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Quasi-least squares (QLS) is a two-stage computational
approach for estimation of the correlation parameters in the
framework of generalized estimating equations. We prove
two general results for the class of mixed linear correlation
structures: namely, that the stage one QLS estimate of the
correlation parameter always exists and is feasible (yields a
positive definite estimated correlation matrix) for any cor-
relation structure, while the stage two estimator exists and
is unique (and therefore consistent) with probability one,
for the class of mixed linear correlation structures. Our gen-
eral results justify the implementation of QLS for particular
members of the class of mixed linear correlation structures
that are appropriate for analysis of data from families that
may vary in size and composition. We describe the famil-
ial structures and implement them in an analysis of opti-
cal spherical values in the Old Order Amish (OOA). For
the OOA analysis, we show that we would suffer a substan-
tial loss in efficiency, if the familial structures were the true
structures, but were misspecified as simpler approximate
structures. To help bridge the interface between Statistics
and Medicine, we also provide R software so that medical
researchers can implement the familial structures in a QLS
analysis of their own data.

AMS 2000 subject classifications: Longitudinal stud-
ies 60K35; Missing data 60K35.
Keywords and phrases: Quasi-least squares, Linear cor-
relation structure, Mixed correlation structure, Familial
data.

1. INTRODUCTION

We consider a secondary analysis of optical spherical
values in a study in the Old Order Amish (OOA) (Woj-
ciechowski et al., 2009). The families in the OOA study var-
ied in both size and composition, because some nuclear fami-
lies contained only siblings, while other families included sib-
lings and one or both parents. The goal of the OOA analysis
was to relate the expected spherical values, measurements
that reflect quality of vision, with gender and age, while also
adjusting for the correlation among measurements within
∗Corresponding author.

each family. Because the correlations in the OOA study were
thought to vary according to familial relationship, it was
important to allow the sibling-sibling, sibling-father, and
sibling-mother correlations to vary in value.

To model the pattern of association amongst measure-
ments in families in the OOA study, we implemented slight
generalizations of familial correlation structures considered
by Karlin, Cameron, and Williams (1981) and Gleseer
(1992). Gleseer (1992) noted that it is computationally dif-
ficult to obtain maximum likelihood (ML) estimates of the
correlation parameters for normal data, when family sizes
are not constant. Gleseer (1992) therefore obtained ML es-
timates that were weighted averages of estimates obtained
for sub-groups with families of equal size. One limitation of
the approaches of both Karlin et al. (1981) and of Gleseer
(1992) was that they assumed that the expected value of the
outcome variable was constant between the siblings. How-
ever, it is important to note that Karlin et al. (1981) and
Gleseer (1992) allowed the variance of the outcome variable
to vary between parents and siblings, while we assume a
constant standard deviation of spherical values for all sub-
jects.

We implement the familial correlation structures for anal-
ysis of the OOA study with quasi-least squares (QLS). QLS
is an approach based on GEE that estimates the correla-
tion parameters in two stages. In the following summary,
estimates of the correlation parameters are defined to be
feasible if they yield positive definite correlation matrices.
Chaganty (1997) considered balanced data and established
feasibility of the stage one estimates for the first order auto-
regressive AR(1), exchangeable, and tri-diagonal structures.
Shults (1996) and Shults and Chaganty (1998) proved feasi-
bility for the afore-mentioned structures, in addition to the
Markov structure, for unbalanced data. However, although
the stage one estimates exist and are feasible, they are not
consistent. Chaganty and Shults (1999) therefore introduced
a second stage of QLS and established consistency of the
stage two estimates for the AR(1), Markov, and tri-diagonal
correlation structures. The second stage of QLS updates the
stage one estimate of α by obtaining a solution to an esti-
mating equation (stage two estimating equation for α) with
an estimating function that only depends on α and the stage
one estimate of α. Theorem (3.2) of Chaganty and Shults
(1999) establishes that if there exists a unique solution to the
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stage two estimating equation for α that is a continuous and
one to one function of the stage one estimate, then that so-
lution will be consistent for α. Software for implementation
of QLS is available in SAS (Kim and Shults, 2008), Stata
(Shults, Ratcliffe, and Leonard, 2007), MATLAB (Ratcliffe
and Shults, 2008), and R (Xie and Shults, 2009).

We implement the familial structures using QLS instead
of other extensions of GEE that involve more complicated
correlation structures or weighting matrices than the origi-
nal formulation of the GEE approach. For example, Prentice
(1988) developed GEE1 for binary outcomes by construct-
ing a second estimating equation (equation (14) on p. 1039)
that involves specifying a working correlation structure for
the sample correlations. Zhao and Prentice (1990) developed
GEE2 for discrete and continuous outcomes by constructing
a joint estimating equation for the regression and correla-
tion parameters that involves a working covariance structure
that depends on the third and fourth moments of the out-
come variable. Carey, Zeger, and Diggle (1993) developed
alternating logistic regression (ALR) for binary outcomes
by setting up a GEE based on conditional means of the out-
come variable (equation (7) on p. 521) that corresponds to
the logistic regression of one response on another and that
also involves specification of a weighting matrix. When each
of these methods is applied, perhaps because of the diffi-
culty in specifying an appropriate patterned structure, the
typical approach is to simplify the correlation (weighting)
structures by setting some or all of their off-diagonal ele-
ments equal to zero. For example, Carey et al. define their
weighting matrix ((7), p. 521, 1993) as a diagonal matrix
and say in their discussion that this results in a reasonably
optimal weighting. When GEE1 and GEE2 are applied in
analyses, off-diagonal elements of the working structures are
often set equal to zero. Recent approaches based on GEE1
and GEE2, for example methods for hierarchical data by
Qu, Williams, Beck, and Medendrop (1992) and Qaqish and
Liang (1992), face the same challenge as GEE1 and GEE2
with regard to specification of an appropriate working struc-
ture. Overall, implementation of the structures we consider
would be potentially much more challenging for these other
recent extensions of GEE than it was for QLS.

In this manuscript, we prove two general results for QLS
that can be used to justify implementation of QLS for the
familial structures we consider. First, we prove that the QLS
stage one estimate of α will exist and is feasible with proba-
bility one, for any correlation structure. Next, for the class of
mixed linear correlation structures, we prove the existence
and uniqueness of the QLS stage two estimates, both of
which are required for consistency of α̂. A benefit of our re-
sults is that not only do they justify implementation of QLS
for the familial structures we consider in this manuscript,
but they can also be used to justify QLS for other struc-
tures. For example, Shults, Mazurick, and Landis (2006)
implemented QLS for a banded Toeplitz (BT) correlation
structure, but did not provide proofs regarding the existence

and uniqueness of solutions of the QLS estimating equations
for α for this structure. The BT structure is a member of
the class of linear correlation structures, so that the results
provided in this paper establish the consistency of the QLS
estimators of α for this structure. In general, our results for
stage one are applicable to any correlation structure, while
our results for stage two are applicable to any mixed linear
correlation structure.

As an outline for our paper, in Section 2, we give some
notation; describe the familial structures we consider; and
define mixed linear correlation structures. In Section 3 we
then extend QLS for mixed linear correlation structures by
proving several results for these structures. Next, we demon-
strate the benefit of fitting mixed linear correlation struc-
tures: in Section 4, we conduct asymptotic relative efficiency
(ARE) comparisons to show that the loss in efficiency in
estimation of the regression parameter could be substan-
tial in a QLS (or GEE) analysis of the OOA study, if the
true mixed linear correlation structures were misspecified
as a simpler, approximate structure. In Section 5 we then
present our analysis of the OOA study that demonstrates
application of the mixed correlation structure with QLS.
The proofs of our theorems and lemmas are provided in the
appendices.

2. BACKGROUND

2.1 Notation

We assume that outcomes Y i = (Yi1, . . . , Yini)
T and as-

sociated covariates Xij = (Xij1, . . . , Xijp)T are collected on
family i, for i = 1, . . . , m. The expected value and variance
of measurement Yij can be expressed using a generalized
linear model (GLM):

(1) E(Yij) = g−1(XT
ijβ) = μij and Var(Yij) = φh(μij)

respectively, where g−1(·) is the link function; h(·) is the
variance function; and φ is a known or unknown scale pa-
rameter. We assume that observations from different fami-
lies are independent. However, measurements within fam-
ilies are correlated, with a pattern of association that
can be described with correlation structures for each fam-
ily i, Cor(Yi) = Ri(α), that depend on an s by 1 cor-
relation parameter α. The covariance matrix of Y i is
then given by Cov(Y i) = φA

1/2
i Ri(α)A1/2

i , where Ai =
diag(h(μi1), . . . , h(μini)).

2.2 Familial structures in the class of linear
and mixed correlation structures

Define ei as the unit vector with only the ith entry equal
to 1. We refer to a correlation matrix as linear if

(2) Ri(α) =
s∑

j=1

(Ri(ej) − Ri(0))αj + Ri(0),
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so that each element of the matrix can be expressed as a
linear combination of α. In this case α is identifiable if and
only if

s∑
j=1

(Ri(ej) − Ri(0))cjαj = 0(3)

if and only if c = (c1, . . . , cs)′ = 0.

Several linear correlation structures were considered for
analysis of the OOA study, which included two-generation
families that varied in both size and composition. We
assumed that the father-mother, father-sibling, mother-
sibling, sibling-sibling correlations were γ, ρ1, ρ2 and α, re-
spectively. If family i included both parents and siblings, this
resulted in an extended familial correlation structure Ri to
describe the pattern of association among the ni measure-
ments on family i:

(4) Cor(Yi) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 γ ρ1 ρ1 . . . ρ1

γ 1 ρ2 ρ2 . . . ρ2

ρ1 ρ2 1 α . . . α
ρ1 ρ2 α 1 . . . α
...

...
...

...
. . .

...
ρ1 ρ2 α α . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

ni×ni

.

Sabo and Chaganty (2009) made an excellent comparison of
(4) for several approaches, for continuous outcomes and for
families of equal size and composition.

For a family with only a father and siblings, Ri would
have a familial structure:

(5) Cor(Yi) =

⎛
⎜⎜⎜⎜⎜⎝

1 ρ1 ρ1 . . . ρ1

ρ1 1 α . . . α
ρ1 α 1 . . . α
...

...
...

. . .
...

ρ1 α α . . . 1

⎞
⎟⎟⎟⎟⎟⎠

ni×ni

.

For a family with only a mother and siblings, Ri would still
have a familial structure, but with ρ1 replaced by ρ2 in (5):

(6) Cor(Yi) =

⎛
⎜⎜⎜⎜⎜⎝

1 ρ2 ρ2 . . . ρ2

ρ2 1 α . . . α
ρ2 α 1 . . . α
...

...
...

. . .
...

ρ2 α α . . . 1

⎞
⎟⎟⎟⎟⎟⎠

ni×ni

.

Finally, for families with only siblings, the correlation
structure would be exchangeable:

(7) Cor(Yi) =

⎛
⎜⎜⎜⎝

1 α . . . α
α 1 . . . α
...

...
. . .

...
α α . . . 1

⎞
⎟⎟⎟⎠

ni×ni

.

In our analysis of the OOA data, different families were
allowed to have different correlation structures. However, all
the structures were mixed correlation structures (MCS),
which we define as structures that may vary between fam-
ilies but share correlation parameters, so that the parame-
ters for family i take value in {γ, ρ1, ρ2, α}. See Chaganty
and Deng (2007) for a discussion of ranges of measures of
association for binary outcomes with familial patterns of as-
sociation.

3. EXTENSION OF QUASI-LEAST
SQUARES FOR MIXED LINEAR
CORRELATION STRUCTURES

3.1 Quasi-least squares

Here, we briefly describe the method of QLS. Stage one of
QLS iterates between updating the regression parameter β
via (i) solution of the GEE estimating equation for β (Liang
and Zeger, 1986):

(8)
m∑

i=1

DT
i A

−1/2
i R−1

i (α)A−1/2
i (Y i − Ui(β)) = 0,

where Ui(β) = E(Y i) and Di = ∂Ui

∂β ; and (ii) updating the
correlation parameter α by minimizing the generalized error
sum of squares

(9) Q(β, R(α)) =
m∑

i=1

zT
i (β)R−1

i (α)zi(β)

with respect α ∈ Ω ⊆ R
s, where zi(β) = A

−1/2
i (Yi − Ui)

= (zi1, . . . , zini) are known as the Pearson residuals. In ad-
dition, Ω is defined as the feasible region for the correla-
tion structure (Ri(α))1,...,m, so that ∀α ∈ Ω and ∀i ∈
{1, . . . ,m}, Ri(α) is positive definite. Stage one of QLS
therefore involves solving the stage one estimating equa-
tion

(10) DG =
∂

∂α

{
m∑

i=1

zT
i (β)R−1

i (α)zi(β)

}
= 0.

In general, the solution of (10) is not necessarily the min-
imizer of (9). However, in Section 3.2 we prove that if the
Ri(α) are linear for all i, the solution of (10) does indeed
minimize the generalized error sum of squares (9); Fur-
thermore, the solution will be unique and feasible almost
surely.

The QLS stage one estimates β̂ for β and δ̂ for α are the
solutions of (8) and the minimizer of (9), respectively. How-
ever, Chaganty (1997) proved that the stage one QLS esti-
mate of α is not consistent. In order to correct the asymp-
totic bias for the QLS stage one estimates, after convergence
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in stage one, we next solve the stage two estimating equa-
tion that depends on the stage one estimates δ̂ (Chaganty
and Shults, 1999), for α:

(11)
m∑

i=1

tr
[
∂R−1

i (δ)
∂δ

Ri(α)
] ∣∣∣∣

δ=δ̂

= 0.

Theorem 3.2 of Chaganty and Shults (1999) established that
if there is a unique root α̂ for equation (11) that is a one
to one and continuous function of δ̂ and the structure is
correctly specified, then α̂ is consistent. We refer to α̂ as
the stage two estimator of α, based on which, we obtain the
final estimator β̂ for β by again solving the GEE estimat-
ing equation (8) for β, evaluated at the stage two estimates
for α.

3.2 Results that justify application of
quasi-least squares for mixed linear
correlation structures

In this section we first provide general proofs regarding
the existence and feasibility of the stage one QLS estimates
in Section 3.2.1. Next, in Section 3.2.2 we prove the consis-
tency of the stage two QLS estimates for the mixed linear
correlation structures. The proofs for all results are provided
in the appendices.

3.2.1 General proof of feasibility for stage one QLS esti-
mates

We first provide a theorem that establishes the feasibility
of the global minimizer for (9).

Theorem 3.1. If for each subject i, Ri(α) is a differen-
tiable ni × ni matrix, then the global minimizer for (9) in
Ω is an inner point of Ω, where Ω is the feasible region of
(Ri(α))1,...,m.

Although the stage one QLS estimator of α is not the
final estimator, its existence and feasibility is very impor-
tant because failure to yield feasible estimates in stage one
of QLS could cause a breakdown in the first phase of the
procedure. For example, Crowder (1995) described the po-
tential for breakdown in iterative procedures such as GEE
that can occur when the estimated correlation matrices are
not positive definite. Theorem 3.1 ensures that this type of
failure will not occur in stage one of QLS.

However, while Theorem 3.1 ensures the existence of so-
lutions for the stage one QLS estimating equation (10), it
does not guarantee that the root is unique. If (10) has mul-
tiple roots, it can be difficult to obtain all the roots. Fur-
thermore, it might not be straightforward to find the global
minimizer for (9), if the generalized error sum of squares has
several local minimizers. However, for correlation structures
that meet the condition in (12), this minimization problem
is fairly straightforward, because under this fairly general
condition, (9) is convex almost surely, so that there will ex-
ist a unique root for (10) almost surely.

Theorem 3.2. Suppose each cluster i ∈ {1, . . . , m} in the
data under consideration has correlation structure Ri(α). If
∀ α ∈ Ω,

(12)
s∑

j=1

∂Ri(α)
∂αj

cj = 0 if and only if c = 0,

then (10) has a unique solution in the feasible region Ω al-
most surely.

Corollary 3.3. Suppose for each cluster i ∈ {1, . . . , m} of
the longitudinal data, we have a linear correlation structure
Ri(α) of the form (2). Then if α is identifiable, (10) has a
unique solution in the feasible region Ω almost surely.

Theorem 3.2 provides the criterion (12) that will ensure
that the stage one estimating equation (10) has a unique
solution; This requirement is fairly general, and is to be sat-
isfied by several common structures, including the exchange-
able, tri-diagonal (Chaganty and Shults, 1999), BT (Shults
et al., 2006), and also by the familial structures implemented
in this manuscript.

3.2.2 Consistency of the stage two QLS estimates for linear
correlation structures

Here we first prove that for linear correlation structures,
the stage two estimator exists and is unique, with probabil-
ity one.

Theorem 3.4. If for each cluster i ∈ {1, . . . , m}, the within
subject correlation Ri(α) has a linear correlation structure
of form (2), then the stage two estimating equation (11) has
a unique solution with probability one.

In the proof of Theorem 3.4 in Appendix A, we provide an
explicit solution for the stage two estimating solution for lin-
ear correlation structures. Suppose we obtain the stage one
estimator δ̂. Define Aij = R−1

i (δ̂)(Ri(ej) − Ri(0)), Mjk =∑m
i=1 tr(AijAik), and wj = −

∑m
i=1 tr(AijR

−1
i (δ̂)Ri(0)).

Suppose M = (Mjk)s×s and w = (w1, . . . , ws)T. We can
then express the stage two estimator in a very simple form:

(13) α̂ = M−1(δ̂)w(δ̂),

which is very helpful with respect to computation, espe-
cially when the dimension of α is high. Chaganty and Shults
(1999) proved that if a unique solution α̂ exists to the stage
two estimating equation for α that is a continuous and one
to one function of the stage one estimate of α, then α̂ will
be consistent. Therefore, we have proven that under cor-
rect specification of the mixed linear correlation structure,
there will exist a unique solution of the stage two estimating
equation that will be consistent for α.

4. ASYMPTOTIC RELATIVE EFFICIENCY
CALCULATIONS

Here we assess the loss in efficiency that results from in-
correctly specifying the mixed correlation structure in the
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OOA analysis. We assume here that the true structure for
cluster i is the mixed structure Ri(α) described in Section 5,
for α = (ρ1, ρ2, γ, α), while the working structure is the ex-
changeable structure Wi(γ) = (1−γ)Ini×ni +γJni×ni , where
Ini×ni is an ni by ni identity matrix and Jni×ni is an ni×ni

matrix of ones. We consider the exchangeable working struc-
ture because this is a popular structure for analysis of clus-
tered data. In addition, we note that the true mixed familial
structures include exchangeable structures for OOA fami-
lies that contain only siblings. Our misidentification scenario
therefore represents the situation in which we have correctly
assumed that the sibling-sibling correlations are equal, but
have incorrectly assumed that the sibling-sibling, sibling-
father, sibling-mother, and father-mother correlations are
identical.

The efficiencies are calculated using the same approach
that was implemented and described in Shults and Morrow
(2002) and in Shults et al. (2006). To briefly summarize,
we first note that Chaganty (1997) proved that

√
m(β̂ −

β) is asymptotically normal with mean zero and covariance
matrix

(14)

Vw = lim
m→∞

mφWt

{
m∑

i=1

X
′

iA
1/2
i W−1

i RiW
−1
i A

1/2
i Xi

}
Wt,

where

(15) Wt =

{
m∑

i=1

X
′

iA
1/2
i W−1

i A
1/2
i Xi

}−1

.

If the correct structure was specified, so that Wi = Ri,
then the covariance matrix Vw can be simplified as Vt =
limm→∞ mφWt.

The efficiency for β̂j was then evaluated as the jth di-
agonal element of Vt divided by the jth diagonal element
of Vw. However, as noted by Sutradhar and Das (1999), γ̂
may fail to be consistent when the true structure is mis-
specified, so that the efficiencies should be calculated at the
limiting value of γ̂. We therefore evaluated the efficiencies
at Wi(f(α)) and Ri(α), where f(α) is the limiting value
of γ̂ when the mixed correlation structure is misspecified
as exchangeable. An algorithm to obtain the limiting value
f(α) as a function of the true correlation parameter α is
provided in the Appendix. Because the efficiencies were cal-
culated as the number of subjects m → ∞, we assumed that
the covariate design for the OOA study was replicated as m
increases.

In addition, because the asymptotic distribution for β̂ is
identical for QLS and GEE, the approach for calculation
of AREs described in this section also applies when GEE
is applied for an exchangeable working structure, but the
true structures are mixed familial structures. GEE imple-
ments the following moment estimate for the exchangeable
structure that is a function of the Pearson residuals zij :

Table 1. Percent efficiencies for the regression coefficients for
the constant term, gender, and age, when the true mixed
correlation structure is misspecified as exchangeable. True
structure = mixed Ri(α) where α = (ρ1, ρ2, α); working

structure = exchangeable with parameter γ. limit = f(α) is
the limiting value of γ̂ when the true mixed structure is

misspecified as exchangeable in the analysis of the OOA study

ρ1 ρ2 α limit constant gender age

0.02 0.11 0.05 0.0510 0.99 0.99 0.99
0.02 0.31 0.05 0.0604 0.97 0.98 0.97
0.02 0.41 0.05 0.0652 0.88 0.72 0.88

0.02 0.05 0.41 0.3582 0.94 0.96 0.95
0.02 0.05 0.51 0.4422 0.90 0.92 0.92
0.02 0.05 0.71 0.6092 0.81 0.79 0.79

0.30 0.20 0.50 0.4657 0.95 0.94 0.96
0.30 0.20 0.70 0.6345 0.87 0.83 0.86
0.30 0.20 0.90 0.8029 0.73 0.48 0.53

(16) α̂GEE =

∑m
i=1

∑
k �=j zikzij∑m

i=1

∑ni

k=1(ni − 1)z2
ik

.

It is straightforward to show (Wang and Carey, 2003)
that the limiting value of α̂GEE is given by

(17)

∑m
i=1

∑
k �=j Corr(yij , yik)∑m

i=1(ni − 1)ni
=

∑m
i=1

(
e

′

iRi(α)ei − ni

)
∑m

i=1(ni − 1)ni
,

where ei is an ni by 1 vector of ones. The limiting values
were almost identical for QLS and GEE. As a result, the
efficiencies were almost identical for the two approaches.

Table 1 displays the efficiencies for QLS. (An equivalent
table for GEE, with almost identical results, is available on
request.) Lines 1–3 in Table 1 assess the situation when the
father-sibling and sibling-sibling correlations are negligible,
but the mother-sibling correlations are non-negligible and
get increasingly larger (in going from line 1 to line 3). Lines
4–6 assess the situation when the father-sibling and mother-
sibling correlations are negligible, but the sibling-sibling cor-
relations are non-negligible and get increasingly larger (in
going from lines 4 to 6). Lines 7–9 assess the situation when
the father-sibling and mother-sibling correlations are non-
negligible and similar in value, with sibling-sibling correla-
tions that get increasingly larger (in going from lines 7–9).
Table 1 indicates that, as we might anticipate, the loss in
efficiency is negligible when the true correlations are small,
so that the true structure is close to an identity structure,
which is a special case of an exchangeable structure (with
γ = 0). However, as the true correlations increase in value,
the loss in efficiency can become substantial when the true
mixed familial structures are misspecified as exchangeable.
For example, as shown in line 6, when ρ1 = 0.02, ρ2 = 0.05,
and α = 0.71, then the ARE for age is only 79 percent.
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The results shown in Table 1 therefore indicate that in-
correct application of the exchangeable structure (which is a
popular structure in analysis of clustered data) for all fam-
ilies can result in a substantial loss in efficiency in estima-
tion of β. The results in Table 1 are important because it
is sometimes claimed that careful modeling of the correla-
tion structure is not crucial, because even if the structure
is misspecified, GEE (and QLS) will yield a consistent es-
timate of the regression parameter. However, our ARE cal-
culations demonstrate that if the structure is misspecified,
even though β̂ is consistent, we can suffer a substantial loss
in efficiency in estimation of β.

5. ANALYSIS OF THE MOTIVATIONAL
STUDY

Here we present our results of the OOA analysis, to
demonstrate implementation of the familial structures con-
sidered in this manuscript. The OOA population is ideal for
studying familial association because the OOA live within a
structured and uniform society where most individuals share
a common lifestyle. The data considered here represent in-
formation on 296 individuals organized from 60 families, of
which 33 had both parents and some siblings; 1 had only
a father and siblings; 4 had a mother and siblings; and 22
had only siblings. The mean number of siblings in a family
was 3.8 (range = 1–11). The mean age was 37.6 (range =
18–85). Recruitment and data collection of the parent study
which provided the data for our secondary analysis has been
described elsewhere (Wojciechowski et al., 2009).

The main outcome measure used in this analysis was
the spherical component of each subject’s refractive error.
Briefly, refractive error relates to an individual’s spectacle
prescription. Refractive error is a spherical correction which
denotes the power of a spherical lens (a lens whose proper-
ties do not change based on orientation) placed in front of
a subject’s eye to optimize their vision. For some subjects
spherical correction alone is sufficient to correct their vision.
Lens values for the spherical component of a subject’s re-
fraction can have either a positive or negative value and are
expressed in units of optical power called diopters. The out-
come for our analysis was the spherical (correction) value,
which measures the power of a lens placed in front of the
eye that does not depend on orientation. We considered the
spherical values of the left eye, right eye, and the average
spherical value of both eyes. The covariates we considered
included gender (gender = 1 for males and gender = 0 for
females) and the age in years at which the eye exam was
conducted.

Our primary objective was to relate the expected spheri-
cal values with gender and age. We assumed that the families
with both parents and siblings had an extended familial cor-
relation structure (4) with zero correlation between parents,
so that γ = 0 in (4). Families with only a father and siblings,
only a mother and siblings, or only siblings, were assumed
to have correlation structures (5), (6), and (7), respectively.

Table 2. The regression parameter estimators for the OOA
ophthalmology study. Gender = 1 for male and 0 for female.

Age is in years

intercept gender age
Outcome est.(p-value) est.(p-value) est.(p value)

R. Sph. −2.67(< .0001) 0.75(0.067) 0.016(0.102)
L. Sph. −2.80(< .0001) 0.77(0.051) 0.015(0.098)
Av. Sph. −2.77(< .0001) 0.76(0.055) 0.016(0.074)

Table 3. The correlation parameter estimators for the OOA
ophthalmology study. ρ̂1 is the estimated correlation between
father and siblings, ρ̂2 is the estimated correlation between

mother and siblings and α̂ is the estimated correlation within
siblings

Outcome ρ̂1 ρ̂2 α̂

Right Sphere 0.2932 0.2241 0.0234
Left Sphere 0.2740 0.1420 0.0130
Average Sphere 0.2880 0.1996 0.0177

Table 2 displays the estimates of the regression parame-
ter estimators. (QLS and GEE share the same asymptotic
distribution for β̂; The results shown here are based on ap-
plication of a “sandwich based” estimate of the covariance
matrix of β̂ for calculation of standard errors (Chaganty
and Shults, 1999), and p-values for the tests that βj = 0.)
As shown in Table 2, the estimated constant was negative,
while the regression coefficients for (male) gender and for
age were positive. Although the regression coefficients for
age and gender did not differ significantly from zero at a
0.05 level (perhaps as a result of limited power due to the
modest number of OOA families studied), the coefficients
did differ significantly from zero at a 0.10 level. These results
suggest that male gender and higher age are associated with
less myopia, where myopia is indicated by negative spherical
values.

Next, Table 3 displays the QLS estimates of the corre-
lation parameters. Notice that the estimated correlations
were similar for the right sphere, left sphere, and average
sphere. The estimated correlations were greatest between
father and siblings, and smallest between siblings. These
findings are consistent with the method of family ascertain-
ment.

6. DISCUSSION

In this paper, we considered QLS, a two-stage approach
based on GEE that uses the same estimating equation for
estimation of β, but that differs from GEE with respect to
estimation of α. We proved that the stage one QLS esti-
mates exist and are feasible, while the stage two QLS esti-
mates will be consistent with probability one, for the class
of mixed linear correlation structures.
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Our results regarding the stage one QLS estimators did
not require correct specification of the correlation structure,
so that the working correlation structure need not equal the
true structure in order for a feasible stage one QLS esti-
mate to exist that minimizes the generalized error sum of
squares evaluated at that working structure (Theorem 3.1).
Furthermore, the stage one estimate can be obtained as the
unique solution to the QLS stage one estimating equation
as long as the working structure (not necessarily the true
structure) has a linear correlation structure (Theorem 3.2
and Corollary 3.3). In other words, there exists a stage one
QLS estimate for any working structure and this estimate
will be straightforward to obtain if the working structure is
linear.

However, unlike the first stage, stage two of QLS does re-
quire correct specification of the working structure because
this second stage was developed to overcome a major flaw
with stage one of the procedure, namely that it does not
yield a consistent estimate of α, even when the working
structure is correctly specified. Stage two of QLS provides a
correction to the stage one estimate; if the working structure
does not equal the true structure, the wrong correction will
be applied and consistency in general will not be achieved.
Our results regarding the stage two QLS estimate of α, in-
cluding Theorem 3.4 and the results in Section 3.2.2, there-
fore require correct specification of the working correlation
structure. Just as does GEE, QLS requires correct specifi-
cation of the working correlation structure as a prerequisite
for consistent estimation of α. However, just like the GEE
estimate, the QLS estimate of β will be consistent even if
the working structure does not equal the true structure.

We considered familial correlation structures that are
members of the class of mixed linear correlation structures.
Our general results justified implementation of QLS for the
familial structures, in addition to different members of the
class of mixed linear structures, e.g. the banded Toeplitz
structure that was considered by Shults et al. (2006).

Our work was motivated by a study of spherical optical
values in the Old Order Amish (OOA). For this analysis, we
implemented QLS for mixed familial correlation structures,
which allowed the father-sibling, mother-sibling and sibling-
sibling correlations to vary in value. An important feature
of the OOA study was that the families varied in size; Our
implementation of QLS therefore relaxed the assumption
of constant family size and composition that is sometimes
made in analysis of familial data.

We also conducted efficiency calculations based on the
covariate design of the OOA study, to demonstrate that if
the mixed familial structures were the true structures, but
were misspecified as exchangeable structures, then we could
suffer a serious loss in efficiency in estimation of the re-
gression parameter. Our analysis and efficiency calculations
demonstrated that it can be important to carefully model
the correlation structure of the data, in order to maximize
the information from the data and improve efficiency in es-
timation of the regression parameter. To encourage the use

of the mixed familial correlation structures in practice, we
also provide R functions that extend our previous software
for application of QLS in R (Xie and Shults, 2009) for im-
plementation of these structures. The R functions, and an R
script file that demonstrates their use, is available on request
from the first and second authors.

Future research that builds on our methods would be
helpful. In extending this exploratory analysis to a larger
sample ascertained without regard to myopia status, it will
be useful to develop a test that incorporates the gender
of each type of family member and to test whether like
gender relationships differ from mixed gender relationships
within and between families. For example, are the father-
son and father-daughter correlations equal in value and are
they significantly different from the mother-son and mother-
daughter correlations? In addition, in this manuscript we
considered spherical values that were measured on the left
eye and right eye of each subject, and that were computed
as the average of measurements on both eyes. Future work
might extend our approach to allow for simultaneous anal-
ysis of both eyes. For example, the approach of Shults and
Morrow (2002) and Shults, Whitt, and Kumanyika (2004)
might be applied to adjust for two sources of correlation:
due to the potential similarity of spherical values that are
measured on the same subject, or between two members of
the same family.

APPENDIX A. PROOFS OF MAIN RESULTS

Proof of Theorem 3.1. To prove this theorem, we need the
following lemma:

Lemma A.1. R(ρ) is a differentiable n×n correlation ma-
trix. Ω0 is the margin of the feasible region for R(ρ). Then
we have

(18) Prob
(

lim
ρ→Ω0

zTR−1(ρ)z = ∞ | z ∈ R
n

)
= 1.

We prove Lemma A.1 in Appendix B. Here, we directly
use this lemma to prove Theorem 3.1. Suppose the feasible
region for Ri(ρ) is Ωi, and the margin of Ωi is Ωi0. Then
the overall feasible region is Ω = ∩Ωi, and the margin is
Ω0 � ∪Ωi0. Therefore,

Prob

(
lim

ρ→Ω0

m∑
i=1

zT
i R−1

i (ρ)zi = ∞ | zi ∈ R
n,∀i

)
(19)

≥ Prob

(
lim

ρ→∪Ωi0

m∑
i=1

zT
i R−1

i (ρ)zi = ∞ | zi ∈ R
n,∀i

)

≥ Prob
(

lim
ρ→Ωi′0

zT
i′ R

−1
i′ (ρ)zi′ = ∞ | zi′ ∈ R

n

)
= 1.

Ω = ∪Ωi is an open set. Because of (19), we know the min-
imized point of (9) is taken within Ω. And thus the stage
one estimators exist and are feasible almost surely.
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Proof of Theorem 3.2. We only need to show that (9) is con-
vex when α ∈ Ω, and it is equivalent to show that

(20) H =
∂2Q(β, R(α))

∂α2

is positive definite for all α ∈ Ω.
Using the fact that

(21)
∂R−1

i (α)
∂α

= −R−1
i (α)

∂Ri(α)
∂α

R−1
i (α),

we get

Hjk =
∂2Q(β, R(α))

∂αj∂αk

(22)

=
m∑

i=1

zT
i R−1

i (α)
∂Ri(α)

∂αj
R−1

i (α)
∂Ri(α)

∂αk
R−1

i (α)zi

Therefore, ∀ nonzero x = (x1, . . . , xs) ∈ R
s,

xTHx =
∑
j,k

xjHjkxk(23)

=
m∑

i=1

∑
j,k

xjz
T
i R−1

i (α)
∂Ri(α)

∂αj
(24)

· R−1
i (α)

∂Ri(α)
∂αk

R−1
i (α)zixk

Define γ
(i)
j = ∂Ri(α)

∂αj
R−1

i (α)zixj and G(i) = (β(i)
1 , . . . , β

(i)
s ).

Then,

(25) xTHx =
m∑

i=1

1TG(i)TR−1
i (α)G(i)1

For all α ∈ Ω, since R−1(α) is positive definite, to show
xTHx > 0, we only need to show G(i)1 �= 0 when x �= 0.

G(i)1 =
s∑

j=1

γ
(i)
j(26)

=

⎡
⎣ s∑

j=1

∂Ri(α)
∂αj

xj

⎤
⎦R−1

i (α)zi

By assumption, for all x �= 0,

(27)

⎡
⎣ s∑

j=1

∂Ri(α)
∂αj

xj

⎤
⎦ �= 0.

Since zi ∈ Rni , R−1
i (α)zi does not lie in the solution space

for (27) almost surely. And therefore, (26) does not equal to
0 almost surely.

Proof of Corollary 3.3. It is easy to show that for linear cor-
relation structure, α is identifiable if and only if (12) is sat-
isfied.

Proof of Theorem 3.4. If Ri(α) has the form as (2), then

(28)
dR−1

i (δ)
dδj

∣∣∣∣
δ=δ̂

= −R−1
i (δ̂)(Ri(ej) − Ri(0))R−1

i (δ̂).

Plug (2) and (28) into (11) and define Aij =
R−1

i (δ̂)(Ri(ej) − Ri(0)), we can rewrite the stage two es-
timating equation as

(29)
m∑

i=1

s∑
k=1

tr(AijAik)αk = − tr(AijR
−1
i (δ̂)Ri(0)), ∀j = 1, . . . , s.

Let Mjk =
∑m

i=1 tr(AijAik), wj =
−

∑m
i=1 tr(AijR

−1
i (δ̂)Ri(0)). Suppose M = (Mjk)s×s

and w = (w1, . . . , ws)T, then (29) can be written as a linear
form

(30) Mα = w.

We have the following lemma, which will be proved in
Appendix B.

Lemma A.2. Let Aij = R−1
i (δ̂)(Ri(ej) − Ri(0)), Mjk =∑m

i=1 tr(AijAik). If for each cluster i ∈ {1, . . . , m}, Ri

has the linear correlation structure form (2), then M =
(Mjk)s×s is positive definite.

Therefore, the stage two estimator α̂ = M−1w always
exists and is unique.

APPENDIX B. PROOFS OF OTHER
RESULTS

Proof of Lemma A.1. Suppose eigenvalue, eigenvector pair
of R(ρ) is

{(λ1(ρ), v1(ρ)) , . . . , (λn(ρ), vn(ρ))}.

Note that the corresponding eigenvalue and eigenvector
pairs of R−1(ρ) is

{(1/λ1(ρ), v1(ρ)) , . . . , (1/λn(ρ), vn(ρ))}.

Let X1(ρ) = span{vi(ρ) : λi(ρ) = 0}. X2 = R
n\X1.

Note that the feasible region Ω, which requires all the
eigenvalues of R is positive definite, is an open region. It is
obvious that on Ω, R−1 is continuous and differentiable too,
since R−1 = det(R)R∗, where R∗ is the companion matrix
of R.

Forall z and M1, let’s fix them temporarily. We take a
point ρ0 in the feasible region. ∀ρ1 ∈ Ω0, if R(ρ1) = 0 (I will
prove the other situation later), we choose 0 < ε < ‖z‖2M1,
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∃δ > 0, such that if ‖ρ − ρ1‖ < δ, ‖R(ρ) − R(ρ1)‖F < ε.
According to Hoffman-Wielandt Theorem, there exists a
permutation π(1), π(2), . . . , π(n) of 1, 2, . . . , n, such that
∀ρ ∈ Θ1,

(31)

(
n∑

i=1

|λ(ρ)π(i) − λ(ρ1)i|2
) 1

2

< ‖R(ρ)−R(ρ1)‖F < ε.

From (31), we know that ∀ρ ∈ Θ1, λ(ρ) < ε, and therefore
1

λ(ρ) > 1
ε . Thus, we have

(32) z′R−1(ρ)z > ‖z‖2min (1/λρ) > ‖z‖2/ε > M1.

If R(ρ1) �= 0, let’s suppose λ1(ρ1) = · · · = λk(ρ1) = 0,
and 0 < λk+1(ρ1) ≤ · · ·λn(ρ1). Since ρ1 ∈ Ω0 and R(ρ1) �=
0, 1 ≤ k ≤ n − 1. Then X1(ρ1) = span{v1(ρ), . . . , vk(ρ)}.
Obviously, X1 ⊥ X2. Since X1(ρ1) �= φ,

(33) Prob{Proj(z | X1) = 0} = 1.

Therefore, with probability 1, M2 = Proj(z | X1) > 0.
Suppose M3 = λk+1(ρ1). ∀ 0 < ε < min{M2M3/4,

M2/(2M1)}, ∃δ > 0, when ‖ρ−ρ1‖ < δ, ‖R(ρ)−R(ρ1)‖2 <
ε, and ‖R(ρ) − R(ρ1)‖F < ε. From Hoffman-Weilandt In-
equality, we know that λi(ρ) < ε, ∀i = 1, . . . , k. (The
induction is the same as (31)). According to Stewart In-
equality, since ‖R(ρ) − R(ρ1)‖2 < ε, dist(X1(ρ),X1(ρ1)) ≤
2ε/M3 = M2/2. If Proj(z | X1(ρ1)) = M2 �= 0, then
Proj(z | (X)1(ρ)) > M2/2 > 0. Thus,

(34) z′R−1(ρ)z ≥ ‖Proj(z | X1(ρ))‖2/ε > M1.

Therefore, we have

Prob{z′R−1(ρ)z > M1}(35)
= Prob{Proj(z | X1(ρ1))} = 1, ∀‖ρ − ρ1‖ < δ.

Since Ω0 is a close region, there exists finite round discs
which can cover Ω0. Within every disc, (35) stands. There-
fore, within all the finite round discs, (35) stands. Thus, we
proved Lemma A.1, and therefore demonstrated that the
stage one estimates will have feasible solution with proba-
bility 1 for any correlation structure.

Proof of Lemma A.2. ∀x ∈ R
s, we will show xTMx > 0.

Suppose x = (x1, . . . , xs).

xTMx =
m∑

i=1

s∑
j=1

s∑
k=1

xj tr(AijAik)xk(36)

=
m∑

i=1

s∑
j=1

s∑
k=1

tr(BijBik)

=
m∑

i=1

tr
(
B2

i

)
,

where

Bij = xjAij = R−1
i (δ̂)(Ri(xjej) − Ri(0)),(37)

Bi =
k∑

j=1

Bij = R−1
i (δ̂)

⎛
⎝ s∑

j=1

(Ri(xjej) − Ri(0))

⎞
⎠(38)

= R−1
i (δ̂)(Ri(x) − Ri(0)).

Thus,

(39) B2
i = GiHi,

where

Gi = R−1
i (δ̂)(40)

Hi = (Ri(x) − Ri(0))R−1
i (δ̂)(Ri(x) − Ri(0)).(41)

Since δ̂ is the final stage one estimates for the correlation
parameters, by Theorem 3.1 Gi is positive definite. ∀y ∈ R

s,
yTHiy = [(Ri(x) − Ri(0))y]TGi[(Ri(x) − Ri(0))y] ≥ 0, and
thus Hi is semi-positive definite.

Kleinman and Athans (1968), in the context of design
of suboptimal control systems, obtained that, for any two
semi-positive definite matrix A and B,

(42) λn(A) tr(B) ≤ tr(AB) ≤ λ1(A) tr(B),

where λi(A) is the ith largest eigenvalue of A.
Because Gi is positive definite, λn(Gi) > 0; and because

Hi is semi-positive definite and Hi �= 0, tr(Hi) > 0. There-
fore,

(43) tr(B2
i ) = tr(GiHi) ≥ λn(Gi) tr(Hi) > 0.

As a result,

(44) xTMx =
m∑

i=1

tr
(
B2

i

)
> 0,

and thus M is positive definite.

APPENDIX C. THE LIMITING VALUE OF
THE QLS ESTIMATE OF γ
WHEN THE TRUE MIXED

CORRELATION STRUCTURE
IS MISSPECIFIED AS

EXCHANGEABLE

Assume the true mixed correlation structures Ri(α) have
been misspecified as exchangeable Wi(γ). Next, using argu-
ments similar to those given in Theorem 3.2 of Chaganty
and Shults (1999), we note that E(Zi(β)Z

′

i(β)) = φRi(α).
It is then easy to show that the solution to the stage one
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estimating equation (10) converges in probability to the so-
lution (for γ) to the following estimating equation:

(45) trace

(
m∑

i=1

∂

∂α
W−1

i (γ)Ri(α)

)
= 0.

The inverse of an exchangeable structure Wi(γ) can be
expressed as W−1

i (γ) = 1
(1−γ)Ini − γ

(1−γ)(1+(ni−1)γ) ej e′
j ,

where Ini is the identity matrix and ej is a ni × 1 column
vector of ones. Next, if we note that trace(ej e′

jRi(α)) =
trace(e′

jRi(α)ej) = e′
jRi(α)e), equation (45) can easily be

simplified as follows:

(46)
m∑

i=1

ni −
m∑

i=1

1 + γ2(ni − 1)
(1 + γ(ni − 1))2

e′
jRi(α)ej = 0.

In general, a solution g(α) (for γ) to (46) can be ob-
tained using the bisection method. We next note that under
an assumption of an exchangeable structure, the stage two
estimate is obtained as the solution f(γ) to the stage two
estimating equation (11) that is evaluated at γ̂ for exchange-
able structures Ri(γ). Since γ̂

p→ g(α), it then follows that
the limiting value of the stage two estimate for γ converges
in probability to f(g(α)), so that the limiting value of γ̂

can be obtained by solving (11) at δ̂ = g(α). The stage two
estimating equation has a closed form solution for the ex-
changeable structure that is provided in (C.3) of Shults and
Morrow (2002), for si = ni and when (C.3) is calculated
over all i, i.e. when gi = 1 for all i, so that we only have one
group of subjects.

An algorithm to obtain the limiting value can then be
expressed as follows:

(i) For assumed true values of α, use the bisection method
to obtain a solution g(α) to (46).

(ii) Next, obtain the limiting value of γ̂ by evaluating (C.3)
of Shults and Morrow (2002) at τ̂1 = g(α), where si =
ni and gi = 1 for all i.
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