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Longitudinal fMRI analysis: A review of methods
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Functional magnetic resonance imaging (fMRI) investi-
gations of a longitudinal nature, where participants are
scanned repeatedly over time and imaging data are obtained
at more than one time-point, are essential to understanding
functional changes and development in healthy and patho-
logical brains. The main objective of this paper is to pro-
vide a brief summary of common longitudinal analysis ap-
proaches, develop an overview of fMRI by introducing how
such data manifest, and explore the statistical challenges
that arise at the intersection of these two techniques.
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1. LONGITUDINAL DATA ANALYSIS

Longitudinal data frequently arise in biomedical and clin-
ical settings, as well as many other areas of research. Such
datasets consist of a collection of time series, one contributed
from each of a number of subjects in a designed experi-
ment or observational study [13]. The distinguishing fea-
ture of data collected longitudinally, then, is that each sub-
ject’s outcome/responses are observed or measured repeat-
edly, thereby allowing for the direct study of change over
time or natural history. This setup is advantageous com-
pared to cross-sectional studies (where, in contrast, subject
responses are obtained at just one time-point). For exam-
ple, a longitudinal study is more powerful for a fixed num-
ber of subjects, it allows each subject to serve as his/her
own control, it permits the separation of aging effects from
cohort effects, and it can provide information about individ-
ual change [32]. The fundamental objective of a longitudinal
analysis is therefore to assess within-individual changes in
the response and to explain systematic differences among
individuals in their changes.

Despite these design advantages, investigations of a lon-
gitudinal nature can be methodologically challenging for a
number of reasons. Most obviously, longitudinal studies are
more expensive, time-consuming, and complicated to con-
duct. Further, the significant difference and difficulty of lon-
gitudinal data analysis (LDA) as compared to analysis of
cross-sectional data is that while data from different subjects
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are assumed to be independent, data from the same subject
tend to be correlated. Such dependency in the dataset in-
validates an essential assumption of independence that un-
derlies many standard statistical techniques and must be
accounted for in the statistical methods used to analyze the
data [17]. Failure to correctly specify the correlation among
the repeated measures may result in incorrect estimates of
the sampling variability and can lead to misleading scientific
inference.

1.1 Approaches to LDA

Statisticians have approached the modeling of longitu-
dinal data in a number of distinct ways. Three of the most
commonly-used approaches, which differ in the way each ac-
counts for within-subject association, are described in this
section. The three classes of models arise from different spec-
ifications of (1) the joint distribution of the responses Yi as
well as (2) the source of correlation among the repeated mea-
sures of the same subject [17, 87]. Further, the three ana-
lytic approaches have slightly varying inference goals which
reflect distinct questions of interest regarding longitudinal
change in the response.

The first modeling technique explicitly models the het-
erogeneity between subjects (what Zeger et al. (1988) re-
ferred to as “subject-specific” modeling). An example of this
technique is the mixed model, where there is an assumption
that the subject-specific effects follow a parametric distri-
bution. The second modeling technique does not explicitly
account for the between-subject heterogeneity. It models the
response as a function of the covariates (what Zeger et al.
(1988) referred to as “population-averaged” modeling). The
generalized estimating equations approach [46] is an exam-
ple of a frequently-used method that generates estimates for
these so-called marginal models. Finally, the third class of
models for longitudinal data is the transitional or response-
conditional approach. Such models treat both the explana-
tory variables and the prior responses as explicit predictors
of the current outcome [81, 82]. It is useful to note that each
of these three approaches has variations to handle datasets
with continuous, binary, categorical, or count responses.

1.1.1 Population-averaged or marginal models

The main purpose of using population-averaged (or
marginal) models in LDA is to make inference about popu-
lation means. In such a setting, the model for the mean re-
sponse at each time-point depends only on the covariates of
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interest and not on the unobserved random effects or previ-
ous responses [87]. The distinctive feature of marginal mod-
els is that the regression of the response on the explanatory
variables is specified separately from the within-person cor-
relation, guaranteeing that the assumptions regarding the
within-subject association do not influence the interpreta-
tion of the marginal model’s estimated regression param-
eters [13]. This means that regression coefficients describe
how the mean response in the population changes over time
and how these changes relate to the covariates [17].

Typically, a population-averaged model for longitudinal
data has a three component specification [13, 18] that can
be viewed as an extension of the generalized linear model
(GLM) [56] to longitudinal data. First, the marginal mean
of each response, denoted by E(Yij |Xij) = μij , is assumed
to depend on the covariates (or explanatory variables) via a
known link function g(·) such that

(1) g(μij) = X′
ijβ,

where X denotes the design matrix of explanatory variables
and β is a vector of fixed parameters (an example of a
link function might be the logit link for binary responses
where log( μij

1−μij
) = X′

ijβ or a log link for count data where
log(μij) = X′

ijβ). Second, the marginal variance of each Yij ,
given the covariates, is assumed to depend on the marginal
mean according to

(2) Var(Yij |Xij) = φv(μij),

where v(μij) is a known variance function and φ is a scale
parameter that may need to be estimated. Lastly, the condi-
tional, pairwise within-subject correlation among the vector
of repeated responses, given the covariates, is assumed to be
a function of the mean μij and an additional set of associa-
tion parameters α. It is this third part of the model specifi-
cation that identifies the distinguishing dependence among
the repeated observations by modeling within-subject as-
sociation. Given this three-part formulation, it is notewor-
thy to mention that the marginal regression coefficients, β,
have a similar interpretation to the coefficients from a cross-
sectional analysis [13].

1.1.2 Subject-specific or GLMM models

The main idea behind subject-specific models is that
there is a variability across individuals in the study pop-
ulation that is accounted for and estimated by a subset of
regression parameters that are assumed to differ across in-
dividuals according to some fundamental distribution [13].
In contrast to marginal models, this alternative approach
provides a source for the within-subject association by in-
troducing random effects in the model equation for the mean
response [18]. These random effects describe each subject’s
trend across time and explain the correlation structure of
the longitudinal data [32]. Conditional on the random ef-
fects, the assumption is that the repeated measurements for

any given individual are independent observations. Subject-
specific approaches are particularly useful when the objec-
tive is to make inference about individuals rather than just
about the population average.

More specifically, such models are known as generalized
linear mixed-effects models (GLMMs) and are character-
ized by the fact that the model for the mean response is
conditional on both the observed covariates and the un-
observed random effects. Typically, the generalized linear
mixed model for longitudinal data has a two-part specifi-
cation [18]. First, given a vector of random effects bi, the
responses Yij are assumed to be conditionally independent
and to have an exponential family distribution with condi-
tional mean depending upon both fixed effects (denoted by
β) and random effects such that

(3) g[E(Yij |Xij , bi)] = X′
ijβ + Z′

ijbi

for some known link function g(·), where X is a matrix
of fixed effects covariates and Z is a design matrix of ran-
dom effects covariates. The conditional variance is assumed
to be dependent on the conditional mean according to
Var(Yij |Xij , bi) = φv[E(Yij |Xij , bi)], where v(·) is a known
variance function and φ is a scale parameter that may need
to be estimated. The second specification is that the ran-
dom effects bi have a multivariate normal distribution, with
a zero mean and a covariance matrix G.

1.1.3 Conditional and transitional models

The third approach to handling longitudinal data focuses
on modeling the mean and time dependence concurrently
by conditioning a response on a subset of other responses
[18]. Here, the conditional distribution of each outcome at
any occasion is denoted as an explicit function of the pre-
vious outcomes and the covariates (for example see [88]).
As presented in Fitzmaurice and Molenberghs (2008), the
specification of a transitional model assumes that

(4) g[E(Yij |Xij ,Hij)] = X′
ijβ +

∑
αrfr(Hij),

where Hij = (Yi1, . . . , Yij−1) denotes the history of the past
responses at the jth occasion and fr(Hij) represent some
known functions of the history of the past responses. Thus,
the characteristic feature of this modeling technique is that
past outcomes are treated as additional explanatory vari-
ables [13]. Utilizing various link functions g(·) allows for
transitional models (sometimes referred to as Markov mod-
els) to be applied to a range of situations and responses.

1.2 Concluding remarks regarding LDA

Longitudinal studies investigate change over time and the
factors that influence change, producing complex datasets
that pose interesting methodological challenges. Develop-
ments of regression models for longitudinal data have fo-
cused on extensions of the generalized linear model. Three
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main methods highlighted in this section include population-
averaged (marginal) models, subject-specific (GLMM) mod-
els, and transitional (Markov) models. The choice between
these analytic approaches should be based on the type of re-
sponse variable measured as well as the target of inference
and the scientific question at hand.

2. FUNCTIONAL MAGNETIC RESONANCE
IMAGING & DATA ANALYSIS

During the past twenty years, a noninvasive neuroimaging
technique used to study human brain function in vivo called
functional magnetic resonance imaging (functional MRI or
fMRI) has become an important part of current research
in cognitive and clinical investigations as well as psychol-
ogy and psychiatry. Ogawa et al. (1990) was the pioneer
who first conducted an experiment that measured blood-
oxygenation-level-dependent (BOLD) signal in the brain,
establishing that fMRI could be used to measure brain func-
tion [63]. Since then, an ever-growing interest in this method
has been shown by neuroscientists, physicists, statisticians,
and psychologists who have worked to further develop fMRI
research.

A primary use of fMRI is mapping brain function to brain
structure as well as exploring physiological and pathologi-
cal changes in functional activity of the brain. In an fMRI
experiment, magnetic resonance images are obtained (based
on the BOLD signal) while a subject engages in a passive,
sensory, motor, or cognitive task designed to target specific
brain functions. Researchers attempt to use these obtained
images to detect how patterns of increased or decreased
brain activity relate to task performance or disease group in
order to understand and localize brain functions [14]. The
brain regions with greater activation are presumed to be
those related to the task or disease.

As the field grows and the methodology improves, so do
the many computational and statistical problems that ac-
company the storage, processing, analysis, and interpreta-
tion of these very large and variable datasets. This section
describes the scientific background related to the acquisition
of fMRI data, fMRI experimental design and data prepro-
cessing, current analysis techniques, as well as some data
analysis problems unique to fMRI.

2.1 What does fMRI measure?

When the human brain activates in response to a partic-
ular task or stimulus, the rate of blood flow to brain regions
involved in the task intensifies. The increased flow of blood
occurs because the brain requires that glucose (a carbohy-
drate used by the brain as a source of energy) be delivered to
relevant areas in the brain. As a consequence, metabolism of
the neurons in the regions involved in the particular task is
altered; the firing rate of these neurons increases and more
oxygenated blood arrives in the pertinent brain areas. It is
this increase of local oxygen levels in blood and the rise

in metabolic demand of the neurons that is measured by
the fMRI signal [55]. In other words, the fMRI signal re-
lies on measuring blood oxygenation level, which changes
based upon the metabolic demands of active neurons and is
thought to indirectly reflect brain activity [42].

More specifically, the particular time-course of fMRI sig-
nal change (triggered by neuronal activity and variations
to the ratio of oxygenated to deoxygenated blood) is de-
scribed via something known as the hemodynamic response
function (HRF), estimation of which is the focus of much
statistical fMRI research. When a particular task or stim-
ulus is presented to a subject, there is a delay of approxi-
mately two seconds prior to an observable change in signal
as blood is delivered to the relevant area of the brain. A
gradual increase in the response peaks at about six seconds
following the stimulus. With no additional stimulation, the
HRF steadily decays, returning to its original state. Friston
and colleagues (1994) proposed that an estimated HRF can
be used to obtain a predicted fMRI signal response for any
arbitrary pattern of neural activity. In turn, these predicted
signal responses could be utilized to consider hypotheses re-
garding the effect of task stimuli upon brain function [1, 23].

Magnetic resonance (MR) enters into this explanation
because blood contains iron (hemoglobin), which is param-
agnetic (a material which becomes a magnet in a magnetic
field) [42]. Magnetic characteristics of the oxygenated versus
deoxygenated blood are not the same; deoxygenated blood
has a twenty percent greater magnetic susceptibility than
oxygenated blood [67]. Because of the fact that hemoglobin
in deoxygenated blood is strongly paramagnetic, it thus has
the capacity to distort an MR field locally. A decrease in the
local concentration of deoxyhemoglobin that occurs with the
increase of oxygenated blood leads to a more uniform and
stable magnetic field locally and the MR signal in a region
of decreased deoxyhemoglobin concentration increases rela-
tive to its normal (neuronally resting) state. The local MR
signal difference due to the changing magnetic properties of
blood is called the BOLD effect and it is the major source of
contrast in most functional MRI experiments [72]. See Fig-
ure 1 for a flowchart depicting the BOLD effect mechanism.
The HRF is thought to locally reflect the fMRI BOLD sig-
nal change over time. This means that, as the concentration
of oxygenated blood in the vicinity of the activated neuron
changes (in response to a task stimulus), the measured MR
signal via the BOLD effect detects these changes [64, 52]. An
important point to consider here is that fMRI does not mea-
sure brain activity directly, but rather, through the mech-
anisms described above, measures the correlates of brain
activity and, as a result, is an indirect indicator of brain
function.

2.2 Principles of MRI

To address the question of how functional MRI works, it
is necessary to gain an understanding of the concept of mag-
netic resonance. The physical basis upon which fMRI rests
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Figure 1. BOLD signal mechanism.

is the Nuclear Magnetic Resonance (NMR) phenomenon.
The physics theories underlying NMR were discovered in the
1920s and 1930s but it was not until the 1990s that fMRI
techniques utilizing principles of NMR were developed for
the study of human brain function [38]. An intuition behind
this complex phenomenon and some definitions follow (de-
tailed, technical descriptions regarding these theories can be
found in Huettel et al. (2004), Jezzard et al. (2001), or Lazar
(2008)).

2.2.1 Hydrogen atoms and net magnetization

Hydrogen protons in the body are subatomic particles,
which possess a characteristic property of spin. Under nor-
mal conditions, thermal energy causes these particles to
spin, or precess, around a central axis in gyroscopic motion,
much like a spinning top. When in their natural state, hy-
drogen nuclei are oriented randomly, so they spin in random
directions. Because spins in random directions cancel each
other out, the amount of net magnetization produced by
these randomly precessing nuclei in their natural state is
zero [42].

At the start of an MRI session, a subject undergoing a
scan is placed horizontally into the bore of an MR scanner
(a large magnet which generates a magnetic field that is typ-
ically 1.5 or 3 Tesla strong). When the subject is exposed to
this magnetic field, hydrogen protons in the subject’s body
(specifically, the 1H isotope of hydrogen) precess on their
axes at a rate or frequency proportional to the strength
of the magnet. Placement in the magnetic field also causes
these hydrogen nuclei to have a propensity to line up in
the direction of that magnetic field (by convention, this is
denoted the z -axis in a three-dimensional space), with ap-
proximately half of the protons going parallel (or with the
magnet) and half going anti-parallel (or against the mag-
net), as pictured in Figure 2. There is a slight preference
for their orientations in the direction of the main magnet
to be parallel with the main field. The subject in the scan-
ner becomes somewhat magnetized as a greater number of
hydrogen protons align in the parallel direction [38, 42].

Figure 2. Precessing protons; oriented in high energy
(parallel) and low energy (anti-parallel) states.

However, because each proton precesses (like a spinning
top coming to rest), this implies that each has a rotation
phase at which it is precessing, known as the precessional
path. Typically, the phases of the individual spins are ran-
dom with respect to one another and this is no different
when a subject is placed in the scanner magnet: the preces-
sional paths of individual hydrogen nuclei is random (out
of phase), meaning they have varying values in the conven-
tionally denoted x and y dimensions. Consequently, the col-
lection of spinning nuclei do not yield a detectable magnetic
field or net magnetization [35]. Here, the hydrogen protons
are out of phase with one other, although they are all spin-
ning at a frequency that is proportional to the strength of
the magnetic field [14].

It should be noted that many other atoms and nuclei with
magnetic moments also have such an alignment. In practice,
it is common to only study the hydrogen nuclei of water
molecules because they are abundant in the tissues that are
the target of magnetic resonance imaging.

2.2.2 Generating a detectable signal

In order for a detectable MR signal to be generated, the
next step, then, is to introduce additional energy into the
system. A radio frequency (RF) pulse of magnetic energy is
applied, at the frequency of the spins of the hydrogen pro-
tons (what is denoted as the resonant frequency), caus-
ing all the hydrogen nuclei near the frequency of the applied
RF pulse to absorb this energy and change orientation. By
controlling the power and duration of the RF pulse, the hy-
drogen nuclei can be rotated or tipped to any desired angle
relative to the main magnetic field. It is often the case that
the parameters of the scanner are set a priori so that the
protons are rotated ninety degrees (flip angle). Subsequent
to the application of the RF pulse, the affected protons ar-
range in an identical direction and precess in phase in the
new orientation. This causes the net magnetic field to flip
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away from its original orientation (when there was no extra
energy in the system) and orient orthogonal to the axis of
the original field. The result is a changing magnetic field
that produces a detectable net magnetization [35, 42, 72].
So, when RF energy at the frequency of the spins is intro-
duced into the system, the level of energy generates and
temporarily increases the magnetic signal, but then returns
it to equilibrium.

2.2.3 Relaxation time

The increased generated signal decays exponentially over
time due to a number of processes. The hydrogen protons
slowly give off absorbed energy, or begin to relax, when the
RF pulse is turned off in order to return to their original
state of equilibrium prior to the application of the pulse. The
energy produced by the protons in the return to their initial
state is at the resonant frequency. It is this selective emission
of energy (or relaxation of spins) that produces the MR
signal detected by the RF receiver coils in the MRI scanner,
a signal which is proportional to the density of hydrogen
protons in the tissue [14].

Three relaxation times (or contrast mechanisms) are rel-
evant to MRI: T1, T2, and T ∗

2 [42, 72] (the curves depicting
the pattern of decay for each time constant are portrayed
in Figure 3). If the natural, exponential decay of the signal
is gauged freely (when the system is left free to decay at
its own rate), the exponential time constant associated with
that decay is conventionally called T ∗

2 , sometimes referred
to as the “free induction decay” (FID) of the NMR signal.
Such decay in the measured signal is affected by a number
of different physical processes, one of which is the means
by which the hydrogen protons release energy absorbed in

Figure 3. Time relaxation curves, corresponding to the T1

(longitudinal decay), T2 (transverse decay),
and T ∗

2 (free induction decay).

order to return to their original orientation. This is called
“longitudinal relaxation” and the time constant associated
with this exponential process is denoted T1. Additionally,
“transverse relaxation” represents the time needed for the
anti-parallel components of the magnetized field to return
to their initial values and the time constant associated with
this exponential process is called T2. Thulborn et al. (1982)
showed that the rate of T2 relaxation of blood is linked (via
an exponential relation) to the proportion of deoxygenated
hemoglobin. This means that as the strength of the applied
magnetic field increases, so does the BOLD effect and, fur-
ther, it is possible to ascertain blood oxygenation levels from
the MR signal via the relaxation time of the spins [79, 42].

2.2.4 Acquiring magnetic resonance images

The above-described process of signal relaxation essen-
tially yields a single number: T ∗

2 , the net NMR signal’s rate
of decay. This relaxation time signal represents the indis-
criminant effect of inducing an NMR signal from the entire
area being influenced by the main magnet and the RF pulse
that flips the orientation of the hydrogen protons. For “nu-
clear magnetic resonance” to become “magnetic resonance
imaging,” spatial information must be recovered from this
raw MRI signal. The process of image formation (one of the
basic steps of fMRI data analysis shown in Figure 4) relies on
the introduction of magnetic gradients that allow measure-
ment of signal changes across space [35]. Non-uniform RF
pulses referred to as gradients are purposefully applied using
the gradient coil in order to construct images which reflect
measurements of different NMR signals for different points
in the three-dimensional volume. Such application alters the
strength of the magnetic field so that each location in the
brain has a distinctively identifiable resonant frequency [72].
Appropriate application of these gradients makes it possible
to uniquely recognize and measure each location in space
that is being imaged.

More specifically, gradient pulses are applied in each of
three directions (denoted x, y, and z ) in a two-step signal
acquisition process. First, a gradient is applied in the z di-
rection (parallel to the field of the magnet) which causes
the magnetic field to differ in strength from the top of the
brain to the bottom. Subsequently, a specific slice is selected

Figure 4. Key steps of an fMRI analysis.
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within the total imaging volume (the gradient causes hydro-
gen nuclei in this slice to spin in a phase which matches the
frequency of the RF pulse applied) and what is left after this
slice selection is a two-dimensional encoding of that slice in
the (x,y)-plane (which is perpendicular to the field of the
magnet). As noted in Lazar et al. (2001), it is helpful to think
of this slice as being partitioned into a matrix of rows and
columns. Next, a phase-encoding gradient is applied to
the magnetic field (in the y direction), which increases from
the bottom row of the matrix to the top, making nuclei in
different matrix rows spin in somewhat different phases (for
example, atoms in the top row may spin faster than those in
the next row, etc.). Applying a frequency-encoding gra-
dient (in the x direction), which increases incrementally
from the left column to the right of the slice matrix, leads
nuclei in different columns to spin at different frequencies
[14].

Thus, within a matrix defined by the selected slice, each
element can be differentiated due to the fact that each has
a different phase (defined by the y-axis coordinate) and fre-
quency (defined by the x -axis coordinate). This means that
the MR image can be thought of as a map of frequencies that
depicts the spatial distribution of some property related to
the spin of the protons. With the presence of gradients, each
proton resonates at a unique frequency and emits its own
T ∗

2 -weighted relaxation signal [35, 43, 42], a current which
is collected in the scanner’s receiver coils.

2.2.5 Data conversion: From k-space to image-space

Raw MR signal data in their initial form are collected
by the receiver coil during acquisition and stored in Fourier
space, known as k-space in fMRI literature (see Jezzard et
al. (2001) for details). After selecting one slice of the en-
tire volume and encoding it for phase and frequency (as
described in Section 2.2.4), this method of slice selection is
duplicated so that data are collected and encoded for all of
k-space (or the entire volume in the scanner), according to
the size of the image being taken. For example, if the interest
is in a 128 × 128 pixel image, then to fill k-space with data
might be to take 128×128 = 16, 384 samples. To obtain the
samples, a particular blueprint for application of gradients
and encoding process must be imposed that will be followed
by the sampling path. The planning of the best sampling
sequence (known as a pulse sequence) that generates data
in k-space and resultant imaging method is a subject mat-
ter of research among physicists; one of the most common of
such methods is echo-planar imaging (EPI) [43]. A pulse se-
quence denotes how a particular slice of the brain is chosen
for imaging, how individual volume elements are encoded
within each slice, and how the ensuing signals are preferen-
tially selected to obtain information about the concentra-
tion of deoxygenated hemoglobin blood flow [72]. The EPI
method forms a complete image from a single data sample
(or a single shot), where gradients move through k-space us-
ing alternate left to right and right to left lines in a so-called
boustrophedonic pattern.

Figure 5. The same image slice is repeatedly obtained
throughout the scanning session, generating a time series of
activation images for each voxel. An active brain voxel shows

a BOLD response.

Next, after data have been acquired by the MR scanner
according to a particular type of pulse sequence, researchers
begin data preprocessing with the reconstruction of the raw
k-space data into images that actually look like brains. The
data in k-space are the coefficients of the Fourier represen-
tations of the object being imaged and include information
obtained from the relaxation of protons regarding the ampli-
tude, frequency, and phase of the spinning nuclei [66]. The
goal in data reconstruction is to extract information regard-
ing the density of hydrogen nuclei at each location and cre-
ate an image of the brain reflecting that density. The math-
ematical transformation used to change the frequency-space
data (the measured MR signal) in k-space into an image
in image-space reflecting the density of hydrogen protons is
an inverse Fourier transformation and it provides a way
to construct a spatially informative image from components
in a spatial frequency domain [38]. This step of fMRI data
analysis is shown in the flowchart depicted in Figure 4.

Combining the slices together forms a three-dimensional
depiction of the brain, such that these data consist of “snap-
shots” of the working brain over time. More precisely, the
transformed images in image-space are three-dimensional
representations of brain volume, which are divided into mea-
surable volume elements (known as voxels). The amplitude
of the collected relaxation time MR signal at each voxel in
each image is indicative of the average density of the hydro-
gen protons at that voxel [43]. Each voxel has a time series
of image data associated with it, as depicted in Figure 5,
denoting the activity level or activation in that area in the
brain of the subject, as the experiment or task progresses.

2.2.6 Remarks regarding the science of fMRI

As concisely summarized in Savoy (2001), fMRI involves
collecting data of brain activation by taking advantage of a
series of connection in the brain: how neural activity (elec-
trical and chemical events) is connected to changes in brain
physiology and metabolism which in turn links to changes
in the magnetic properties of substances (hydrogen nuclei)
within the brain. By measuring the spin of the hydrogen
nuclei based on adaptable (but very complex) application
of numerous RF-pulses and multiple gradients, T ∗

2 -weighted
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images are created [72]. These images rely on the fact that
deoxygenated hemoglobin in blood is paramagnetic, whereas
oxygenated hemoglobin is not. The magnetic properties of
deoxyhemoglobin cause rapid dephasing of hydrogen pro-
tons, meaning that the T ∗

2 -weighted signal is retained longer
in a region when there is more oxygenated blood compared
to when there is less oxygenated blood. Thus, an area with
greater amounts of oxygenated blood will show a more in-
tense signal on T ∗

2 -weighted images comparatively to when
there is less oxygenated blood in the area. This effect is re-
ferred to as the BOLD signal, introduced in the beginning of
this section. The BOLD signal is collected in k-space, con-
verted to image-space at each voxel for each time-point of
the experiment.

A key point to take away here is that BOLD signal is an
indirect indicator of brain activity, which have been shown
by researchers to be intimately coupled [51]. The fMRI tech-
nique thus assumes that an area of the brain is compara-
tively more active when it has more oxygenated blood rela-
tive to another time-point. The crucial part of creating an
image from which information can be extracted is contrast
and in brain mapping, the main contrast used that causes a
change in the MR signal from a given voxel comparatively
to other voxels is the dissimilarity in relaxation times from
voxel to voxel [72].

2.3 fMRI experimental design

2.3.1 Imaging parameters

In all imaging techniques, the quality of the collected data
depends on the physics of the imaging modality [41]. fMRI
is no exception and the primary required acquisition param-
eters that influence the resolution of data (both in space and
in time) need to be predetermined preceding the beginning
of the study. Acquisition parameters can have considerable
influence on the image quality and analysis results. Often,
these settings are chosen by a human operator and are de-
termined by historical considerations, not necessarily by ne-
cessity. The choice of parameters can also be made with
regards to considerations of image resolution and quality as
well as the total time spent in the scanner by a subject (see
Brown and Semelka (2004) for more details).

Parameters that concern the details of the data collection
are called extrinsic parameters [10]. One such important
setting is the imaging plane; images are most often col-
lected in three different planes: axial (slices perpendicular
to the longitudinal axis of the body), coronal (slices parallel
to the front of the body), and sagittal (slices parallel to the
midline of the body). Another extrinsic acquisition param-
eter is field of view (FOV), which designates the physical
extent of the image, measured in mm2, specifying the area
of the brain from which the image was sampled. The size of
the acquisition matrix determines how many voxels are
acquired in each direction, meaning that it represents the
size of the grid into which the plane of FOV is divided for

each slice (it is often a square 64 × 64 or 128 × 128). Slice
thickness denotes the thickness of each slice, measured in
mm. The slice gap is the space between consecutive slices,
measured in mm. The FOV, the size of the acquisition ma-
trix, and the slice thickness determine the three dimensions
of a voxel (the previously described volume element, which
can be intuitively thought of as a volumetric pixel). Slices
are acquired in an order that is determined by the excitation
sequence (typically interleaved: all even or all odd) [42].

Parameters that affect the voxel’s signal (as opposed to
affecting the data collection, described previously) are called
intrinsic parameters [10]. Repetition time (TR) is the
time, in msec, between successive applications of the RF
pulses to a particular volume of tissue. As TR increases,
there is more time for the RF energy to dissipate. Echo
time denotes the time between the initial RF pulse and the
maximum of the signal in k-space (restrictions in hardware
make it difficult to obtain measurements directly subsequent
to the application of the RF excitation pulse). The flip an-
gle specifies the degree of rotation from the equilibrium axis
following the RF pulse [42].

2.3.2 Design types

When subjects are placed inside the scanner to undergo
an fMRI scan, they often participate in a task where they
are asked to passively view a series of stimuli, pictures, or
short film clips. Subjects may also be requested to respond
via a hand-held device to those pictures or film clips. The
two most basic types of task designs used in fMRI exper-
iments differ with regard to how stimuli are presented to
subjects during the task: they are block and event-related
designs. Block designs [4] involve separating the experi-
mental conditions into distinctive blocks so that each task
condition of interest is presented continuously within this
block for an extended period of time. Here, periods of rest
(or fixation) alternate with periods of task. The idea is to
ignore the temporal properties of the task by creating a
continual state of hemodynamic change [36]. Data collected
from such designs can be analyzed via a variety of statistical
methods, which most commonly compare time-averaged ac-
tivation across experimental conditions by averaging signals
across many trials to create functional activation images.
Block designs are most successful at identifying those voxels
for which the level of activation is significantly different in
the task conditions as compared to the control. However,
these designs are not very effective at detecting and esti-
mating the shape of the hemodynamic response [50].

In event-related designs, on the other hand, differ-
ent stimuli are presented as individual events or trials in
a random order (rather than in blocks of similar or identical
stimuli), separated by an interstimulus interval (ISI). The
hemodynamic response to each stimulus or event is mea-
sured. The assumption with this class of task designs is that
brain activation of interest will occur for short and discrete
intervals. Event-related designs are more effective at estima-
tion of the hemodynamic response function and offer more
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adaptable analysis strategies, but may have reduced ability
to detect activation [47].

2.4 Data preparation

2.4.1 Characteristics of fMRI data structure

A subject’s scan generates a substantial amount of fMRI
data, the structure of which can be described as extremely
noisy with an intrinsically complex spatio-temporal corre-
lation structure. The data are essentially the MR signal as
it progresses through the task at each voxel of the brain.
Often hundreds of time-points long, the time-course con-
sists of a series of three-dimensional images collected at each
time-point. Further, the amount of data points (voxels) in
space that comprise each of these collected images differs
across experiments, but is usually in the thousands, depend-
ing on the predetermined acquisition parameters previously
described [43].

Temporal correlation of the fMRI data arises because sub-
jects perform tasks consisting of stimuli being presented con-
tinuously over time, meaning that the reaction to a stim-
ulus at time t will clearly be affected by the stimulus at
time t − 1. Spatial correlation comes about because all of
the voxels in the brain come from an individual person’s
brain and neighboring voxels will expectantly have similar
behaviors [42]. The size and spatio-temporal complexity of
the data presents numerous challenges to many conventional
statistical procedures (particularly the full specification of a
model).

2.4.2 Preparing data for analysis: Preprocessing

Data generated from fMRI are typically very noisy. As
all measurements are susceptible to variation and error, so
are fMRI data, and thus lend themselves to statistical anal-
ysis. Consequently, to prepare the data for an analysis, it
is vital to eliminate as much of the irrelevant variability in
order to parse out the BOLD signal. As discussed in Lazar
(2008), there are three common sources of noise in fMRI
analyses: thermal, system, and subject/task noise. Thermal
noise is an inherent aspect of MR imaging and is indicative
of the fluctuations in the strength of the MR signal through-
out an imaging session. System noise reflects variations in
the functioning of the MR hardware. Finally, subject/task-
related noise is generated by the subject that participates in
the scan and is most easily correctable [42]. An example of
one of the most pervasive sources of subject-related noise is
the problem of head motion because it can cause activation
from one location in the brain to influence activation from
adjacent regions of the brain, creating a blurring of a signal.
Another example of a source of subject noise is when the
MR signal is affected by a subject’s breathing and heart-
beat, referred to as physiological noise [34]. Subject-based
noise as opposed to machine-based (from the scanner) noise
generated from fMRI data is regarded as the more important
source of noise to correct. However, there is less consensus

concerning how to correct or model these sources of noise in
terms of the practical consequences for data analysis.

Two common ways to do away with or control noise in-
herent in collected fMRI data are to (1) prevent noise by
controlling the scanning environment and (2) remove vari-
ous sources of noise from the data signal with preprocessing
methods [42]. Preprocessing includes a number of steps, all
of which are intended to massage the data in a way that
measures or removes unwanted variability so that it is in an
appropriate form to be statistically analyzed (see Huettel et
al. (2004) for more details).

The most widely-used preprocessing procedures include
slice-time correction, detrending, motion-correction, physio-
logical noise correction, smoothing, and registration. Slice-
time correction corrects for the fact that slices of data are
not all collected at once, but rather one at a time. A cor-
rection for this issue typically involves re-shifting the voxel
time series on the image space data [74]. To correct for scan-
ner drift, the preprocessing procedure known as detrend-
ing is done [77] one of a variety ways (e.g. using linear and
polynomial models or using wavelets and splines). Further,
estimating head motion and correcting the data for its effect
(registration) prior to formal analysis is often an impor-
tant step. Such preprocessing involves coregistering the im-
ages to a single reference volume and estimating the needed
translations/rotations in various directions by minimizing
the distance between the volume and the reference. Then,
to correct for the head motion, the estimated translation and
rotation parameters are used to shift the image to the refer-
ence (using one of a variety of interpolation methods). Sev-
eral techniques can be undertaken to estimate and correct
for physiological effects. Often, the physiological noise is
estimated and monitored simultaneously as functional data
are collected, the two are synchronized, and the effect is then
removed from the phase and magnitude of the data [42].

2.4.2.1. Smoothing. Many researchers also include
smoothing as part of the preprocessing step of fMRI data
preparation, although not necessarily as a way to removing
a particular type of noise but instead as a way to obscure
residual anatomical differences [47]. The frequently-used
way to smooth data is with a Gaussian filter, characterized
by a measure called full-width-half-maximum (FWHM)
of between of 5–10 mm. The arbitrary specification of
smoothing extent in the initial smoothing step has been a
source of contention in the neuroscience community. There
are two main reasons often cited for smoothing [74]. For one,
small amounts of smoothing improve the signal-to-noise
ratio, since the effect of smoothing obscures the measured
signal in neighboring voxels. Additionally, smoothing often
makes the data more “normal,” thus potentially enhancing
the validity of the data analysis. An important issue to
highlight, however, is that smoothing can cause regions that
are functionally different to combine with each other [19]
and can consequently have a harmful effect on statistical
analyses. In particular, smoothing methods can be very
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problematic near the edges of activated regions [76] because
the brain is composed of spatial contiguous regions of
activation rather than sharp edges defined by many fMRI
studies.

2.4.2.2. Intersubject registration. It is necessary to note
that nearly all fMRI studies use multiple subjects and that
statistical analysis is often performed across data collected
from multiple subjects. This practice introduces a number
of practical problems which fMRI data analysis must ad-
dress [47]. Considering each subject on an individual basis is
relatively uncomplicated, but does not allow the researcher
to draw meaningful conclusions comparing the behavior of
the group of subjects. Thus, information from multiple sub-
jects must be combined in order for higher-level statistical
questions to be answered. The problem is that different sub-
jects’ brains vary in shape, size, and the relative positions
of the particular brain structures. Combining brain images
from different individuals is only acceptable if the images
are put on a comparable basis (or some form of a common
space).

An overview of choices of various methods used to com-
bine brains (spatial normalization) has been the topic
of research [44]. One relatively simple example that allows
for comparison of activity across brains of multiple subjects
is to transform the representations of those brains so that
they have the same overall size and are similarly oriented
in space according to some atlas. To accomplish this, the
brain images can be rigidly rotated and linearly scaled into a
common space [72]. A frequently-used standard coordinate
systems for comparing brains is the Talairach stereotac-
tic coordinate. In an example of a Talairach transformation
discussed by Savoy (1999), a rigid rotation and translation
to a standardized orientation is carried out, and then inde-
pendent linear scaling of the brain’s anterior, middle, and
posterior parts of each hemisphere is completed [71]. A wide
range of more powerful non-linear approaches have also been
developed to facilitate data display and intersubject com-
parison.

2.5 Approaches to fMRI data analysis

As previously described, at each voxel for each subject,
data are preprocessed, motion corrected, aligned to a stan-
dard brain atlas, and smoothed before statistical analy-
sis begins. Needless to mention, there is no consensus in
the literature about the ideal way to proceed or “the best
method for fMRI analysis,” mainly due to the exceedingly
complicated structure and size of a typical fMRI dataset.
Once fMRI data are prepared for analysis, the choice of the
method is fundamentally defined by the hypothesis of the
researcher and a multitude of software packages are available
to undertake these analyses.

Most fMRI experiments aim to make an inference re-
garding a population as a whole, where the purpose is to
determine whether the experimental task and stimuli has

Figure 6. Activation analysis.

resulted in a measurable change in the MR signal, as well as
to specify the location in the brain and when that change
occurred. The recurrent goals of fMRI data analysis can
be summed up as follow: determining which regions of the
brain are activated by a certain task or stimuli (portrayed
in Figure 6); localizing networks that correspond to partic-
ular brain functions; and making predictions about mental
states [47]. These objectives relate to understanding how
exposure to certain stimuli lead to changes in neuronal ac-
tivity and all essentially come down to comparing images, or
groups of images, in a statistically meaningful way by mod-
eling the data to appropriately account for each subject’s
differing responses [60].

The analysis of fMRI data has been well described (see
Lazar (2008), Lindquist (2008), and Bowman et al. (2007)
for excellent overviews). Sections 2.5.1 through 2.5.4 broadly
introduce some distinct analysis approaches currently being
used.

2.5.1 Activation analysis: 2-stage general linear model

It is useful to think of a full fMRI analysis intended to
localize brain activity in stages: first, a model is fit for each
individual subject and then, at the second-stage, the in-
dividual analyses are combined for different subjects. Both
stages rely on the concept of the general linear model (GLM)
[56], and this two-stage formulation is one of the most com-
mon ways to analyze fMRI data [47]. In this straight-forward
and effective analysis approach, researchers model fMRI re-
sponse data as a linear combination of several different com-
ponents of the signal and test whether activation in a par-
ticular brain region is related to any of the explanatory vari-
ables or task/stimuli presentations.

Recall that the linear model has the familiar form Y =
Xβ + ε where Y is the response, X is the matrix of covari-
ates, β is the vector of unknown coefficients corresponding
to the covariates, and ε denotes the error (usually assumed
to be normally distributed). In the fMRI context, let N rep-
resent the number of subjects (i = 1, . . . , N), let T denote
the number of scans (t = 1, . . . , T ), and let V indicate the
number of voxels (v = 1, . . . , V ). As presented in Bowman
et al. (2007), the first-stage linear model for the responses
can be expressed as Yit(v) = Xivβi(v)+εi(v) [9]. Here, Yi(v)
denotes a matrix of observed time-course BOLD fMRI re-
sponse data of all the voxels, where one column corresponds
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to one voxel and one row corresponds to one time-point; Xiv

can be thought of as a design matrix reflecting the stim-
uli presented at a particular occasion; βi(v) indicates the
subject-specific effects corresponding to the design matrix;
and the random error vector εi(v) represents characteris-
tics of the measurement process that are unaccounted for
by the statistical model, having either constant or noncon-
stant variance and nonzero covariance terms [42]. The design
matrix incorporates covariates of interest, including factors
that describe the experimental design, subject demograph-
ics, group membership, and other factors not of substantive
focus (e.g. blood flow). The experimental stimuli of the de-
sign matrix in the most basic form usually consist of just
zeros and ones, indicating the presence or absence of a stim-
ulus [60, 9].

This basic first-stage linear model makes certain assump-
tions that are unrealistic and violated by fMRI data. As
discussed in Lazar (2008), these strict assumptions are as
follows. First of all, voxels are assumed to be independent,
meaning the standard model makes no use of spatial in-
formation regarding the way that voxels are spatially dis-
tributed (which is problematic given the likelihood that ad-
jacent voxels will have similar behavior). Similarly, there
is an assumption that time-points are independent. Addi-
tionally, there is an assumption that the error variance at
each time-point is the same and that the same model is ap-
propriate for all voxels in the brain. As demonstrated by
previous research, these assumptions are not valid (e.g. the
residual error in fMRI is not independent and voxels exhibit
excess variation) [42]. In many current analyses of fMRI
data, modified assumptions accompany the model specifica-
tion which allow for spatial and temporal correlation; the
standard GLM model is adjusted to reflect such modifica-
tions. Much statistical research in fMRI has thus focused
on ways to extend the simple GLM to loosen the unrealistic
assumptions described above.

The second-stage analysis is used to relate subject-
specific parameters βi(v) to population parameters β(v) as
follows: βi(v) = Wivβ(v) + εi(v). Here, Wiv is the second-
level design matrix to test the mean response of subjects and
β(v) is a vector that contains group-level parameters that
represent the effects related to various subpopulations. It
should additionally be noted that researchers use contrasts
to summarize evidence for a particular effect. Rarely is an
investigator interested in all the elements of the β vector. In-
stead, the interest is typically focused on how one condition
compares to another (e.g. is condition 1 different than con-
dition 2?), meaning that contrasts must be defined in terms
of the corresponding group-level parameters when formulat-
ing the model. Modeling a contrast at the population-level
stage, rather than modeling the whole vector of subject-
specific effects from the first-level analysis, is an expedient
way to facilitate computations [9].

Standard methods for fitting this two-step model and es-
timating the β parameters involve iterative optimization al-
gorithms such as restricted maximum likelihood, which can

be statistically cumbersome and time-consuming. A more
practical and efficient approach involves building summary
statistics [60]. Various summary statistic methods utilizing
mixed models and GEE approaches to account for both
within-subject and between-subject variation have been de-
veloped using custom software (e.g. FSL, fMRIstat, SPM2)
due to the massive size of fMRI datasets (see Mumford and
Nichols (2006) for a succinct overview). It is now more com-
mon in fMRI analyses to treat certain within- and between-
subject effects as random [25]. Consideration of the assump-
tions that underlie mixed-effects or GEE models allows re-
searchers to generalize conclusions beyond the subjects in
the conducted experiment to a greater population.

2.5.1.1. Inference in activation studies: Region-of-interest
verses whole brain. Statistical inferences for activation
studies typically focus on one of two levels: the voxel whole-
brain level or a more general regional (region-of-interest)
level [9]. Voxel-wise analyses allow a high degree of local-
ization for identifying task-related alterations in neural pro-
cessing by looking for significant effects in many different
voxels, often encompassing the whole brain. This approach
is preferred for a wide range of research hypotheses, where
the basic question addressed is “Which brain region evokes
a particular pattern of fMRI activity?” [35].

Region-of-interest (ROI) based methods, on the other
hand, are spatially more coarse, but also likely more realis-
tic, by evaluating statistical tests targeting a predetermined
neuroanatomical structure or region (such as the amygdala)
[9]. These methods are appropriate for more targeted hy-
potheses, where the main question of interest is “What pat-
tern of activity occurs in a particular brain region?” [35].
Researchers establish the ROIs based upon a priori expec-
tations about the likely involvement of different brain areas
in a task (see Poldrack (2007) for review).

2.5.2 Extensions of the general linear model

Various techniques have loosened the stringent and un-
realistic assumptions of the standard two-stage GLM model
for activation studies described in Section 2.5.1. Such ex-
tensions may be more suitable for fMRI analyses because
they address the dependence between observed brain activ-
ity responses across different voxels and time-points. One
such approach is a temporal model that takes into ac-
count the correlation over time at each voxel and exploits
the time series nature of voxel observations directly (see
Lazar (2008) for summary). An example of an implemen-
tation of this method is an extension of the GLM so that
the error term is a stochastic process; included in the vari-
ance term of the errors is a general matrix whose elements
depend on the autocovariance function between two time-
points [54]. An alternative solution was proposed by Worsley
and Friston (1995) and involves allowing serial correlation
in a regression setting by smoothing the time series [84]. For
other examples, see [11, 49].
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Other extensions focus on the spatial correlation prob-
lem intrinsic in fMRI data and are referred to as spatial
models, which make an effort to account for the neurophys-
iologic associations that may exist between different brain
areas [9]. A common technique that addresses the assump-
tion of independent voxels applies Random Field Theory
(RFT)-based methods to determine significantly activated
voxels [83]. However, this technique nonetheless necessitates
constraining assumptions and can alter the observed data by
smoothing. A recently developed technique is the Multiscale
Adaptive Regression Model (MARM) [89], which integrates
adaptive smoothing methods with statistical modeling at
each voxel for spatial and adaptive analysis. Much of the
additional work is Bayesian in nature. An example of a type
of Bayesian model is that of Hartvig and Jensen (2000), who
consider the activation of clusters of voxels [31]. They for-
mulate a model for activation in a cluster and use the spatial
arrangement of voxels to calculate the posterior probability
of a voxel being activated. For further examples, see [8, 73].

Additional techniques, although computationally and
conceptually complicated, have considered modeling both
space and time together in so-called spatio-temporal
models. One method to do this is to apply clustering tech-
niques to the time series data (either by clustering the raw
time series [6] or by applying cluster techniques to a function
of the time series [29]). Many implementations that cluster
fMRI time-courses have been considered (e.g. [3, 16, 28]).
Another example of spatio-temporal modeling of fMRI data
is direct modeling, where both the spatial and temporal as-
pects of the data are modeled explicitly (e.g. [39, 57, 69]).

2.5.3 Multivariate analysis

Stepping away from extensions of the GLM model and
hypothesis-driven analyses, alternative techniques common
to fMRI are data-driven and aimed at finding or character-
izing the multivariate nature of the data (see Lazar (2008)
for summary). These methods include principle component
analysis (PCA), independent component analysis (ICA),
and canonical correlation analysis (CCA), all which take
an investigative approach to data exploration and modeling
in order to identify components in the data with interesting
structure. The strength of such data-driven methods is that
they can find components that cannot be modeled a priori ;
these methods are often used for the purpose of detecting
unexpected components in the fMRI data, such as drifts and
motion-related artifacts.

Principle components analysis (PCA) is one such
multivariate statistical tool intended to find linear combina-
tions of the original variables that parsimoniously describe
the dependence structure of data [33]. An example PCA is
partial least squares regression which seeks orthogonal com-
ponents (called latent variables) by decomposing of both
the neural responses Y and experimental covariates X si-
multaneously, such that these factors explain as much as

Figure 7. Slices depicting a component identified by ICA.

possible of the covariance between X and Y [9]. For addi-
tional applications of PCA to fMRI, see [24, 78, 80]. Inde-
pendent components analysis (ICA) seeks linear com-
binations of the collected data, assumed to be as far from
normally distributed as possible, under the constraint that
the components are uncorrelated [42]. As the most popular
of the multivariate methods used in fMRI, ICAs have been
performed in both the temporal and spatial domain and do
not require any prior knowledge about the spatio-temporal
structure underlying the measured brain activity. ICA iden-
tifies independently distributed spatial patterns that are as-
sociated with different time-courses. An example of results
obtained from an ICA analysis are shown in Figure 7. For
further reference, see [7, 12, 58]. Finally, canonical corre-
lation analysis (CCA) is a way of quantifying the corre-
lation between sets of variables. This method searches for
components that have the most auto-correlation, under the
constraint that they are mutually uncorrelated. The CCA
method generates comparable conclusions as ICA but it is
more robust and faster than conventional methods for ICA.
For more examples, refer to [21, 61].

2.5.4 Brain connectivity analysis

Another approach to analyzing fMRI datasets recently
gaining popularity in the neuroimaging community is the
technique of connectivity, which refers to networks that
model or seek to explain relationships between brain re-
gions. These analyses allow researchers to step away the
specific hypotheses regarding “Which voxels are activated?”
to the more broad question concerning how different areas
of the brain interact to create thought and how these in-
teractions depend on experimental conditions [42]. fMRI re-
searchers generally distinguish between functional and effec-
tive connectivity [23]. Briefly, functional connectivity is
defined as the undirected association between two or more
fMRI time series. The simplest approach toward functional
connectivity analyses compares correlations between regions
of interest or between a “seed” region, and other voxels
throughout the brain. Alternatively, effective connectiv-
ity refers to the directed influence of one brain region on
others. In effective connectivity analysis, a cluster of regions
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with a hypothesized set of directional connections is speci-
fied a priori and tests are used to assess the statistical signif-
icance of individual connections [47]. Most effective connec-
tivity methods depend on two models: a neuroanatomical
model that describes the areas of interest and a model that
describes how these areas are connected. Commonly-used
methods include Structural Equation Modeling (SEM) [59]
and Dynamic Causal Modeling (DCM) [22].

2.6 Concluding remarks regarding fMRI

fMRI is a very complicated imaging technique with re-
spect to physics, measurement methods, physiological mech-
anisms, data analysis, and interpretation. Despite its com-
plexities and shortcomings, fMRI is undoubtedly one of the
best tools available for gaining insights into brain function.
It allows for the formulation of motivating and testable hy-
potheses, even though the possibility of testing these hy-
potheses crucially depends on the experimental design, the
type of statistical analysis, and insightful modeling. fMRI is
an exceedingly rich data source with an abundant opportu-
nity to answer many scientific questions.

3. LONGITUDINAL FMRI DATA ANALYSIS

The human brain is a constantly changing and develop-
ing organ. As such, studies that combine fMRI methodology
and longitudinal design, in which subjects undergo a scan
and are measured repeatedly over time, are essential in order
to gain a better understanding of the true course of the neu-
ral changes and developments. While cross-sectional fMRI
research is helpful for generating hypotheses for future inves-
tigations, these hypotheses need to be tested and confirmed
by longitudinal research. Longitudinal studies of brain func-
tion and anatomy in normal and pathological brains aid in
teaching researchers more accurately about the processes
that impede and affect normal development as well as the
progression of disease. Structural MR brain imaging studies
of a longitudinal nature, which seek to investigate changes in
regional brain volumes and tissue characteristics over time,
have a longer history in imaging science than fMRI (e.g.
[37]). But lifespan variations in brain structures and vol-
umes coincide with development of cognitive and functional
abilities. Thus, studying functional MRI changes over time
can better inform researchers about the neural progression
and development of certain brain functions and pathologies.

As alluded to, cross-sectional fMRI data, as opposed to
longitudinal fMRI data, are not as sensitive to small magni-
tude changes in brain function and can misrepresent brain
processes that occur within the individual [75]. The advan-
tage of a longitudinal fMRI approach is that it provides the
best possible power for identification of time-related changes
because multiple within-subject observations are collected,
as long as the variability between subjects is much greater
than the variability between sessions for a particular sub-
ject. Hence, by using methodology that accounts for both

Figure 8. Example of a fMRI activation analysis of a
longitudinal nature.

within-subject along with between-subject information and
that accurately characterizes longitudinal repeated measure-
ments to study brain development, researchers can better
characterize functional changes that occur in the human
brain over time. Such studies are necessary to understand
the developmental links of natural development and disease
progression in terms of differential functional performance
of specific brain regions, as well as the impact that different
life occurrences can have on the developing brain. Appropri-
ate modeling is important to consider because differences in
longitudinal functional patterns between groups of subjects
may be relevant to diagnosis, tracking of disease progression,
and monitoring of potential disease-modifying treatments.

To better understand the neural development of brain
structure and function, various longitudinal neuroimaging
datasets have been collected and many studies are ongoing
(e.g. NIH MRI study of normal brain function). An exam-
ple of what such data might look like is illustrated in Fig-
ure 8. However, analysis of these data has been hindered
by the lack of advanced statistical methods for analyzing
such high-dimensional longitudinal data [45]. In most multi-
subject fMRI studies, a subject is scanned only once and
the activation magnitudes from each subject are submitted
to a second-level statistical analysis. But longitudinal data
analyses are complicated by the presence of both multiple
sessions and multiple subjects. The following section out-
lines some of the methodological challenges that accompany
the analysis of fMRI datasets of a longitudinal nature.

3.1 Methodological challenges of
longitudinal fMRI data

3.1.1 Multiple sources of correlation

As discussed in Section 1 of this paper, an unavoidable
aspect of data collected longitudinally is that an individual
subject’s repeated measurements are likely to be correlated
over time. An outcome of brain activation at one scanning
session is likely to predict and be related to the measure-
ment of brain activation at the next scan. This means that
responses collected at various scanning sessions for each in-
dividual are not necessarily independent, nor do they have
equal variances. Further, another contributing factor to the
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correlation of the data in fMRI studies is that the distance
between repeated measurements (or scanning sessions) will
undoubtedly not be exactly equivalent, among or between
subjects. The difference in distance between time-points has
an effect on the correlation structure of the data because
responses that are closer in time to one another are more
likely to be related than those further apart. Additionally,
because of differing schedules of subjects, the dataset may
not be balanced between subjects (both in the distance be-
tween time-points and the number of scans obtained). As a
result, the correlation structure between repeated measure-
ments of different individuals is influenced [85].

These sources of correlation are in addition to the cor-
relation that already exists and must be accounted for in
cross-sectional fMRI data (discussed in Section 2). Recall
that imaging datasets collected in a single session have an
already complex spatio-temporal correlation structure. The
high-dimensional structure of the fMRI data has an even
higher -dimensional structure when the study design is lon-
gitudinal. Thus, analyzing such data requires a high level
of statistical sophistication of the researcher as well as ad-
vanced modeling techniques that permit more general forms
of correlation among repeated measures.

3.1.2 Irregularities between subjects

3.1.2.1. Different time-points. In considering the organi-
zation of a dataset, it is natural to group the repeated mea-
surements of the same subject together. In such an organi-
zation, it becomes apparent that the number of responses
may likely be different between subjects and that the time-
points of subjects may not correspond at all if the subjects
do not scan on the same day. In other words, it could be that
each subject’s response vector corresponds to a different set
of time-points or a different number of time-points. The sta-
tistical model employed, therefore, must handle these types
of irregularity with flexibility.

3.1.2.2. Missing data. The likely presence of missing data
poses an additional complication to longitudinal fMRI anal-
ysis. As stated above, different subjects may not necessarily
match on the number of repeated measurements that exist
in a dataset. Occurrences of missing data are not uncom-
mon in an fMRI study; for instance, situations may arise
where subject data must be thrown out due to excessive
movement or scanner artifact. Data might also be missing
at one of several measurement occasions due to missed ap-
pointments or due to attrition [32]. Statistical approaches
to handle missing data in non-imaging longitudinal analy-
ses are wide-ranging and include conducting analyses that
are limited to only those subjects that completed the study
or inputting the last available measurement to all subse-
quent missing measurement occasions. In fMRI longitudinal
studies, the possible feature of missing data makes analysis
far more complex than that of cross-sectional fMRI data.

3.1.3 Multiple responses at each time-point

Statistical analyses of fMRI data are multivariate in na-
ture, meaning there are often many responses of interest at
the same time (e.g. activation at multiple voxels and/or re-
gions). Such experiments are unique in the sense that they
allow the researcher to study the joint evolution of multi-
ple neural outcomes over time. But compared to univariate
analysis of longitudinal fMRI data, the analysis of multivari-
ate longitudinal fMRI data is even more challenging because
the variances of errors are likely to be different for different
responses, the errors are likely to be correlated for the same
region measured at different occasions, and the errors are
also likely to be correlated among regions measured at the
same time [5].

Current techniques to carry out statistical analysis of
multivariate longitudinal data are as follows: analysis that
creates a single summary measure from multiple outcomes
(which can subsequently be analyzed using univariate lon-
gitudinal data methods); analysis without direct modeling
of the correlation structure of the data; or analysis with ex-
plicit modeling of the correlation structure (meaning joint
multivariate modeling of all outcomes) [5]. Most often, the
multivariate nature of image data is ignored, either due to
constraints on computational resources, or because limited
data make the estimation of correlations unreliable [70]. In-
vestigators may also prefer simpler statistical methods for
the ease of communicating their results. Nevertheless, mul-
tivariate nature of data presents a statistical challenge to
the analysis of longitudinal fMRI data that future research
should seek to address.

3.1.4 Time effects on performance

fMRI experiments of a longitudinal design are suscepti-
ble to experiment or practice effects, due to the fact that
subjects are scanned on multiple occasions performing the
same task and may obtain knowledge or skill related to hav-
ing taken part in the task before [68]. Performance and ac-
tivation due to stimuli presented in the task are confounded
with time because of a number of additional reasons as well.
First of all, a subject may exhibit anxiety when first exposed
to the scanner, an effect that is reduced with time, both in
a single session and across multiple sessions. Such anxiety
can appear as head motion (which can decrease signal-to-
noise ratio) or increased attention to the task at hand (which
can affect the measured activation response). Additionally,
changes in scanner performance over time may also cause
time effects. The purpose of most longitudinal investigations
is to determine changes in brain activity over time, mean-
ing that studies should focus on simple motor and cognitive
tasks with an assumption of no trends in brain activity over
time due to factors not associated with the hypothesized
mechanisms of learning, recovery, or development. Employ-
ing the appropriate model that can separately measure the
specific effects of time confounds may be beneficial [68].
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3.1.5 Repeatability of fMRI studies

To date, a number of fMRI studies have investigated the
repeatability of fMRI activation in neuroimaging studies and
the consistency of activation for individual voxels. Some re-
search indicates that the “test-retest reliability” of detected
neural activity is quite low: a voxel that is active in one
task session has about a fifty percent chance of activating
in a later repetition of the same experiment [27, 53, 62].
Further, research has been inconclusive regarding the vari-
ability of activation volume between scans (meaning: the
total number of voxels detected as active is, in some cases,
inconsistent from scan to scan) [48]. Such research is a cau-
tion against relying too heavily on the outcome of a single
scanning session, because effects may be distinctive to the
day or time at which the imaging data are acquired. Uncer-
tainty of reproducibility of fMRI results is an open question
in imaging research as a field, although it seems that the
fMRI tasks that may lead to habituation, difference in atten-
tion, as well as non-procedural learning should be avoided.
This issue should be considered in the longitudinal design
of fMRI studies and tasks should be chosen to avoid ceiling
effects in behavioral performance.

3.2 Examples of longitudinal fMRI analysis
approaches

Linear mixed-effects models. A common analysis template
for longitudinal fMRI investigations conducted in the last
ten years has been a linear mixed-effects model approach,
often enacted in a univariate two-stage specification. The
popularity of this method is due to the flexibility it offers
in handling unbalanced repeated measurements with miss-
ing data [13]. At the first-level (the subject-level), a unique
trajectory for each individual is defined (for each region or
voxel being considered), meaning that activation measure-
ments are condensed into summary statistics for each scan.
At the second-stage (the population-level), individuals are
considered as arising from a population of all such individ-
uals, each with a unique intercept and slope, and a linear
mixed-effects model is fit. With this modeling approach, it
is reasonable to deduce that the within-individual variances
are the fluctuations around the individual-specific trajec-
tory, and the among-individual variances can be described
as differences of parameters characterizing these trajecto-
ries. As one way to carry out this model using brain imaging
data, statistical measures of brain activity responses serve
as the dependent variable and one linear mixed-effect model
is then fit for each ROI or voxel. Repeatability of fMRI can
be directly addressed via certain parameters of this model
(see [40, 65, 85] for examples of applications).

Generalized estimating equations. As discussed in Li et al.
(2009), generalized estimating equations (GEE) is an alter-
native modeling approach to the mixed-effects model that
produces consistent and robust regression estimates that

may be appropriate for use in the analysis longitudinal imag-
ing data (for an example of an fMRI application of this
method, see [2]). Based on the observed imaging data, neu-
roimaging measures are computed and denoted by the re-
sponse vector for each voxel and time-point. The GEE ap-
proach can jointly model imaging responses with clinical and
behavioral measures in a longitudinal study [45]. Because
imaging measures from the same subject tend to be posi-
tively correlated, a working correlation matrix is specified.
This flexible and free of distributional assumptions model
gives consistent estimators and provides robust standard er-
rors.

3.3 Future direction and motivating example

Both cross-sectional and longitudinal investigations in
psychology, psychiatry, cognitive science, and neuropsycho-
logical studies aid in revealing time-associated changes in as-
pects of brain-related function. However, the neuroanatom-
ical underpinnings of time-associated change remain under-
developed, partially due to the lacking statistical methods
needed to analyze complex, high-dimensional fMRI data.
The unique properties of longitudinal fMRI data require
more flexible and powerful models than those traditionally
enacted. A goal for future research should be to develop sta-
tistical analysis approaches intended for longitudinal fMRI
data that accommodate the challenges of repeatedly scan-
ning subjects that perform cognitive tasks, as mentioned in
the Section 3.1.

3.3.1 Motivating example

The development of fMRI technology has allowed re-
searchers to better understand the mechanisms of brain
structure and function relating to human behavior. As re-
search expands, the next step is to investigate more statisti-
cally complex questions that depend on time frame. In this
section, as a motivating example demonstrating the impor-
tance of developing statistical methodology for longitudi-
nal imaging data, a research study conducted at the Early
Brain Development Program at the University of North Car-
olina, Chapel Hill is considered. The ongoing purpose of this
study is to learn more about the rapid and critical growth
of brain development in the first years of life and to add
insight to existing knowledge regarding causes of neurode-
velopmental disorders. As one of the specific aims, investi-
gators collected imaging data to investigate the longitudinal
course and temporal development of the brain network en-
gaged during passive mental states (referred to as the “de-
fault network”) by scanning pediatric subjects at repeated
occasions.

Previous research has revealed a consistent pattern of
anatomical representations of the default network [26], in-
cluding the ventral/dorsal medial prefrontal cortex (MPFS),
the posterior cingulate cortex (PCC), the inferior parietal
lobule (IPL), the lateral temporal cortex (LTC), and hip-
pocampus regions (HF). Research is lacking in investiga-
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tions concerning when and how the default network for-
mulates. Limited investigations regarding the pediatric de-
fault network seeking to address this question show the
following: (1) sparse connection in 7–9 year-olds [15]; (2)
no default network in preterm infants [20]; and (3) primi-
tive/incomplete network in 2-week-olds, marked increase in
number of brain regions exhibiting functional connectivity
in 1-year-olds, and networks similar to the ones reported in
adults in 2-year-olds (revealing both regions consistent with
adults and regions not observed in adults) [26]. No previous
analyses have considered data collected at repeated occa-
sions from the same normally-developing, healthy pediatric
subjects.

At baseline, the present study imaged 20 neonates (9
male), 24 1-year-olds (16 male), and 27 2-year-olds (17 male)
during natural sleep or while resting quietly in the scanner
without use of sedating medications (plus 15 healthy adult
(11 male) controls). These subjects were imaged a total of
three times over a two year period, making this data longi-
tudinal in nature. The investigators now aim to determine
how such data can inform knowledge regarding normal in-
fant/early child brain development in this important after-
birth phase of life. Defining the functional organization of
the human brain during this period is an important step
in understanding the mechanisms of normal and patholog-
ical neurodevelopment. In particular, researchers hope to
determine when and how the brain’s default network for-
mulates.

Of note, cross-sectional analyses of this resting functional
connectivity magnetic resonance imaging (rfcMRI) data
previously required group independent component analysis
(ICA) approaches [26]. More specifically, such ICA measure
correlations over time in the BOLD signal’s low-frequency
spontaneous fluctuations in order to detect networks with
synchronous brain activity. To avoid the somewhat subjec-
tive nature of selecting components as the default network,
researchers have previously relied on an automated template
matching approach to explore the temporal and spatial evo-
lution of the default network [30]. Statistical challenges of
analyzing a longitudinal dataset of this resting state data,
where participants return to scan on numerous occasions,
mirror many of those previously presented in Section 3.1.
An added challenge to analyzing data presented here is that
the anatomical brain structure of neonates and infants is
ever-growing. Taking this into account in a dataset that
contains data collected at multiple time-points is a neces-
sity.

3.4 Concluding remarks regarding
longitudinal fMRI

The purpose of this paper was to give a broad overview of
methods currently being used to analyze longitudinal data
as well as to introduce fMRI data acquisition, study design,
processing techniques, and analysis methodology. Further,

this paper highlighted the need for longitudinal fMRI re-
search, which has the potential to provide more accurate
inferences regarding the developmental correlates of brain
function in normal and pathological brains. In doing so,
statistical challenges inherent in such data analyses were ex-
plored. A motivating example of a resting state fMRI dataset
collected longitudinally was presented.

As fMRI designs expand and researchers seek to answer
more complicated and sophisticated developmental ques-
tions, the need for novel statistical approaches will undoubt-
edly increase. Although previous investigations have ana-
lyzed fMRI data of a longitudinal nature, much work re-
mains to develop methodology that better accounts for the
complex correlation patterns in the data within and between
scanning occasions. In particular, previous models have not
been concerned with how to appropriately incorporate the
spatial structure of neighboring voxels at each time-point
and instead have primarily addressed temporal correlation
across scanning sessions.

Extending methods developed for single session fMRI
data that have attempted to account for the high-
dimensional aspects of imaging datasets (such as spatial
correlation) to further account for multiple time-points may
be a helpful starting point for developing methods specific
for the analysis of longitudinal datasets. As an example, a
recently-developed method called Multiscale Adaptive Re-
gression Modeling (MARM) proposed for spatial and adap-
tive analysis of neuroimaging data [89] seeks to analyze
multivariate imaging data with complex spatial activation
patterns. The method relies on building a sphere with a
specified radius for each voxel and uses overlapping spheres
to capture spatial dependence among different voxels. Fur-
ther, this method uses adaptive weights for the voxels within
each sphere to adaptively calculate parameter estimates and
statistics. Such a method takes full advantage of the spatial
structure of collected images and can be adapted to analyze
more complex data structures that include a longitudinal
time component. In particular, for repeated session fMRI
data, MARM can be extended towards an application for
generalized estimating equations [89]. This extension is just
one example of how future modeling can address certain
complexities of both fMRI design and longitudinal design in
one model formulation.

Statistical analysis of a series of three-dimensional fMRI
data of the same subject measured at multiple time-points
is critical for neuroimaging research that focuses on develop-
ment, aging, and evolution of pathology [86]. Development
of statistical methods that can handle such data and ac-
count for its many complexities is open for research. The
highly complex correlation structure, including the spatial
correlation of data at each time-point as well as the tempo-
ral correlation of data across different time-points are just
some of the topics that need to be addressed by future mod-
eling. Methods should be flexible enough to permit statis-
tical hypothesis testing, such as differences between patient
and control populations.
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