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Nonparametric tests for longitudinal DNA copy

number data

KE ZHANGT AND HATYAN WANG*

Array comparative genomic hybridization (aCGH) and
single nucleotide polymorphism (SNP) array data are be-
coming commonly available for scientists to study genetic
mechanisms involved in complex biological processes. Such
data typically contain a large number of probes observed
repeatedly over time. Due to cost concerns, the number of
replicates is often very limited. Effective hypothesis test-
ing tools need to take into account the high dimensionality
and small sample sizes. In this paper, we present a set of
nonparametric hypothesis testing theory to test for main
and interaction effects related to a large number of probes
for longitudinal DNA copy number data from aCGH or
SNP arrays. The asymptotic distributions of the test statis-
tics are obtained under a realistic model setup that allows
distribution-free robust inference in presence of temporal
correlations for heteroscedastic high dimensional low sam-
ple size data. They provide a flexible tool for a wide range
of scientists to accelerate novel gene discovery such as iden-
tification of genome regions of aberration to control tumor
progression. Simulations and applications of the new meth-
ods to DNA copy number aberration from Wilm’s tumor
relapse study are presented.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62P10,
Secondary 62G10, 62G35.

KEYWORDS AND PHRASES: Repeated measures, Nonpara-
metric statistics, Hypothesis testing, DNA copy number
aberration, High dimensional data analysis.

1. INTRODUCTION

Tumor cells usually undergo dramatic chromosome
changes resulting in gain or loss of DNA copy numbers. For
normal tissues, most human DNA segment has two copies
with the exception of the sex chromosome. However, the
DNA of tumor cells is often subject to translocation, am-
plification, and deletion, which leads to DNA copy number
abnormality. High throughput array comparative genomic
hybridization (aCGH) and single nucleotide polymorphism
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(SNP) array technologies have made it possible to simulta-
neously examine DNA copy numbers at thousands or mil-
lions of sites of a genome. Fluorescence-labeled DNA probes
are designed to bind to specific chromosomal locations that
are distributed throughout a human genome with high res-
olution. Genomic DNA fragments from tumor and normal
reference samples are hybridized with the probes, and the
log ratios of fluorescent intensities between tumor and nor-
mal samples are calculated. If both samples contain the same
quantity of DNA copies, the expected log ratio is equal to
0. In contrast, when the tumor sample has a gain or loss
of DNA copy number, the expected log ratio is greater or
smaller than 0, respectively. Therefore, the log ratio data
can be used as a raw copy number, and chromosome aber-
ration can be detected by analyzing the raw copy number.
Although copy number data provide rich information, they
also raise challenges for statistical and computational meth-
ods.

We are often interested in the DNA copy number aber-
rations for chromosome segments. For example, each chro-
mosome has two arms, p and ¢, that are connected by a
centromere. Chromosome rearrangement often causes one
arm to be translocated, duplicated or lost. The copy num-
ber changes of a chromosome arm will affect thousands
of probes located in it. In recent years, many statistical
methods have been used to identify the regions of aberra-
tion when the signal intensities on different chips are from
independent samples. These include hidden Markov mod-
els (Fridlyand et al. [2004]), circular binary segmentation
(CBS) based on change point analysis (Olshen et al. [2004]),
Bayesian models (Daruwala et al. [2004]), and regression
(Tibshirani and Wang [2008]). Most of these methods as-
sume a specific distribution for the (log ratio of) intensities
of the probes such as normal, log-normal or Poisson distri-
bution in addition to the fact that they are only designed
to work with independent samples.

To gain a better understanding of tumor development and
progression, some recent cancer studies have been carried
out to investigate the dynamic changes of genomic DNA by
monitoring the experiments longitudinally. Lai et al. [2007]
found increasing genomic instability during premalignant
neoplastic progression in an aCGH study. The DNA sam-
ples were collected in three distinct stages of molecular evo-
lution for each patient. Such a longitudinal study was also
conducted to leukemia or lymphoma patients, whose tu-
mor cells can be relatively easily collected. For instance,
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Mullighan et al. [2008] investigated the relapse of acute lym-
phoblastic leukemia (ALL) by measuring DNA copy number
from patient blood or bone marrow samples at both diag-
nosis and relapse. Another application of longitudinal copy
number study is tumor cell line research. It is known that
after dozens of generations, the genome of a tumor cell line
will be substantially different from the original one due to
accumulation of DNA changes. For instance, the scientists
in Abbott Laboratories have collected DNA samples from 5
continuous splits of small cell lung carcinoma (SCLC) cell
lines, in order to identify the maximum number of splits that
preserves characteristics of the original SCLC tumor (un-
published data). In short, longitudinal DNA copy number
research has drawn increasing attention in cancer research,
and it will continue to provide rich information of genomic
variation during disease development.

Appropriately incorporating the correlation due to the
repeated measurements from the same subject can increase
the power of statistical analysis. Current literature on longi-
tudinal array data analysis are mainly focused on a univari-
ate test for an individual probe based on expression profile,
followed by false discovery rate (FDR) adjustment for mul-
tiple comparisons. To detect the abnormal genomic region,
it is necessary to conduct a statistical test of equal copy
number for all the probes within the region. Due to the
large number of parameters involved in the model, classi-
cal methods such as linear mixed effects models and gen-
eralized estimating equations have limited applications in
DNA copy number data analysis. Tsai and Qu [2008] per-
formed hypothesis testing for a class of genes by applying
a quadratic inference function (QIF) to account for within-
gene correlation. Similar to GEE, QIF requires the number
of estimating equations greater than the number of param-
eters.

When there are only two observations per probe, a paired
test is often considered by an applied scientist for each
probe. We remark that a paired-observation model is only
a special case of a longitudinal model in that the paired
observations can be treated as two repeated observations
from the same probe. A paired test is more powerful than
a corresponding test that assumes the two dependent sets
of observations are independent. However, the paired test
is not more powerful than a test from a longitudinal model
with appropriate covariance structure even in the traditional
sense. In fact, the paired test either requires the difference of
the paired observations to follow Gaussian distribution, or
requires large sample sizes. Neither of these two conditions
are reasonable for the setting of this manuscript because real
copy numbers are typically integers plus multiple sources of
noises.

In this manuscript, we propose a set of nonparametric sta-
tistical tests to assess if a DNA region has copy number aber-
ration using longitudinal aCGH or SNP array copy num-
ber data. Due to the small sample sizes, the tests proposed
in this manuscript borrow strength from considering copy
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number observations from many probes without assuming
that they have a common distribution. The proposed meth-
ods have a number of advantages. First, no distributional
assumptions are required for raw copy numbers. Secondly,
the method works effectively for a large number of probes
with low replications. Thirdly, heteroscedastic within and
between-probe correlations are taken into account. Fourthly,
unbalanced designs with general model set-up are used to
allow for flexible and realistic modeling. Lastly, the compu-
tation is fast comparing to probe-by-probe test method be-
cause in our model all probes in a genomic region are tested
simultaneously by fitting into one single test statistic.

The outline of this manuscript is as follows. In section
2, we present the study design and the model specification.
The test statistics and their asymptotic distributions are
provided in section 3. Simulation studies are presented in
section 4. In section 5, we use our methods to investigate
the genetic basis of Wilms’ tumor relapse.

2. MODEL SPECIFICATION AND
DEPENDENCE AMONG PROBES

Before we can develop inference, it is necessary to con-
sider the dependence among the probes. Two probes of two
very close genomic locations may be highly correlated. On
the other hand, two probes on two different haplotype blocks
that are far away in genomic locations may be less or not
correlated. That is, block-wise independence may be a nat-
ural assumption for copy numbers from different probes of
the same subject. However, such independence structure re-
quires manual partition of the genome into blocks. As we
would like our tests to be applicable to any DNA segments
of reasonable size with least user intervention, we choose a
more general and flexible dependence assumption. Specifi-
cally, we first align all probes from the same subject along
their relative genomic locations and let X be the jth mea-
surement of the raw copy number of the ith probe from sub-
ject k,i=1,...,I; 7 =1,...,J; k=1,...,n;. The num-
ber of probes is large, whereas the number of time points
and the number of subjects are bounded. The design is as-
sumed to be either balanced or unbalanced, in that the num-
ber of replications may vary for different probes. If all copy
number data come from the same version of chips, the de-
sign is balanced; otherwise, the design could be unbalanced.
For instance, properly normalized Affymetrix SNP arrays
have been used in DNA copy number research recently
(cf. Rigaill et al. [2008]; Redon et al. [2006]; Barnes et al.
[2008]; Winchester et al. [2009] and the references therein).
If the data have both Affymetrix 100K and 250K arrays,
the probes shared in both 100K and 250K arrays have more
replications than the probes that only exist in 250K arrays.
Though normal or lognormal distributions are often used
for fluorescent intensities, it has been vigorously argued as
to whether it is adequate to fit real image data with a well-
defined distribution (Kerr et al. [2000]; Konishi [2004]).



For all probes from the same subject at a specific time
point, we assume the copy numbers {X;;z,? = 1,...} satisfy
an a-mixing condition with mixing coefficient

sup |P(A(") B)—P(A)P(B)|
i,AGO'(Xiljk,ilSi),BEO’(Xi2jk,i22i+m)

O(m™),
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where o(X;, k41 < ©) is the o-field generated by the vari-
ables {X; i, 41 < i}. This a-mixing condition was first in-
troduced by Rosenblatt [1956]. It implies that the magni-
tude of correlation between two observations for two probes
that are far apart in their genomic locations decreases in
general as their genomic distance increases without assum-
ing a specific parametric form for the correlation matrix (cf.
Billingsley [1995]).

Denote X}, to be the I x J matrix of copy numbers from
the kth subject with entry for the ith row and jth column
being Xj;. Each column of X, is the vector of copy numbers
for all probes observed at a single time point. Each row
of X} contains the repeatedly measured copy numbers at
all time points for one probe. Denote the true mean copy
number for the i'" probe at the j'" time point by p;;
E(Xiji). Note that we are interested in finding the probes
that have copy number aberrations for a whole group of
diseased patients in cancer studies so that the genes encoded
on these regions where these probes are located can serve
as therapeutic targets for treatment and drug development.
Therefore, subject specific copy numbers are not of interest.
The mean copy numbers p;; can be decomposed to yield
the i'" probe effect ;, j'" time effect 3;, and probe by time
interaction effect ~;;:
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The decomposition above implies the following natural con-
. I J I
straints for these effects: Y5, i =375, B; =271 v =

Z;-]:l vi; = 0. Even though the effects can be defined
through univariate notation, the error term e;;, = X5 — fis;
contains multiple sources of variations including the random
subject effect, random subject by time interaction effect, and
measurement error. Let € be the I x J error matrix with
the (4, ) element &;;,. Then the dependence among probes
and among repeated measurements renders all elements in
€; being correlated. Putting all terms together leads to the
model for all copy numbers from the same subject:

vee(X))=p - 11J+a®1J+11®,3+Vec('y’)+vec(e;€),

where vec is the vector-operator of a matrix, 1; is an
I-dimensional vector of ones, o (a1,...,a1)", B
(Bi,...,Bs), v is an I x J matrix with (¢,7) element 7,5,

and @ is the kronecker product. The unknown covariance
matrix of vec(e},) can be written as
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where ;, i = 1,...,I, are J x J symmetric matrix with
(j,J") element oy = Cov(Xijk, Xijik); Vin, m,n =
1,...,I, are J x J symmetric matrix with (j,j’) element

Omnjj’ = COV(ijk,an/k).

Assume the copy numbers from different subjects are in-
dependent. The model in this paper is appropriate for both
continuous and discrete data. Thus it can model both the
raw copy number data or integer copy number derived from
data preprocessing. The unknown covariance matrix ¥ is
completely unstructured except for the a mixing condition.
The sub-covariance matrix €2; for probe ¢ can be different
for different probes. This is more reasonable since the covari-
ance of the copy numbers for a probe at different time points
is possibly dependent on their locations on a chromosome.
Furthermore, experiments of biological time course study
are often not evenly spaced in time. Therefore, the same
correlation structure may not be appropriate. Note that the
subject random effect is included in our formulation though
it is not specifically written in the model.

For a DNA segment, we first consider the probe by time
interaction effect, Hy : y;; = 0, for all ¢, j. This evaluates if
all probe profiles are parallel. If the segment contains some
probes whose copy numbers significantly vary over time,
then tumor progression may be associated to those probes. If
there is no significant interaction effect detected, we consider
testing the null hypothesis of no copy number aberration for
a whole group of probes, Hy : a; = 0, for all 7. The test can
be applied to detect the local DNA copy number changes
in a given genome region so that DNA segmentation can be
done to partition the whole genome into amplified, deleted,
and normal regions.

We remark that in both hypotheses, the parameters un-
der the null lie in a low dimensional space but those un-
der the alternatives lie in a high dimensional space. Mean-
while, the number of nuisance parameters (the dimension
of the covariance matrix ¥) go to infinity as the number
of probes increases. Due to this reason, the maximum like-
lihood estimators for the parameters may not be consis-
tent as the total number of parameters approaches infinity
while the number of replications stays fixed, and even when
the estimators are consistent it may still fail to be efficient
(cf. Neymann and Scott [1948]; Fan and Lin [1998]; Li et al.
[2003] and the references therein). Most of the nonparamet-
ric approaches is unapplicable since they require large n;
or J. New methods need to be developed for an effective
inference in the current setting.
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The following notation will be used throughout the
manuscrlpt XU = n_l Zk 1 Xijry, Xio = J7 ! Zj 1XZJ )
X, =1"'Y0 X, =71 Zi:l XZA.. Denote n(i, i)
to be the number of subjects such that the observed copy

numbers for both probes ¢ and 7’ from each subject are avail-
able.

3. TEST STATISTICS AND THEIR
ASYMPTOTIC DISTRIBUTIONS

First, we consider the probe and time interaction effects.
Significant interactions indicate that the copy numbers of a
group of probes on a DNA segment change differently over
time. The null hypothesis is

Ho(AB):allv;; =0, fori=1,....1, and j =1,..., J.

As explained in previous section, this hypothesis tests
against high dimensional alternatives. We use the difference
of two quadratic forms, Tap — Eap, as the test statistic
so that the two quadratic forms have matching expectation
under the null hypothesis with the heteroscedastic model,
where

Xy X - X+ X2
T =2 =y
Lo [Z}](Xz‘jk - X)) = J( Xk — Xi.)?
EAB - ;; I(J — 1)7),1(’[11 — 1)

The asymptotic distribution of the test statistic is given
in the next theorem for fixed sample sizes and a large num-
ber of probes.

Theorem 3.1. Assume X;;, have finite 16th central mo-
ment. Further, assume for all j,k, {Xijr, i = 1,...} is an
a-mizing sequence with mixing coefficient a, = O(m=%).
Then under Hy(AB),

VI(Tap — Eag)

ﬁN(O,l) as I — oo,
TAB

J
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J
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J:J1

J
2
7 Z Tiit 1 Tt jja | +
J:1,d2
provided that Tap is bounded away from 0 as I — oo.

To apply the test statistics to real data, we need estimates
of the asymptotic variances. The following proposition gives
a consistent estimate for 74 3.
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Proposition 3.2. For all i, i, assume n(i,i') > 4. Let
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Y N
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(i, 7) — 2)[n(i, i) — 3] )
and
! - J
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li—i/|<Ih 3yJ1
UJJJJ JQO']]]])
i 1 Y \J>J1J HJ1) i 1, 2
* Z - Y TR
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for some 1/5 < h < 1. Then under the assumptions of The-
orem 3.1, Tap is a consistent estimator of Tap as I — oo.

The proofs of Theorem 3.1 and Proposition 3.2 are given
in the appendix.

Next, we consider to test whether copy number aberra-
tion exists in a given genomic region. Under the null hy-
pothesis Ho(A) : all a; = 0, for i = 1,...,I, there is no
copy number difference within the DNA segment of interest,
where I is the total number of probes located in this DNA
segment.

Similar to the test of no interaction effects, we use T4 —
E 4 as the test statistic, where

SEPRILEE

=1 j5=1
1 I (Xan — )(Xi‘k_yi’.)
A:I_lekg J © 7J11) J1)

The definition of T is different from that of ANOVA in
that unweighted averages are used instead of weighted aver-
ages. The definition of E 4 is different from that of the tradi-
tional MSE in that the within-subject correlation over time
is taken into account. Such modification ensures the method
to be valid for unbalanced sample sizes. and heteroscedastic-
ity. The next theorem gives the asymptotic distribution of
this test statistic for small sample sizes and a large number
of probes.

Theorem 3.3. For testing Ho(A): all a; = 0, assume Xjy,
have finite 16th central moment. Further, for all j, k, as-
sume { Xk, i =1,...} is an a-mizing sequence with mizing
coefficient o, = O(m™5). Assume the T4 defined below is
bounded away from 0,

2
I
1 2n(i, 4’ )[



Then under Ho(A), VI(Ta—FEa)/Ta <, N(0,1), as I — co.
A consistent estimator for Ta is

I .. .. J
R 1 2n(i,i")[n(i, ") — 1 PO
TA:—2 E ( 2)[ ( ) } E Uii'(]u]laj/aji)a
1J2 4 ni(n; — 1) el
l[i—i/|<Th v J,J1,37,34

where 75 (4, 1,5, J1) is defined in Proposition 5.2.

Note that the tests given above are only applicable to a
DNA segment that has at least 50 probes since they need
I > 50 to have reliable type I error estimates for a variety of
distributions (Zhang [2008]). On the other hand, this pro-
vides one of our advantages compared to other algorithms
in that this will allow us to quickly screen the whole genome
with only one or a few tests. If the number of probes on a
chromosome region is less than 50, we do not recommend our
tests. Instead, traditional parametric model /method may be
applied with the tradeoff of possible violation on distribu-
tional assumptions.

To apply the above tests, it is not necessary to prede-
termine which region to apply the proposed test. If there
are some units or blocks (such as chromosome arms) of ini-
tial interest, the tests can be applied to each of these blocks.
Otherwise, we recommend to recursively apply the tests and
partition the genome following the test-based partition algo-
rithm in von Borries and Wang [2009]. Briefly, we start with
all probes on the genome and apply the test. If the test is sig-
nificant, we partition the genome into blocks and test each
block (a block can be a chromosome, a chromosome arm, or
for simplicity, half of the block that was previously tested)
until the partition can not proceed due to small block size.

4. SIMULATION STUDIES

In this section, we compare the proposed nonparametric
test (NPT) with some commonly-used methods in terms of
type I error rate and power analysis. Hidden Markov models
(HMM) and circular binary segmentation (CBS) have been
widely used for copy number variation (CNV) identifica-
tion (Fridlyand et al. [2004], Olshen et al. [2004], Lai et al.
[2007]). They process DNA copy number data sample by
sample. Consequently, correlation between multiple sam-
ples can not be taken into account and there is no guide-
lines available regarding how to combine the results from
different samples. On the other hand, linear mixed effects
models (LME) and generalized estimating equations (GEE)
are the most commonly used methods for correlated data.
Therefore, we first compare NPT with LME and GEE for
data generated with unstructured correlations among the re-
peated measurements from the same probe. It is difficult to
specify a reasonable correlation structure among data from
different probes of the same subject. To avoid bias, we gen-
erate data by resampling from real copy numbers such that
correlations among the probes are inherited for our gener-
ated data. All calculations and simulations are implemented

| sample | ® Glioma lNormaI|

Figure 1. The plots of DNA copy numbers in chromosome 7q
of normal and glioma samples. Red color denotes the copy
numbers of glioma SNPs, and blue color denotes the copy

numbers of normal SNPs. The x axis showed the relative
genomic positions of each SNP on chromosome 74.

with R programming language. HMM and CBS were con-
ducted with R packages aCGH and DNAcopy, and LME and
GEE calculations were conducted with R packages nlme and
geepack. We first present the comparisons with LME and
GEE.

For data generation, previous work has shown that am-
plification of chromosome 7q is associated with glioma tu-
mor (Maher [2006]). We acquired the copy numbers of 3,000
probes that represent single nucleotide polymorphism (SNP)
in chromosome 7q from Affymetrix 100K SNP arrays for
both a healthy person and a glioma patient. A scatter plot
of the copy numbers is given in Figure 1 with blue color for
the healthy person and red color for the patient (please see
the online version for colored Figure 1). The glioma sample
has 7q amplification with a mean copy number 4.4. The nor-
mal sample has a mean value 2.05. The 3,000 copy numbers
from the healthy patient provide the population for resam-
pling under the null hypothesis. The 3,000 copy numbers
from the glioma patient are to be used as the population for
resampling under the alternatives.

We sample the copy numbers for 100 SNPs with an unbal-
anced design and create 5 repeated measures (time points)
through introducing within-probe correlation as below.

e Firstly, at the jth time point, 6 replications were ob-
tained for one fifth of the SNPs through resampling,
and 4 for the remaining four fifths (denote as X; ;). This
creates unbalanced data such that some SNPs have 6
replications while others have 4 replications per time
point.

e Next, an unstructured within-probe correlation was in-
troduced iteratively. Suppose for SNP i, the correlation
between the jth and (j+1)th time points is p; ;. Given
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a copy number X, for the jth time point, the random
copy number X7, ., of the (j+1)th time point can be
generated by

X w1 = pigXi; + (1= pij)Xije,

where X/, = X;; and p; ; ~ Uniform(0.5,1). Since p; ;
are not constant, the correlation structure is not AR(1).

e Each data set generated contains a majority of SNPs
from normal 7q (under Hj), and a small proportion,
po, of SNPs from the glioma 7q (under H,). We let p
ranges from 0 to 1% for the test of no probe effect,
and from 0 to 4% for the test of no interaction effect.
That is, each data set is mainly composed of normal
copy numbers contaminated with a small proportion of
glioma data.

For each contamination proportion of glioma copy num-
bers in the sampling data, we estimated the power curves of
NPT, LME, and GEE at 0.05 level for the effects of SNP,
and SNP by time interaction (Figure 2). For the SNP effect,
the proposed method (NPT) had the fastest convergence
rate to 1. At 0.9% contamination, the estimated power of
NPT is 98.6%, whereas the power of LME is 56.2%, and that
of GEE is only 29.5%. For the SNP by time interaction, the
power of NPT outperformed the other two methods when
there was at least 0.9% contamination. With 4% of contam-
ination, NPT had a power of 96.8%, LME of 63.6%, and
GEE of 89.0%.

For HMM and CBS, we generated 1,000 independent
samples with 100 SNPs per sample. Under the null hypoth-
esis, all copy numbers for 100 SNPs are resampled from
normal 7q data, whereas a small percentage py of them
are from the glioma 7q under the alteratives. We let pg
range from 0 to 50%. The power of HMM and CBS are
estimated by the percentage of samples that are detected
to contain copy number variations. For HMM, the pro-
portions of detections are 45.9%, 70.8%, 56%, 30.8%, and
7% for po = 0, 5%, 10%,20%,50% respectively. That is,
the type I error of HMM is unacceptably high while the
power is low. This is because HMM calculation relies on the
standard deviation of the copy number data. When pq is
small, the standard deviation is small since most data come
from normal SNPs that have a copy number that equals
2. Thus, HMM tends to identify focal copy number varia-
tions such that the type I error rate is high. When pq is
large (pp = 50%), the standard deviation is large, which
results in low powers of HMM. The proportion of detec-
tions for CBS is .009%, 54.9%, 61.6%, 59.8%, and 39.2%
for pg = 0,5%, 10%, 20%, 50% respectively. The type I error
rate of CBS is acceptable under the null hypothesis of no
copy number variation, but the power is relatively low com-
paring to NPT (Figure 2). The advantage of NPT compared
to HMM and CBS lies in the fact that it can use multiple
samples to increase power without assuming distributional
assumptions whereas HMM and CBS are only for one sample

216 K. Zhang and H. Wang

Power Estimate for the Interaction of SNP and Time
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Figure 2. The estimated power for SNP by time interaction
effect (top panel) and SNP effect (bottom panel) as the

percent of contamination increases for an unbalanced design
with unstructured correlations.

and require specific parametric assumptions (such as Gaus-
sian and Markov property for HMM) that may not hold for
real data.

5. STUDY OF WILMS’ TUMOR RELAPSE

Wilms’ tumor typically occurs in children’s kidney. Al-
though the percentage of patients who survive at least five
years is above 90%, 15% of patients will suffer from tumor



relapse. Genetic aberrations such as loss of heterozygosity
and chromosome copy number changes have been found to
be associated with the tumor relapse (Grundy et al. [2005];
Yuan et al. [2005]). Recently, longitudinal studies have been
conducted to identify biomarkers that are responsible for tu-
mor progression and recurrence.

Natrajan et al. [2007] carried out aCGH experiments for
10 Wilms’ tumor patients with relapse. The aCGH sam-
ples were conducted at both diagnosis and relapse for each
patient. They used Breakthrough Breast Cancer Human
CGH 4.6K 1.1.2 arrays that consist of 4,179 Bacterial Ar-
tificial Chromosome (BAC) clones. The BAC clones serve
as probes for measuring the genomic DNA copy number.
In their report, 29 chromosome regions were identified that
may have copy number alterations responsible for Wilms’
tumor relapse. However, their paired T-test for comparing
the copy numbers between diagnosis and relapse did not dis-
cover any significant genomic regions. The reproducibility of
their analysis was low, and the claimed biomarkers may not
be useful for predicting the potential relapse of new Wilms’
patients. In fact, only 6 of the 29 regions were found in 2
of the 10 patients in their paper. Motivated by the need to
redo the analysis with improved power, we acquired the raw
aCGH data and conducted analysis with the following steps.

We first performed quality control and normalization for
the raw data. As female and male have different number of
sex chromosomes, we removed X and Y chromosomes from
the data to avoid confounding effect of imbalance. The raw
data were adjusted to a baseline by subtracting the median
background signal. In the experiment, each probe was la-
beled with two fluorescent dyes, Cy5 and Cy3. The fluores-
cent intensity ratio of Cy5/Cy3 were used as input data. The
Cy5/Cy3 ratio were subject to quantile normalization across
all samples (Bolstad et al. [2003]). The processed data had
a median copy number of 2 and a standard deviation of 0.04
for each sample. They were used for subsequent analysis.

As discussed in section 1, a first goal of copy number
study is usually to detect the gain or loss of a chromosome
arm because it is often the unit of genomic mutation and
translocation activity. For instances, Lu et al. [2002] found
that the gain of chromosome 1q is associated with relapse
of Wilms’ tumor. We applied our proposed methods to each
chromosome arm for probe and probextime interaction ef-
fects. Out of 44 autosomal chromosome arms, 5 arms, 13p,
14p, 15p, 21p, and 22p, had no probes in the arrays. For
the other arms, the minimum number of probes was 84, and
the maximum number was 699. Table 1 lists the chromo-
some arms that have p-values less than 0.05 for the tests.
After Bonferroni correction, only 6 arms showed significant
probextime interaction at a familiy-wise error rate of 0.05
(totally 16 arms significant if no Bonferroni correction). This
implies that the copy numbers of some of the probes in these
arms varied between diagnosis and relapse. Of the remaining
chromosome arms, two arms showed some weak evidence of
probe effects (8p and 21q).

Table 1. Summary of p-values that are less than 0.05
calculated by NPT methods for each chromosome arm. ‘Chr.’
refers to the chromosome number. The ones labeled with *
are significant at 0.05 level after Bonferroni correction

Chr. p arm q arm
probe probextime probe probextime
2 2.55x1073 2.72x1073
3 6.69x1073  2.47x107* * 0.014 0.010
5  5.07x107%* 1.21x107' * 2.38x107* * 9.93x107° *
6 0.034
7 2.43x1078 * 0.023 0.031
8 0.041
9 0.036 0.036
11 5.05x1078 * 4.35x1077 *
12 0.016
15 0.038
16 5.54x107° * 6.84x1077 *
17 0.015
18 2.55%x107 1 * 1.77x10715 *
21 1.59%x1073
22 0.013

In our analysis, 26 chromosome arms (those in Table 1
that do not have p-values provided) were not detected for
any effect even with weak evidence. Further analysis should
be conducted for these arms to evaluate if an arm is ampli-
fied or lost at both time points. This is important because
the desired biomarkers for predicting relapse should show
a consistent pattern between diagnosis and relapse. If a ge-
netic event only occurs in one of the two time points, its
association with tumor recurrence is not clear. We calcu-
lated the mean copy number for each arm. Unfortunately,
none of these mean values were abnormally higher or lower
than 2.

For the rest of the arms, at least weak evidence from the
samples indicates that some effects exist. However, for the
purpose of identifying prognostic biomarkers, chromosome
arms with probextime interaction alone are not enough al-
though the interaction may indicate important genetic reg-
ulation mechanisms. The findings here can not be verified
from the real time PCR result in Natrajan et al. [2007] as
they did not report a list of alterations shown by their real
time PCR, analysis. Further biological studies are necessary
to confirm the alterations that we report here.

We explored chromosome 8p and 21q that showed only
weak evidence of a probe effect. Significant probe effect sug-
gests some regions in the two arms have a gain or loss of
DNA copies. By calculating the mean value of each probe
with the measures from both diagnosis and relapse, we found
four regions with abnormal copy numbers. The results were
summarized in Table 2. Chromosome region 8p21.3 was
found to have a DNA deletion. Two genes are encoded in
this region, INTS10 and LPL. INTS10 is a subunit of RNA
polymerase. Reduced expression level of RNA polymerase
could lead to abnormal expression of many other genes.
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Table 2. Summary of the copy number alterations detected
for both primary and relapse tumors

Genomic region Gene Function

8p21.3 INTS10 RNA transcription
LPL lipoprotein

21g21.1 CR614803 NA
NCAM2 NA

21921.3 CYYRI1 NA

21q22.3 NX1 anti-viral response
NX2 GTPase
TMPRSS2 Serine protease

Thus, it is a potential oncogenesis gene. LPL is responsi-
ble for lipoprotein uptake, and was reported to be associ-
ated with prostate cancer (Narita et al. [2004]). Chromo-
some 21q11.1 and 21q11.3 loss may affect the expression of
genes CR614803, NCAM2, and CYYRI1. However, the gene
functions and their relevancy with cancer is not clear cur-
rently. The loss of 21q22.3 was associated with functions of
3 genes, NX1, NX2, and TMPRSS2. NX1 is responsible for
anti-viral reaction; NX2 is a subunit of GTPase; TMPRSS2
belongs to the serine protease family. Both GTPase and ser-
ine protease are involved in a number of fundamental gene
regulation pathways. The four selected regions overlapped
with 2 copy number alterations reported by Natrajan et al.
[2007].

6. SUMMARY AND DISCUSSION

Longitudinal DNA copy number studies can provide
unique insights into the genetic abnormalities involved in
disease development and progression. However, there are
a number of challenges faced in statistical inference. Re-
searchers often use over-simplified analysis methods that are
not able to provide sufficient statistical power and justifica-
tion. In this paper, we provided a set of robust hypothe-
sis testing tools based on a more realistic model setup and
distribution-free non-parametric statistics. Both continuous
and discrete response variables are allowed in the model.
The proposed method basically includes a large number of
probes in one model and conducts hypothesis tests. By han-
dling all probes in a genomic region simultaneously instead
of performing analysis for each individual probe, the pro-
posed method has significant gain over commonly used tra-
ditional methods in two senses: (1) The large number of
probes provide asymptotic power for our tests. (2) There
is a significant reduction in the number of tests required
to screen the whole genome comparing to traditional meth-
ods. This is true even after taking into account possible re-
cursive partitioning. In addition, the proposed method only
requires consistent estimates of the asymptotic variance in-
stead of estimating all parameters for each probe leading to
a large number of unknown parameters and extensive com-
putation (such as the transition probability matrix for each
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copy number state in Hidden Markov Models). In summary,
in this article a convenient set of tests are provided to ana-
lyze longitudinal copy number data with small sample sizes,
and therefore are expected to have potentially broad appli-
cations in genomic screenings.

Some studies of tumor genomes are interested in de-
tecting focal CNVs of small region, such as of size 1,000
base pairs. We remark that detection of such focal CNVs
depends on the resolution of the chips used to produce copy
number data. As of the date of this manuscript, the densest
array for copy number study is the Affymetrix Genome-
Wide Human SNP Array 6.0 that features a total of 1.8
million markers (among which 946,000 are copy number
probes and 906,600 are SNP markers, see the fact sheet at
http://www.affymetrix.com/support/technical /datasheets/
genomewide_snp6_datasheet.pdf). The human genome con-
tains approximately 3 billion base pairs. Hence the average
inter-marker distance over all 1.8 million SNP and copy
number markers combined is about 1,667 base pairs.
Therefore, current array technology does not allow us to
consider 1kb CNVs detection with the proposed method.
As technologies continue to advance, it may be possible to
have denser arrays available in the future and detection of
focal CNVs can be conducted with the proposed method.

When there are only two time points, paired analysis
tends to be used due to its simplicity. As mentioned in the
introduction, the paired analysis can only be applied to an
individual probe. Due to the small sample size limitation,
the paired test statistic has a large variance and therefore
is lacking power to detect copy number variations. On the
other hand, the proposed method includes all probes of in-
terest in one model and takes into account the between-
probe correlations to increase its power. We conducted a
small simulation study in which we generated random data
for 100 probes with 5 replications at each of 2 time points
from normal distribution with standard deviation 1 and cor-
relation 0.5. Under the null hypothesis where all data have a
mean 0, the type I error rate for the proposed test is 0.043,
and that for paired analysis is 0.048. Under the alternative
hypothesis, the mean was 0 for 80% of probes, and 1 for the
remaining 20%. The paired test has only 11.6% power to
detect the probe effect, whereas the proposed method has
100% power. This is a simple comparison in favor of the
proposed method over a paired analysis.

A last discussion of the proposed method is that it is de-
signed to detect CN'Vs frequently shared in the disease pop-
ulation because such CNVs are representative for elucidat-
ing common pathological features that can be used for can-
cer treatment therapy. If the interest is in detecting unique
CNVs in an individual, we advise the user to seek alternative
methods as the proposed method requires replications.
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APPENDIX: SOME TECHNICAL PROOFS

Here we give a sketch proof of Theorem 3.1. Theorem 3.3
can be proved following similar technical arguments. The
proof involves first finding a projection of T'4 g onto the space
span{X; = (Xj11, .-+, Xign,) i =1,...,I}. The Pap(e) in
Lemma A.1 is the projection of T4 g. Then the test statistic
is shown to be asymptotically equivalent to v/ I(Pap(e) —
E 4p) whose asymptotic distribution can be easily derived.

Lemma A.1. Under the settings and assumptions of The-
orem 3.1 and under Ho(AB), we have

\/T(TAB — Pag(e)) 20as I — 00,

I J = .
where PAB(E) = ﬁ Zi:l Ej:l(gij. — Ei”)z.
Proof. Under Hy(AB), we can write
Pap — TAB( )
= — — Z Z EZ] ~z’ 5113 51,1)

I( 1)( 1) #“J f
= I(If— Z Zé'w Eirg. JZ%@L
i#i j=1 i#i

2 52] 511]1
3 DT 3 )

i#£iy j=1 i#i1 J=1 j1=1

Note that for each ¢ and j, ;. is the average of fi-
nite number of independent terms. Apply Theorem 5.2 of
Bradley [2005], we know that the process defined by Bo-
real functions of finite number of independent a-mixing
processes is still an a-mixing process with the same mix-
ing coefficient. Therefore, for each j, {€;;,1 = 1,...} is
an a-mixing process with mixing coefficient o, = O(m=9)
as the lag m — oo. By Lemma 2.1 of Wang and Akritas
[2010], we know that E(ZH&1 Eij.Bij.)> O(I?) and

E(Zf#l EijEij1.)> = O(I?) for each j, ji. Since J stays

finite, we have VI(Tap — Pap(e)) 2> 0 under Ho(AB) as
I — oo. O

Proof of Theorem 3.1. Lemma A.l, we need only to con-
sider the asymptotic distribution of Q@ ap(e) = VI(Pap (e)—
Eap) under Hy(AB).

With some algebra, we can write

(A1) Qap(e)=

where

J
7>
7 CijkEijik
J J J1R1

J)J1

Uz J
= g E EijkEijky —

k#ky | J

Therefore, E[Q 4p(g)] = 0. The number of common subjects
n(z,1"), whose copy numbers for both probes i and i’ from
the each subject are observed, contributes to the variance
of Qagp(e). It follows that

Var(Qag(e))

1 n(i,3")

—zzzﬂyhl

i i ktky

E E Eljksl/]/k (5ijk15i’j’k1)
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The Var(Qap(e)) is finite since the double summation over
i and i’ is of order O(I) by part (a) of Lemma 2.1 in
Wang and Akritas [2010]. To show the asymptotic normality
of Qap(e), note that H; in (A1) are Boreal functions of fi-
nite number of random variables. Therefore, {H;,i =1,...}
is an a-mixing process with the same mixing coefficient
as {€ijk, ¢ = 1,...}. Hence, the Central Limit Theorem
of Wang and Akritas [2010] for a-mixing process (part (b)
of Lemma 2.1) can be applied to Qap if we can show
limsup; E(H}%) < oo.
By Holder’s Inequality,

E(H16) < n15 Ezjkl)w

15 Z 915 | 15 Z B( €uk

k#ky

J
+ J14 ZE(Eijk)16E

g1

(Eijumn) '

With given assumption E(e;;r)'® < oo, we know that
E(H}%) < oo for all 4. This completes the proof. O

Proof of Proposition 3.2.

|TaB — TaB|
I N[y
< Z 2n(i,i")[n(i,d") — 1]
4 I(J —1)2n2(n; — 1)?
ji—ir<In
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(A2) Zlazz ] .71’] ]1) O j]1|
J)J1
1 J
(43) UNE Z G140 (7, 41,57 31) — Giirjga Oiargr |
Jid1.37531
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Apply inequality o5, < C’oz‘ll.C2 | (see Billingsley

[1995]), where C' is some finite constant, the terms in (A5)
and (A6) are bounded by

Z J24Ca‘z i’

i—1/|>1h

2n(i,i")[n(i, ") — 1]
I(J —1)2n2(n; — 1)

1 1
<8171y N Jrerh
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= O(I'™%") = 0 for h > 1/5.

The terms in (A2)—(A4) can be shown to converge to zero in
probability by showing that their second moment is asymp-
totically negligible. We show one of them here:

L on(i,iN[n(, ) — 1]
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where the last equality is due to the fact that
Zle Zz‘l’:1 iy —if| = O(I) and h < 1. Applying similar
proof to the terms in (A3) and (A4), this will complete the
proof. O
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