
written as

(8)  LL(r%B8) = Flogdet(r? +B"B)
- % Y+ a8
=1
or equivalently
(4) LL(T% )
- 75 (logdet(T2 + B"B) + tr (T2 + B7B)'%,)).,

where 3° = LY;V/” is the sample covariance matrix of Y.
In the above equations we have assumed the mean of Y; is
zero which is done in practice by centering the data matrix.
The classical factor analysis uses the maximum likelihood
estimator given by

+[@Tﬂ) +tr ((7_2 +[@Tﬂ)—lzs)} .

It is important to point out that the normal assumption is
not critical in (3)—(5). Even when Y;s are non normal, we can
still interpret LL(72, 3) as the log likelihood function. Gen-
erally speaking, the objective function in (5) is equivalent to
the Kullback-Leibler loss between 72 + 3”3 and the sample
covariance matrix 3°. Without causing any confusion, from
now on we still call LL(72,3) the log-likelihood.

Interpretability of the factor model becomes very impor-
tant in applications when the number of factors is not too
small. In the classical factor analysis, rotation techniques
are often used to obtain more understandable factor load-
ings. Factor analysis is closely related to principal compo-
nent analysis in the sense that both methods try to explain
the variability among correlated variables by several fac-
tors/components. The ¢ penalization idea has been success-
fully used to develop sparse principal component analysis
[15]. We use the sparse penalization idea to develop sparse
factor analysis.

Consider the penalized log-likelihood defined by

(5) argmin {logdet(r>

PLL(T2,3)
= —E log det(T>

(6)
+B8"8) - —tr[ *(r?

Zqzi (1851)
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where Py (+) is a non-negative penalty function. In recent lit-
erature there has been a lot of work on the use of sparsity-
inducing penalty functions in various penalized models. The
reference list is too long to be listed here. The readers are
referred to two good review papers [4, 8]. In this work
we use Py(|6i;]) = AlBi;| which is the lasso penalty [13].

The lasso estimator, denoted by (7'2, ,8) is then defined as
argmax PLL(T ,ﬁ),

(7) (r2,B8)

= argmin logdet(r? + 87 B) + tr[X°(1>

)\ q p
+ %ZZI%L

1=1 j=1

+878)7"]

Note that the ¢ penalty is not invariant under orthogonal
transformation. Therefore, the lasso estimator is no longer
rotation invariant.

It has been shown in [14] that the adaptively weighted
lasso penalty can achieve better prediction and sparsity
trade-off than the lasso and the adaptive lasso estimator
enjoys the oracle properties using the language of [5]. In
this work we also consider the adaptive lasso (ALasso) esti-
mator in which the adaptive weights are computed from the
lasso estimator. The ALasso estimator is computed by the
following two-step procedure:

1. Compute the lasso estimator in (7).

2. If Blj = 0 let wW;; = oo, otherwise w;; = Then

\ﬂ I
compute the adaptive lasso penalized estimator

2+ﬁT,8) +t7”[ES(T2+,8T,B)71]

q p
+ nzz ljlﬂla

=1 j5=1

argmin logdet(T

In principle we can also use other penalty functions such
as the SCAD [5] to derive sparse factor analysis. In the next
section we develop a generalized expectation-maximization
(GEM) algorithm for maximizing the objective function in
(6) with a general penalty function. An advantage of using
the ¢; penalty is that we do not need to consider the local
solution issue in the M-step.

3. ALGORITHM

[11] derived an E-M algorithm for computing the MLE for
the factor model. In this section we derive an E-M algorithm
for computing the ¢; penalized estimator. It turns out that
the penalized estimator can be computed by iterative lasso-
penalized least squares.

For convenience we define some notation. We use M]3, |
to denote the i-th row vector of a matrix M. Likewise, M|, j]
represents the j-th column vector of M. The 4, j entry of M
is M'L'j-



Finding the “missing data” is a key component in the
derivation of an E-M algorithm. From the model (2) we
naturally take X as the missing data. By X; ~ N(0,I,)we

write down the joint likelihood of (Y, X) as

Lyyér(Tzv B)

n p

p —n/2 . .
:[QWHTQ] expl__z ¥, = X ﬁm)]

=1 j=1 J

x [2ndetT] /2 exp [—— Z X[i 1

—_

[\

EM algorithms iterate between the E-step and the M-
step. Let (B, T%k)) be the estimates of step k. At the E-
step, we need to compute the conditional expectation of the
log-likelihood given Y and (B4, T%k)). Let ELL) be the
conditional expectation of the log-likelihood. We have

%)

, T
og P(X,Y|B, T )|Yaﬂ(k)a7-%k))

1 SN
I (Y2 - 2 ECXGLIY B 7 )L )

i=1j=1 J
+ B[, T B(X[1, " X[ Y, By T BL 4]
1 n
752E(X[i] [i,]71Y, 5(1@)77'(@ ZlOgT
i=1
-+ constant

Since

X|Y,B, T ~N(Y(r* + B78)7'8". 1~ B(r* + B78) ' ")

we can write
E(X[i,]]Y, By, Ttry) = 67 Y[i,]"

VQT(X[iaﬂYa,@(k)aT%k)) =A

E(X[i,)" X[i,]]Y, By, Tiry) = A+ 67Y[i,]"Y[i, |6

where

8= (T4 + BinBuy) ' Bl
A =1- By (Th) + BinBu) ' Bl

We treat >0 | E(X[i,]X[i, 1Y, Bxys
because it does not involve 3 or 72. Hence without the con-
stants ELL (8, 72) can be expressed as

T7,)) as a constant

1 P
:7§anog7']2

j=1

1IN Y2 -2V, Yi,]06], 4]
*522 ’ 72

j=1i=1 J

1 & B )T [A + 67 [0,V 17, 18]6],
_izlzlmm Tj_;] [ J91AL)

Jj=li=

As the M step, we maximize the so-called @ function
defined as

(8) )~ Lpp).

2

However, it would take another iterative process to find the
maximizer of the @ function. To mitigate the computation
difficulty, we just find an update to increase the @) function
rather than maximize it. This idea was introduced in the
original EM paper [2]. First, we find T%,Hl) by letting

(9) 2B = B

Q(B,1%) = ELLy (B,

Thepr) = argmax(Q(B, 7
Then we compute 8,1y by

(10) Br+1) = argmaX[Q(ﬁ, O = T?k+1)]~

It is easy to see that

(11)

2
T(k+1),j

SIS
+— Zﬁ(k

Given T%k 41y, We solve p separate maximization problems

to get ﬂ(k—‘rl)[mj]u J = 1727 sy
lations, we have

(12)  Bag1yls J]

— 2Y3;Y'[i,10 B8y, 5]

T[A+87Y[i,]7Y[i,18) Bk [, 1.

p. By straightforward calcu-

2(305, Yy Y[i,])op
72 )
(k+1),5

= argmin —
& B

A [nA-i—& Y Y5]5+th

(k+1),3

=1

Note that (12) can be regarded as a lasso-penalized least
square problem. Thus we can efficiently compute Bj1)[, j]
by using the LARS-Lasso algorithm [3].

If let ° = 1YY, We can rewrite (11) and (12) as

(13) Tfs1)

= %3, = 28[5,1680) [, ] + B [ 517 [A + Z]Bw [, 4]-
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(14) Br+nylsJ]

25355 T A p
= arg min — 2[ .10 8+ grla+ ]/8 Z 1B1;1-
T(k+1),5 1),

The above procedure is summarized in Algorithm 1.
We call algorithm 1 a generalized expectation-maximization
(GEM) algorithm, because in the M-step the @ function is
a penalized condition log-likelihood and we increase the @
function rather than maximize it.

Algorithm 1 can also be used to compute the penalized
estimator using a general penalty function Py (|3]). We just
replace A|G;| with Py(|5]) in step (3.a). The ¢; penalty en-
joys great computational advantages because we can use
the LARS-Lasso algorithm to solve the f;-penalized least
squares problem in the same order of computations of an
ordinary least-squares fit[3].

As a generalized E-M algorithm, algorithm 1 enjoys a
nice ascent property which is formally proven in the Ap-
pendix. We should also point out that the ascent property
has nothing to do with the normality assumption of the
data, although we interpret the objective function as penal-
ized log-likelihood of normal data.

Algorithm 1 (GEM for sparse factor analysis).
Step 0: Compute ¥° = Y'Y /n.
Step 1: Set initial values for 3 and 72.
Step 2: Calculate 8, A:
S = (7_2 +[@Tﬂ)—1BT
A=T-p(r*+p7°8) "
Compute the Cholesky decomposition: Z"Z = A +X°.
Step 3: For j =1,...,p
(3.a) Compute Tj2 by (13).

(3.b) Compute Y = (£°[4,]6Z~")". Then solve the fol-
lowing penalized least squares problem:

2
al, y]—argmmHY Zp|2 + L sz

=1

Step 4: Repeat Steps 2-3 till convergence.

4. NUMERICAL EXAMPLES

In this section we use both simulated and real data to
demonstrate the proposed #; penalized estimators.

4.1 Simulation data

We examine the performance of the lasso and ALasso
estimators in the situation where the factor loadings matrix
is sparse. The simulation data are generated by taking i.i.d.
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random vectors Y; of length 12 from normal distribution
with zero mean and covariance ¥ = 3”3 + 72 where

18 0 0 0
18 0 0 0
18 0 0 0
0 17 0 0
0 17 0 0
0 17 0 0

gr=| 0 0 16 0 |,
0 0 16 0
0 0 16 0
0 0 0 15
0 0 0 15
0 0 0 15
0 0 0 15
72 = diag (1.27,0.61,0.74,0.88,0.65, 0.81,

0.74,1.30,1.35,0.74,0.92, 1.32).

The interpretation of this factor model is that variables
3k — 2, 3k — 1 and 3k are random perturbations of factor k,
k =1,2,3,4. Within each of 100 replications we generated
100 training data and an independent 100 validation data.
In this simulation study we compared four methods: the or-
dinary MLE, the lasso and ALasso estimators and the oracle
estimator which is defined as the MLE when knowing which
entries of the factor loading matrix should be zero.
Suppose a method p produces an estimator B(u) and

ﬁ(u) Write

(1) = B()" Blu) + 72(1).

We define two K-L measurements of u as follows

(15)  KL(x) =y log(det(S(n)) + 5tr(S()"'5)
- %bg(det(E)) - g
(16)  KL(n)y = 5 loa(det(S(u) + 3tr(S(n) ' 5))

1 P
~3 log(det(X,)) — 7

where X, is the sample covariance matrix computed us-
ing the validation data. The KL loss in (15) measures the
goodness of fit of p and KL, in (16) is used to select meta-
parameters (if any) of p. We report the relative K-L loss

(RKL) defined as & LL(I(Iﬁi)

The true model has ¢ = 4 factors. We did not use this
information in our study. We treated g as a meta-parameter
of the MLE and used the one minimizing K L(mle),. In all
100 replications, the selected ¢ number was four. Figure 1

shows a typical plot of K L(mle), vs. q.




Table 1. Averages based on 100 replications. Numbers in ()
are standard errors

Method RKL Number of zeros
Oracle 0.415 (0.009) 36
Lasso 0.874 (0.009) 15 (0.49)
ALasso 0.499 (0.010) 34 (0.28)
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Figure 1. The y-axis shows the value of K L(mle), for q
factors.

From Figure 2 and the second column of Table 1, it is
very clear that both the Lasso and the ALasso estimators
are more accurate than the MLE. Moreover, ALasso is more
accurate than Lasso and is also very close to the oracle.
Figure 3 displays the pairwise comparison of the ALasso
and the oracle in the 100 replications. It is interesting to see
that nine out of 100 times the ALasso did slightly better
than the oracle.

From the third column of Table 1 we see that the ALasso
discovered many more zero loadings than the Lasso did. To
visualize their difference, we made the histogram of the num-
ber of estimated zero loadings for both Lasso and ALasso,
as shown in Figure 4.

4.2 Real data

As an application, we apply the proposed sparse factor
analysis method to analyze Oxford Parkinson data [10]. The
data can be downloaded from UCI Data Repository [1]. This
dataset has 195 samples and 23 features. We randomly split
the data into a training set (130 observations) and a val-
idation set (65 observations). The accuracy of each model
is measured by its K-L loss evaluated on the validation set.

0.8

RKL
0.6

0.4
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Figure 2. Boxplots of RKLs of the Lasso, AlLasso and oracle
estimators with respect to the MLE.
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Figure 3. Pairwise comparison of ALasso and oracle. The
solid straight line is the 45 degree line.

Before fitting any factor model, we standardized the data
such that each feature has zero mean and standard devia-
tion one.

Figure 5 suggests that we should consider a factor model
with 8 factors. We fit the lasso and ALasso factor models
using 8 factors for a grid of penalization parameters. The
smallest KL-loss by the lasso and the ALasso models is 5.83
while the K-L loss of the MLE model is 5.90. Since there
is little room for improving the accuracy of the MLE by ¢
penalization, it seems more reasonable to use the sparsity-
first rule, namely that we use a sparse factor model with the
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Figure 4. Comparing the sparsity pursuit performance of
Lasso and Alasso (top histogram: Lasso, bottom histogram:
AlLasso).

highest sparsity as long as its K-L loss is smaller than that
of the MLE. The sparsity-first rule chooses a lasso model
with 19 zero loadings and an ALasso model with 32 zero
loadings.

Lastly, we provide a numerical demonstration of the as-
cent property of the GEM algorithm. We monitored the
GEM iterations when computing a Lasso model using A\ =
3n (n is the training sample size). The GEM algorithm
started at the MLE. Figure 6 displays the value of PLL af-
ter every 50 GEM iterations. It is clear that the PLL curve
is monotonically increasing.
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Parkinson data: MLE
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Figure 6. A numerical demonstration of Algorithm 1's ascent
property using Parkinson data.

5. DISCUSSION

We have proposed an ¢; penalized maximum likelihood
estimation method to do sparse factor analysis. We have
shown that the ¢; penalized maximum likelihood estima-
tion can be done via a generalized E-M algorithm that is
equivalent to iterative f;-penalized least squares. We have



observed that if the data are generated from a true sparse
factor model, the ¢; penalized models not only discover zero
loadings but also are significantly more accurate than the
MLE model. The ALasso model performs similarly to the or-
acle MLE. In some applications, ¢; penalization only slightly
improves the accuracy of the MLE model. In such situations
we suggest to use the sparsity-first rule to pick the optimal
penalization parameter in ¢; penalized models, because ¢y
penalization is primarily employed for pursuing sparsity.

APPENDIX

Ascent property of Algorithm 1. The E-M algorithm is
usually used for maximum likelihood estimation. [6] showed
that the E-M algorithm can also be used for penalized maxi-
mum likelihood estimation. Here we provide a self-contained
proof of the ascent property of the generalized E-M algo-
rithm considered in Section 3.

For simplicity, we use f to denote a generic density func-
tion. The penalized log-likelihood function is

PLL(, B) = loa(J(Y|72. 8)) — 3 PA(8)

Given the k-th estimate T(Qk),ﬁ(k), the @ function is con-
structed by

Q(r.9)
— [os(F(X. YIr2. B)F(XIY. ). B )X — 5 PA(B).

We can write

Q(T*,8)
= PLL(T% )

+/1Og(f(X|Y7T?k)v/B(k)))f(X|YaT(2k)7ﬁ(k))dX

fX[Y, 72,8)
1

By Jensen’s inequality, the third term is non-negative and
hence we have

Q(t%,8) < PLL(%,8) + Cy,

where Cp = [log(f(X|Y, 7, By S (XY, 78, By)dX
is a constant. By (9) and (10) we have

Q(T8s1y, Bay) — Ck = Q74 By) — Ci

Q(T8s1): Biiar)) — Ck = Q(T{ 11y, By) — Ci

Thus, we conclude

(1]

2]

(3]

PLL(T{ 1) Bery) = Q(Thsnys Berny) — Ch
> Q14 Buy) — C
= PLL(T%k)vﬁ(k))'
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