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Longitudinal semiparametric transition models
with unknown link and variance functions

HuazHEN LIN AND PETER X.-K. SONG*

We present an extension to the conventional transition
mean model by adding a conditional variance model and as-
suming unknown link and variance functions. This extension
gives rise to great flexibility of addressing not only the tran-
sitional relationship between the response and covariates but
also the heteroscedastic mechanism of the underlying mea-
surement process. We propose a kernel-based nonparamet-
ric estimation and inference for the regression parameters.
Our estimation procedure for the regression coefficients de-
tours the unknown link and variance functions, and hence
its implementation is rather straightforward. The simulation
studies show that the proposed methodology is particularly
useful to extract the mean signals when they are heavily
masked by strong variation. Both root-n parametric rate
consistency and asymptotic normality of the proposed esti-
mators are established. Numerical illustrations include also
an analysis of longitudinal data on the length of women’s
menstrual cycles.

KEYWORDS AND PHRASES: Heteroscedasticity, Kernel, Lon-
gitudinal data, Regression.

1. INTRODUCTION

Consider longitudinal outcomes, y;;, measured at time
j for subject i, j =1,...,n;;i =1,..., K. Associated with
each time series {y;;,7 = 1,...,n;} are covariate vectors x;;.
In the analysis of such longitudinal data, transition models
are used to describe the conditional distribution of response
yi; as a function of past responses, ¥;j—1,...,¥:1, and co-
variate x;;. In the framework of generalized linear mod-
els, the conditional mean, p;; = E (y;;|H:j,%;;), and the
conditional variance, v;; = var (Y;;|H;;,%;;), are the cen-
tral profiles of the conditional distribution for modelling.
Here H;; = {yi1, - - 7ym-,1} represents the past responses
for subject i. The classical generalized linear transition
model explicitly expresses the influences of the past values
Yil, - - -, Yi,j—1 on the present observation, y;;, hence it is use-
ful to predict the future of the measurement process using
the past and the present observations as well as the covariate
information.

The transition model of order p takes the form (e.g. Dig-
gle et al., 2002, Chapter 10), h(ui;) = Xi; 843 10—y k¥ij—k
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and v;; = @V (ui;), where h is a known canonical link func-
tion and V is a known variance function determined fully
from an assumed density function for the data. Here ¢ is
the dispersion parameter. The interest for the utility of this
model lies mostly in understanding the mean function of the
measurement process, in which the conditional variance is
completely specified by the mean model via the known vari-
ance function. However, in some practical studies, it is rather
restrictive to require the conditional variance in a bond with
the mean through a fixed manner. In other words, the or-
der p in the mean model does not necessarily suit for the
variance mechanism. The misspecification of the variance
may lead to a great loss of efficiency for the mean param-
eter estimation as well as to inadequacy of commonly used
goodness-of-fit statistics (Chiou and Miiller, 1998; Wang and
Carey, 2003; Ye and Pan, 2006). In addition, in some appli-
cations such as image restoration, microarray data analy-
sis and financial time series analysis, modelling of the vari-
ance itself is of interest; see for example, Diggle and Ver-
byla (1998) and Ruppert et al. (1997), to name but a few.
Hence, many researchers have advocated to relax either the
dependence of the variance on covariates through only the
mean function (e.g. Crowder, 1995 and 2001; Carroll and
Ruppert, 1988; Paik 1992; Carroll, 2003) or the fixed form
of the variance function V(-). For the latter case, various
kernel-based estimators were suggested, such as Miiller and
Stadtmuller (1987), Hall and Carroll (1989), Hall and Mar-
ron (1990), and Neumann (1994); local polynomial based
estimators were considered by Fan and Yao (1998) and Rup-
pert et al. (1997), Chiou and Miiller (1998), and Fan et al.
(2007). However, simultaneously relaxing both restrictions
has been little studied in the literature. The paper is in-
tended to make a contribution in this regard.

We consider a semiparametric transition model of orders
p and ¢, denoted by STM(p, q), given by

p
pij = m (ngﬂ +) ¢kyi,j—k> ;

k=1

q
vij = v* </JijaZ;ja + Zd)l%,j—l) )

=1

(1)

(2)

where m is an unknown smooth link function and v? is an
unknown smooth variance function, both of which are to
be estimated, and z;; is a vector of covariates, which may
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be a subset of x;;. Compared to the traditional transition
model, the proposed model does not require the specifica-
tion of the link and variance functions, in the hope that the
nonparametric functions m and v? can provide, respectively,
data-driven functional relationships of the present observa-
tion on past observations and covariates. In addition, our
models are free of the assumption that the variance depends
on covariates only through the mean.

Throughout the paper, subscripts m and v denote
any terms related to the mean and variance models,
respectively. Also, subscript mv indexes a joint vector
of both mean and variance model components. For in-
stance, 0, = (B',¢1,...,¢,) represents the vector of
regression coefficients in the mean model, while 0, =
(&, 91,...,1,) represents the vector of regression coeffi-
cients in the variance model. Then, 0,,, = (0.,,0.)’. Sim-
ilarly, the covariate vector of the mean model is wy, ;; =
(Xijs Yirj—1s- - Yij—p)', and that of the variance model is
Woij = (2;,Yij—1,--,Yij—q)- Then, the grand vector of
covariates is Wiy, ij = (W, 15, Wy, ;).

We propose a kernel-based estimating equation approach
to the estimation of regression coefficients 6,,,. A novel
methodological contribution of this paper is that the 8,,, is
estimated directly, rather than iteratively, with no need of
estimating the two nonparametric functions m(-) and v?().
Then, these two functions are estimated using any familiar
nonparametric regression method such as that given in Rup-
pert et al. (1997) or Fan and Yao (1998). We show that the
estimator of @,,, is of parametric rate root-n consistency
and asymptotically normally distributed.

The paper is organized as follows. Section 2 presents the
estimation method for the regression coefficients. The large
sample properties of the estimators are discussed in Sec-
tion 3. Section 4 concerns a bandwidth selection procedure.
Details of simulation studies are reported in Section 5. In
Section 6 the proposed model is illustrated by a real data
analysis. Some concluding remarks are given in Section 7.
All technical details are listed in the two appendices.

2. ESTIMATION

To deal with the identifiability issue between the non-
parametric function and the regression coefficients, we in-
voke a set-to-zero constraint; that is, the first components
of ,, and 8, are fixed at certain known values ¢,, and c¢,,
respectively. Therefore, the actual number of parameters to
be estimated in 8,, or in 0, is reduced by one. For the ease
of exposition, in this paper we keep using the above notation
for the subvectors of parameters to be estimated, although
both their first elements need not be estimated.

It is crucial to build up an estimation procedure that is
numerically stable for the estimation of 8, in the variance
model. If following Chiou and Miiller’s (1998) three-stage
approach, one may use the residuals to set up an estimating
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equation for 8, as follows:

K n;
=1 j=pVq+1

X {emﬂj — 1]

3)

Wmv,ija 01})

(pijs Wiy 1100) } Wo i =0,

where N, is the number of terms in (3), D is a weight func-
tion and €, ;; = {yi; —m(wy, ;0 m) }? are the squared resid-
uals from the mean model. pVg+1 = max{p, g+1}. However,
two issues may affect the performance of this method. One
is the analytic difficulty of establishing large sample prop-
erties at a parametric rate K ~1/2, owing to the involvement
of parametric estimate 6,,, and the nonparametric estimate
92(-). The other is the numerical stability, as squares in the
€m,ij’s can easily create a number of unduly large values,
which will impair the stability of estimation, unless a certain
robustness treatment is imposed to downweight the influ-
ence of outliers. Refer to some numerical evidence reported
from our simulation studies in Section 5.

To de-tangle the estimation of 6,,, from the estima-
tion of the nonparametric functions, for the purpose of bet-
ter numerical stability, we propose kernel-based estimating
equations. To proceed, first note that the first and sec-
ond conditional moments of y;; depends on covariates x;;
and past observations H;;, respectively, only through in-
dex dp,ij = Wi, Uem and through joint indices d,,;; and
dy,ij = W, ,;;6,. Second, note that these two conditional
moments can be estimated nonparametrically by the well-
known Nadaraya-Watson kernel method. Let K, and IC,
be two bounded and symmetric kernels with support [—1, 1]
and of orders r,, and r,, respectively. With given band-
widths h,, and h,, the two moment estimates are given by

Y 1 i YKo (%)
Zk Lt K (dm’zlmi&") ’

(5) Eax(6m,6y)

Zk 1 Zl—quH ysz (dm M,,L e ) Ky (du,;;;;&,)
Zk Dy Zpvg1 K (%) Ko (%) |

Then, the least squares estimates of the regression coeffi-
cients 6,, and 08, are obtained as the solutions to the two
following kernel estimating equations:

3 5

1=1 j=p+1
X{ylﬂ_EK( mzje )}:07

1 2
ﬁ Z Z Wo,ij

V=1 j=pVq+1
X {yfj - E2K( mz_]e WU 1]0 )}

(4) Ex(0m) =

(6) Sm(Om) =

(7) Sv(emy 01)) =



where Ny, is the numbers of terms in (6). The estimators
6., and 6, are the solution to the joint equations (6) and
(7). Asymptotic properties of the proposed estimators above
are presented in Section 3, including v/K-consistency and
asymptotic normality. But, all the technical details such as
proofs are listed in the two appendices. We make three re-
marks.

1. A difference of (7) from the existing method given by
(3) is that the former uses directly the squared observa-
tions, y?j, rather than the squared residuals €,, ;;. This
treatment enables us to avoid the unknown link func-
tion m(-) and the unknown variance function v%(-) in
the estimation of 8,.

2. The formulation of (6) is helpful to gain numerical sta-
bility because the estimation of 8,, is little interfered
by the estimation with (7). In other words, the estimat-
ing function of (6) is {6,,v?(:)}-insensitive (Jorgensen
and Knudsen, 2004), which is a desirable property in
handling the estimation of nuisance parameters.

3. Another advantage for the utility of kernels in the con-
struction of the estimating equations (6) and (7), espe-
cially (7), is the robustness against unduly large obser-
vations that are easily created by the squares of obser-
vations. Kernels essentially use local observations and
hence hamper the propagation of local abnormality into
a global effect.

Throughout the rest of the paper, denote the (k1 +
ko + -+ + k,)-th order partial derivative of any function
f(xy,ma, ..., 2,) by fRkzke) () g0 x,); that is,

a(k1+k2+"'+kr)f(l-17 o, ...

(k1k2...kr) T1,L9,...,Tp) =
f (21, 22 ) dxhroxkz . oxk
Forr=0,1,i=1,...,Kand j=1,...,n; let
1 K ng
Cusr(Om) = 575 D D Vi
matm k=11l=p+1
K <Wm,k19mh Win,ij® ) ’
m
1 K Nk
oltmf 4 1 pvat

W 00 — W, .0,
K:v v, v,ij .
o ()

The Newton-Raphson algorithm is used to solve the above
equations (6) and (7). The Hessian matrix of S, (0, 0,) =
(8m(Om)y8u(0m, 0,)") is a 2 x 2 block matrix of the follow-
ing form:

A (0, 0,) = ( Au(On) 0 )

AQl(Omvev) AQQ(OM70U)

, Tr)

where
1 K ng
Ao =3 3w
i=1 j=p+1
[ G Om) Giio(0m) — Gisr(Om) G (Om)'
Gz] 0(0’") '

A21(0m,00) = — Z Z Wois
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0 10
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K ng
1
X3

=1 j=pVq+1
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(6m, 0y)

A22(0m,0,) =

7,]0

An iterative update scheme is used to search the solution
of equation S,,,(0.,,0,) = 0. Since the Hessian matrix is
lower block-triangular, it is numerically stable to iteratively
update the values of 8,,, and 0, as follows,

-1
o5 =0k~ {an®k)}  su(h),

-1
0 =0 — {An(0),00)} s, (05", 0h).

The starting values of the search may be specified from a
GLM fit, where both m(-) and v?(-) are approximated with
high-order polynomial functions.

3. LARGE SAMPLE PROPERTIES

Suppose the distributions of y;;, Wy, ij, Wo.ij, dm,i; and
dy; to be the same as those of y, w,,, w,,d,, and d,, re-
spectively. Denote the true value of 6,,,, by 0., 0. In the rest
of the paper, let dy, = W),0,.0, Ay = (W,,0mm.0, W,0,0),
Pm(+) and p,,(-) be the density functions of d,, and d,.
Denote M (8., 6,) = m2(6m) + v2(0m, 0v)s Emij = Yij —
m(dij)s €vi5 = Yij — M(dm.ij» doiz),

va<6m7 6’0) = E{I(Wm € Qm>wm|dmv = (6m76v)/}7
T (0m) = E{I(W., € Q) Wi|dm = O}
Tv<6ma 6’0) = E{I(Wmv S va)wv|dmv = (6ma 61))/}7
where 2, and €,,, are two compact sets satisfying condi-

tions (13) and (14) given in Appendix 1, respectively. Here
I(C) is an indicator of set C'.

Theorem 1. (Consistency) Under Condition List A in Ap-
pendiz 1, 0,,, converges in probability to 0, ¢ as K — oo.
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Theorem 2. (Asymptotic Normality) Under both Condi-
tion Lists A and B in Appendiz 1, as K — oo, hy, — 0 and
h, — 0,

®) VK (Em - om,o) =N {0, (Alv,;lA’l)‘l} :
where the sensitivity matriz is
A =E [I(wm € Q) )m® (dn ) Won {Wrn — Tm(dm)}'}

and the variability matriz is
®2
ng

V,=F Z {Wim,ij — T (dmij) } €m.ij ;

j=pt1
and
) VK (Ev _ 91,70) ~N {0, (BZV;lBg)*l} ,
where the sensitivity matriz is
By = B [I(Winy € Qo) MO ()W {w, = 73 ()} |

and the variability matriz is

V,=F Z {Wv,ij — Ty (dmv,ij)} Ev,ij

Jj=pVq+1
®2

Lz
—BiAT Y Wiy = Tm(dmi)) Y emis |
j=p+1

with

B, =F {J(Wmv € Qo) MO (Ao )Wo (Wi — T (dy) )

Here the Kronecker product is a®2 = aa’ for any vector a.

Directly evaluating the above sandwich asymptotic co-
variance matrices is numerically challenging, because it in-
volves estimating the derivatives of the nonparametric func-
tions, which appears very tedious. To overcome this diffi-
culty in the numerical implementation, we adopt the boot-
strap method to compute the standard errors of the esti-
mates.

Note that to make the above asymptotic properties valid
both KC,,, and K, are required to be fourth-order kernels, in
which the corresponding bandwidths h,, and h, are of order
n~",1/8 < n < 1/5. Fourth-order kernels can be found in
Miiller (1984). It is known in the literature (e.g. Hastie and
Tibshirani, 1990; Carroll et al., 1997) that to achieve con-
sistency at the root-n parametric rate, the nonparametric
components need to be under-smoothed, resulting in the re-
quirement of higher-order kernels than the familiar second-
order kernels.
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4. BANDWIDTH SELECTION

The proposed method needs to choose suitable band-
widths h,, and h,. We followed Chiou and Miiller’s (1998)
method of bandwidth selection, as it is found to fit well
into our setting. To proceed, let the estimated moments in
(4) and (5) by Ex(d,,) and Esg (dm, dy), respectively, re-
sulted from the terms of d;, x; and d,, bemg replaced with

their corresponding estimates, dm,kl w’ kl@,n and dv Kl =

! - . . .
W), 110y. Define an indicator, for j =1,...,n;,i=1,..., K,

A R o 2
aij = 1, if Eog(dm,ij, dv,ij) > {EK(dm,ij)} ;
0, otherwise.

A Pearson-type goodness-of-fit measure is given by

Qij {yw EK(dm m)}2

Sy oy

~ 2°
i=1j=pVa+1 By (dm,ij, dv,ij) — {EK(dm,ij)}

To find the optimal solution, in this paper we considered
a “greedy” search. That is, we first specified a sequence of
paired grid points of (A, h,), and at each point we then
computed Q(hpm, hy). The optimal bandwidths h,, and h,
can be easily obtained as the pair giving the minimum of
the following objective function:

Q(hm, hy) = |X2<hm,hv)/(N —k)—1],

. K i .
with N = Zi:l E;’:p\/q+1 Qg and k = dlm(wmv,ij)'

2(hyn, hy)

(10)

5. SIMULATION EXPERIMENTS

To examine the performance of the proposed model and
inference method, we conduct two simulation experiments

* in this section. One experiment is designed to have strong

signals in the mean model but weak variability in the vari-
ance model, while the other is set to have strong variability
in the variance model that badly masks the signals in the
mean model. In both simulation studies, the true link and
variance functions are known. So, we compare the estimates
obtained from our approach with unknown link and variance
functions to those obtained from the approach with known
link and variance functions. According to Hall and Severini
(1998), we consider the competing estimates obtained from
the following two estimating equations,

( ) 0"“0 Z Z mzy )
i=1 j=p+1
X {’U ( Woy 1] } {ylj mz] )}Wm,lj =0,
(12) Smw 0m,0 Z Z 1) Wv 1]0 )

1=1j=q+1

X [{yw - m(win,ijem)}Q

v (Wu ”0 )} Wo,ij = 0,



where both m and v? are specified as their true functions.
The Newton-Raphson algorithm is implemented to solve the
above equations (11) and (12). The resulting estimates are
referred to as the estimates with CLVF (correct link and
variance functions).

We simulate longitudinal data from a transition model of
orders p = 2 and ¢ = 1, where the covariate vector for the
mean model is x;; = (2451, Tij2, Tij3) with

Tij1 = Tij1 ~ Ul’lifOI'IIl(O, 3),

Zij2 = ;2 ~ Bernoulli(0.5),

l'ijg = 1+]/TL“ _] = ].7...,711'.
Hypothetically, x1 represents an exposure over time per sub-
ject, xo represents a treatment over time per subject, and
r3 represents a time-dependent trend. The covariate vec-

tor for the variance model is z;; = (2451, %i;3)’. The initial
observation is generated by

v2(2z} e,

Yij = m(xijlg) + 1]

€55 ™ N(Ov02)7.j = 1727

and the other observations are generated sequentially from
the following transition model,

Yij = m(X;;8 + ¢1yij—2 + dayij-1)
+ \/v2(z§ja + 1Yij-1) €ij

N(0,06%),5=3,...,n;.

€ij Ziii
In the two simulation studies, we always fix parameters
(—=0.5,2.5)", 1 = 0.6, or 6,0 = (—0.5,2.5,0.6),
v2(u) = u?, n; = 5, and K = 200. But, we vary regres-
sion parameters 3 = (1,—4,4) X ag, 1 = —0.5 X ag, P2 =
0.5 X ag, or O,,0 = (1,—4,4,-0.5,0.5) x ag, by a factor
ao in the mean model, and the variance parameter o2. The
link functions are m(u) = exp(u) in the first simulation and
m(u) = sin®(um/2) in the second simulation, respectively.
Varying the mean function, 6,, ¢ and o2 will lead to differ-
ent levels of the so-called signal-to-noise ratio (SNR) defined
as follows:

SD {m(win’ijOm,o)}

SN SD { /v2(W,, ;000)57}

where SD stands for the standard deviation. Clearly, the
SNR measures the severity that the variance masks the
mean signals. The sample version of the SNR is calculated
by the substitution of the corresponding sample standard
deviations.

It is worth noting that in the first design of simulation,
compared to the square variance function v?(u) = u?, the
exponential link function, m(u) = exp(u), clearly presents a
dominant trend, so the corresponding SNR is large. In con-
trast, the second design of simulation specifies a periodic link

function, m(u) = sin?(um/2), which is confined within [0, 1]
and presents a weaker trend than the square variance func-
tion. So, the mean signals will be largely buried in strong
noise, and the resulting SNR is small. Alternatively, we vary
the factor ag in the mean model and o in the variance model
to change the strength of the mean and variance signal,
which also results in different values of the SNR.

Tables 1 and 2 report the summary results of the regres-
sion parameter estimation, including the summary statis-
tics of bias, empirical standard deviation (ESD) and mean
squared error (MSE) based on 200 replications. The re-
ported SNR in the tables is the median of the 200 sample
SNR values, each from one simulated data set. In the tables,
ali] means the i-th component of vector a.

From the simulation studies, we learned:

(i) The method with CLVF performs better than the pro-
posed STM when the SNR is around 1, indicating a
balance between the signals from both mean and vari-
ance models. See the top block of Table 1. This is not
surprising, because the CLVF estimation is carried out
under the true link and variance functions, whereas the
STM method assumes these two functions unknown.
One exception, though, is the estimation of parameter
@1, the lag-2 autoregressive effect in the mean model,
where the bias and ESD of the proposed STM estima-
tion are smaller. Also, we found in our simulation stud-
ies that the CLVF is very sensitive to the SNR level.
From some additional simulation experiments, we ob-
served that with a slight increase in the SNR, the bias
and ESD of CLVF’s estimates of mean parameters be-
come smaller than those of the STM’s, whereas the bias
and ESD of CLVF’s estimates of variance parameters
tend to become larger than those of the STM. In con-
trast, the proposed STM is relatively robust against the
change of SNR level.

The CLVF method has been greatly challenged when
the SNR balance is broken. When the mean signal is
very strong, the case presented in the bottom block
of Table 1, the CLVF method appears to have great
difficulty of capturing the variance structure properly,
resulting in about 74% of runs failing to converge. This
is due largely to that in the CLVF method, the esti-
mation of the mean and variance model parameters
are deeply involved each other. In contrast, the pro-
posed method works well, which is beneficial from the
fact that equation (6) is {6,,v?(-)}-insensitive. In ad-
dition, the kernel-based estimation utilizes essentially
local observations, and unduly large observations cre-
ated by yizj in the variance model can be automatically
downweighted or deleted from a local fit. Thus, the per-
formance of the STM method appears quite stable.
The performance of the STM appears steadily bet-
ter than the CLVF method when the variance model
dominates over the mean model, as indicated by the

(iii)

Semiparametric transition models 201



Table 1. Simulation results of the regression parameter estimation by the proposed STM method and the method with CLVF
under m(u) = exp(u) and n = 200. The summaries are based on 200 replicates. The results from the method with CLVF
marked by x are based only on 52 replications, because the Newton-Raphson algorithm failed to converge in 148 out of the
200 simulation runs. Cautious interpretations are needed for the results marked by

ability severely masks the mean signals. So, even if
the link and variance functions are correctly spec-
ified, the CLVF method does not work well. The
top block of Table 2 presents the summary based
only on selected 95 replicates that have the small-
est squared errors, [0, — @mvol/®>. Take one case
among the other 105 runs as an example. The CLVF
estimates of the parameters in the mean model are
6,, = (938.377,620.207, —884.402, —180.466, 28.747)’,
which are very biased in comparison to the true val-
ues 0,0 = (1,—4,4,—0.5,0.5) /3 (with the factor ap =
1/3); the estimates of the parameters in the variance
model are év = (—0.419,2.581,0.357)’, which are rea-
sonably close to the true values 8, ¢ = (—0.5,2.5,0.6)’.
A possible explanation for such a poor performance is
that the large variance can lead to distortion or can-
cellation of the mean effects in the estimating equation
(11), described as follows: for any 6,,, in a neighbor-
hood around the 6,,, 0,

(iv)

(0, a0) Median SNR Bias ESD VMSE
(1/3,1/5) 1.2367 3.2 STM ~0.0201 0.0835 0.0859
CLVF —0.0071 0.0584 0.0589

EE) STM 0.0130 0.0999 0.1007

CLVF —0.0010 0.0348 0.0348

o1 STM —0.0011 0.0092 0.0093

CLVF 0.0018 0.0154 0.0155

¢2 STM 0.0017 0.0105 0.0106

CLVF —0.0021 0.0100 0.0102

al2] STM —0.0311 0.5796 0.5804

CLVF 0.0544 0.3280 0.3324

1 STM —-0.0119 0.1447 0.1452

CLVF —0.0464 0.1250 0.1333

(1/3,1/3.5) 6 x 10° B2 STM ~0.0063 0.0452 0.0457
CLVF* —0.0042 0.0212 0.0216

B,,.13] STM 0.0100 0.0806 0.0813

CLVF* 0.0003 0.0021 0.0022

o1 STM 0.0000 0.0075 0.0075

CLVF* 0.0000 0.0003 0.0003

P2 STM 0.0007 0.0088 0.0088

CLVF* 0.0000 0.0000 0.0000

al2] STM —0.0659 0.6045 0.6081

CLVF* 1.6706 1.3321 2.1367

U1 STM —0.0165 0.1357 0.1367

CLVF* —0.2628 0.0967 0.2801
results in Table 2. In such a situation, strong vari- mQ(W;ijm)/vz(w;’ijOU) are so small that the

mean function m(wy, ;,0,,) literally has no power to

determine the root of the equation with respect to
parameter 6,,. As a result, properly estimating the
0.0 becomes very difficult.

In the bottom block of Table 2, when the dominance
of the variance model decreases by lowering o2 from
1 to 1/4, because again of the weak trend pattern of
m(u) = sin?(ur/2), the performance of the kernel-
based estimation remains still better than the CLVF
method, although the concern on convergence of the
latter is alleviated.

With regard to the computing time, the proposed pro-
cedure converged on average with 10 iterations, and each
iteration took approximately 1.5 CPU seconds on an aver-
age PC that we used to run the simulation studies.

6. A DATA EXAMPLE

To illustrate the application of the proposed method-
ology, we re-analyzed the data from a 1l-year longitudinal

{yij - m(W;n,ijem)} yin study on the length of menstrual cycles in a sample of 157
v (W), ijOU) - v (W) ijev)’ college women (Harlow and Matanoski, 1991; Lin et al.,

where both ratios m(wy, ;;0m)/v* (W), ;;60,) and
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1997). In this study, a total of 1158 standard cycles were
observed with each woman contributing from n; = 1 to



Table 2. Simulation results of the regression parameter estimation by the proposed STM method and the method with CLVF
under m(u) = sin®(x7/2) and n = 200. The summaries are based on 200 replicates, 95 of which are used to produce the
results marked by x. The Newton-Raphson algorithm failed to converge in 75 out of the 200 simulation runs, and among the
remaining 125 convergent cases about 30% of them converged to the values far away from the true parameter values

(0, a0) Median SNR Bias ESD VMSE
(1, 1/3) 0.0748 B,.12] STM —0.0054 0.0870 0.0872
CLVF* 0.0841 3.2543 3.2554
B..3] STM 0.0114 0.1542 0.1547
CLVF* 0.5449 4.2442 4.2790
o1 STM —0.0020 0.0157 0.0158
CLVF* 0.0952 0.5953 0.6029
P2 STM 0.0020 0.0138 0.0140
CLVF* 0.2578 1.1351 1.1640
al2] STM 0.0276 0.5691 0.5697
CLVF 0.0455 0.2643 0.2681
1 STM —0.0135 0.1381 0.1388
CLVF —0.0780 0.0920 0.1206
(1/2,1/3) 0.1634 B,.12] STM —0.0207 0.1003 0.1024
CLVF 1.9801 19.5615 19.6615
B,.3] STM 0.0191 0.1266 0.1280
CLVF —0.5633 15.0120 15.0225
o1 STM —0.0014 0.0185 0.0186
CLVF 0.2194 7.2234 7.2268
o2 STM 0.0020 0.0131 0.0132
CLVF —0.0623 4.3761 4.3766
al2] STM —0.0605 0.5935 0.5966
CLVF —0.0101 0.1773 0.1776
U1 STM —0.0045 0.1573 0.1574
CLVF —0.0300 0.1200 0.1237
n; = 15 cycles. The median value of n; was nine. Three where the errors €;;,¢ = 1,...,K,j7 = 1,...,n; are iid

covariates considered in Harlow and Matanoski (1991) in-
clude: (i) history of an extreme cycle (greater than 43 days,
yes= 1/no= 0), (ii) dieting status (yes= 1/no= 0), and (iii)
living at home or on campus (yes= 1/no=0).

The previous studies have indicated that the menstrual
cycle is highly variable; see for example, Figure 1 in Har-
low and Zeger (1991) and Figure 2 in Lin et al. (1997). Such
strong within-subject heterogeneity at the variance level mo-
tivates Lin et al. to extend Harlow and Zeger’s analysis
based on the standard linear mixed-effects model. In this
paper, using the proposed semiparametric transition model,
our analysis will provide a different approach to modelling
and interpreting this strong heterogeneity. Thus, we present
some new understanding about the transitional behaviour of
ovarian function. It is also useful to forecast the transitional
mechanism of the menstrual cycle based on the historic cycle
information and the baseline covariates.

Denote by y;; the j-th menstrual cycle length for the i-th
women (i = 1,...,157,5 = 1,...,n;). The following model
STM(1,1) is applied to fit the data,

yij = m(B1HIS; + BoCAMP;; + 33DIET;; + ¢1yi 1)

+ \/1}2(/,61‘]‘, OélHISi + OQDIETZ‘J‘ + ¢1yi7j_1) €ij)

with mean zero and variance 02 = 1. m(-) and v?(-) are
unknown link and variance functions, respectively. 8,, =
(81, B2, B3, ¢1)" and 0, = (a1, 9,11) are the unknown re-
gression parameters. Following Lin et al. (1997), we do not
include CAMP in the variance model.

We compare the STM(1,1) based analysis to that given
by a simple linear transition model (LTM) of order 1:

Yij = bo + b1 HIS; + bgCAMPij + bgDIETij + wlyi,j—l + Gij»

where ¢;; are 7id errors with mean zero and variance o2

The simple LTM analysis assumes the identity link function,
m(u) = u, and does not model the variance of the measure-
ment process. Using the bandwidth selection method given
in (10), we found the bandwidths equal to h,, = 2.7 and
h, = 0.15, and the resulting estimates of the regression co-
efficients and their standard errors are listed in Table 3. The
calculation of the standard errors was done via the resam-
pling method with 300 bootstrap samples, in which each
subject is treated as a resampling unit in order to preserve
the inherent transitional feature of the data. The choice of
300 sample size was determined by monitoring the stability
of the standard errors; we found that when the bootstrap
sample size is between 200 and 300, the resulting standard
errors got stabilized and the difference was only marginal.
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Table 3. The estimation results from the analysis of the menstrual cycle length data using the proposed STM(1,1) and the
simple linear transition model (LTM) of order 1

STM(1,1) LTM(1)
000 (std. err.) 9, (std. err.) 0.0 (std. err.)
HIS(z1) 1.198 (-) 4.235 ) 1.198 (0.307)
CAMP(z2) —0.856 (0.4605) - =) —0.668 (0.306)
DIET (z3) —3.601 (1.3906) —7.415 (1.5390) —2.896 (0.455)
LAG-1 OBS.(yj-1 0.101 (0.0501) 0.346 (0.0809) 0.087 (0.022)
(a) Estimated mean function (b) Estimated variance function

20

15
|

Figure 1. The estimated mean function (the left panel) and the estimated variance function (the right panel) are obtained by
the standard kernel-based nonparametric regression function in the semiparametric transition model of order (1,1).

The estimates obtained from the simple LTM(1) model are
also included in Table 3 for comparison.

Our analysis concludes that the diet has a significant ef-
fect on both the mean length of menstrual cycle and the
variance of the cycle. This finding is in agreement with the
previous two analyses by Harlow and Matanoski (1991) and
Lin et al. (1997). What is new from our analysis is that the
variance of the cycle has a significantly positive relation with
the length of cycle at the previous time; that is, the longer
the previous cycle takes, the more variable the current cycle
length is.

Figure 1 displays the estimated mean and variance func-
tions of the STM(1,1) model, with 95% bootstrap confi-
dence bands. For the variance function, we fix the mean in-
dex d,,, at the sample mean (equal to 2.7) of d,, ;;’s. These
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estimated functions are obtained by the standard kernel-
based nonparametric regression approach, after the estima-
tion of the regression coeflicients in both the mean and vari-
ance models is done. Clearly, the two estimated functions
appear to be highly non-linear. The mean function begins
to decrease when the mean index d,,, is around 6. Consider-
ing the edge effect of kernel smoothing technique, our con-
clusion of pattern change would be drawn cautiously for
the range of 6 < d,, < 8. This means that for example,
for an average college woman (with d,, around the average
2.7) dieting will reduce the length of her menstrual cycle,
but this effect may be reversed for a woman with approxi-
mately 6 < d,,, < 8. Similarly, the variance function exhibits
an overall increasing pattern with a few waves. Given these
findings of non-linearity, one should be cautious to interpret



the results given in the LTM(1) based analysis, where the
three covariates and the lag-1 observation are all found sta-
tistically significant. In particular, the covariate CAMP is
only marginally significant from the LTM analysis, but not
significant from the STM analysis.

7. CONCLUDING REMARKS

There are several types of models developed in the lit-
erature for the analysis of longitudinal data. The class of
transition models provides a unique perspective to address
the serial dependence mechanism for the longitudinal data.
Transitional patterns are of primary interest in dealing with
serially correlated data and forecasting. Besides the applica-
tions shown in the paper, our proposed model can be applied
to analyze time-course microarray data and panel data from
finance and economics. In these subject-matters fields, sig-
nals at the mean level are typically masked by strong noise,
so that it is hard to extract the mean signals effectively
and appropriately. This paper presents a useful approach to
overcoming this difficulty.

A striking experience gained from our simulation studies
is the importance of numerical stability. The standard tran-
sition model with correctly specified link and variance func-
tions can easily run into the problem of non-convergence,
and hence numerically very unstable. Practically, this is a
big concern, which can stop practitioners from using the
transition model. In contrast, the proposed method performs
remarkably stable, due to the use of local observations in
the kernel-based estimating equations and the exclusion of
the variance parameters from the estimating equation re-
lated to the mean model. Our approach may result in lower
estimation efficiency in the case when both link and vari-
ance functions are known and the signal-to-noise ratio is
around 1. However, in practice this efficiency loss is hardly
avoided because the true link and variance functions are
never known.

With no doubt, to fit the proposed model well, in which
the unknowns include two nonparametric functions and
some regression coefficients, the sample size cannot be too
small. As suggested by a reviewer, we repeated the simula-
tion studies on STM(2,1) model in Section 5 with sample
size K = 100. We found that the proposed method failed
to converge for 27.5% of the samples, and the CLVF per-
formed even worse. However, using the convergent cases we
obtained findings similar to those from Tables 1 and 2.

One limitation of the proposed methodology is that it is
not applicable to data with categorical response variables.
For the example of binary responses, equation (7) is invalid
because yfj = ¥;;. A new approach is needed to overcome
this limitation. Another remaining issue is the selection of
orders p and ¢ in the application of the proposed STM
methodology. This is a non-trivial issue as in the context
of estimating functions, the lack of objective functions gives
rise to the difficulty of proposing suitable model selection

criteria, such as analogs of the AIC or BIC in the likelihood
based inference. One possible direction is in the line of Pan
(2001), but further exploration is needed.

As for other possible future directions of research in the
area of transition models for longitudinal data, although be-
ing very useful, such types of models are currently limited
to fit only regularly balanced time series. Some extensions
are needed to cope with (i) data with irregular visit times,
(ii) subjects who do not have sufficient number of observa-
tions for the transition models of orders p and/or ¢, and
(iii) data with intermittently missing observations. Method-
ologies such as continuous-time Markov models and missing
data imputation are of possibility, which have been listed as
part of our future projects.
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APPENDIX 1: CONDITIONS

To establish the consistency of the proposed estimators,
the following Condition List A is required.

Al: Kernels K, and K, are one-dimensional bounded sym-
metric density functions around zero with compact
supports. Without loss of generality, the supports are
[-1,1]. In addition, the K,, and XC, have bounded
and continuous second order derivatives that satisfy
Lipschitz conditions, namely, |IC£3) (x1) — Kg)(xgﬂ <
Mlzy — 22| and |K$? (21) — K2 (22)| < M |21 — 22 for
some constant M < oo.

e exp{—7kh2,h%} < oo for all v > 0.

Pm (@), 0m) and E(y|d,, = w,,0,) are uniformly
continuous in w,, and 0,,; Pm.(@,,0m,=.,0,) and
E(y?|dme = («,0.m,w.0,)") are uniformly continuous
in @,,, @y, 6,, and 6,,.

There exist compact sets ©,, and ©, such that 0,, €
©,, and 0, € ©, and

A2:
A3:

A4:

inf

/ /
P (Wrn i O W)y 5600) > 0.
4,5,0m €0 ,0,E0, mv( m,ij 2 ms Wy ij v)

A5: Let ¢,(01y) = E {WUE(y2|dmv = (w;nOm,WLOU)’)} —
E (vaQ)a and gm(am) = E{WmE(y|dm = W;nam)} -
E[w,,y]. There exists a unique solution to the system
of two equations, ¢,,(0,,) = 0 and ¢,(0,,,) = 0.
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To establish asymptotic normality for the proposed esti-
mators, some additional assumptions are given in the Con-
dition List B below.

B1: There exist compact sets €, and ,, with €,,, =
Q,, x Q,, such that

(13)

K Kz
SN IWais & Q) [Winis| = 0, (KV),

i=1 j=p+1
and

K n;
(14) Z Z

i=1 j=pVg+1

I(Wmvvij g va)|w’v,ij| == Op(Kl/z).

B2: Derivatives (kl)((5m), pgr]fql/kz)(csm, 8),  mF(s,),
2(0,k2) (5 50)s T,Sf;’k”(ém,év), 7,(,?1)(5771) and
1§k1 ok2) (6m;5'u)’ kl = 17"'7Tm +17 k? = 17""TU+1’

exist and are bounded, where r,,, and r, are the orders

of K, and K, respectively.

Khi — oo, Kh} — oo, K3h2,h8 — oo, K3h8 h? —
gk _, o, _JsK _ _, g Kh2m — 0 and

0, /K3 h, /Khmh3

Kh2 — 0.

B3:

APPENDIX 2: PROOFS

Proof of Theorem 1. We present the proof to the consis-
tency of 8,,, and the consistency of 8, can be argued in
a similar manner. Clearly, evaluated at the true values,
9m(0m0) = 0. First, we show that for any 6, in a neigh-
borhood of the true 6,0 such that |0, — 6,0/ < ¢,
Sm. K (0m) — gm/(0.,) with probability one. Note that

nq

K
1 ~
Sm, Kk ( N— Z Z Wonij 1 Wij — EK(W;n,ijom)}
i=1 j=p+1
1 K n;
- N, Z Z Win,ij{¥ij — E(ij[Wim,i) }
=1 j=p+1
ng
Z Z Wm U{EK mlj m)
N i=1 j=p+1
7E(yl]‘wm k%) )}
| XK
"N Z Win i {E (i [ W, 10m)

=1 j=p+1
— E(Yij|Wim,ij) }-

By the strong law of large numbers, the first term

1 Z’L 1 ZJ p+1 Wm 'LJ{y’L] - (yzj‘wm,w)} g 07 and
the third term —— ZZ 1 ZJ ot Wi {E(Yij W, ;,0m) —
E(yij|Wm.ij)} 3 gm(Gm) as K — oo. By Lemma 1 of
Ying and Cook (2005), under Conditions Al to A4, the sec-
ond term converges to zero in probability. Finally, given the
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compactness of the set ©,, there exists a 6, € O, such
that 0,, k = 0,, + 0,(1). This implies that with probability
one gn,(0;,) = 0, because 0,, i is a sequence of roots such
that s,k (0m, k) = 0 for all K. Condition A5 of the unique
root immediately leads to 6, = 0,,0. The consistency is
proved. O

Lemma Al. Under the Condition List A and Condition
B2 and B3, for ky,kes = 0,1,

dm - 5m dv - 51}
E{’Cgfl) (h> K (h) g(dmu)}

= {9(8m0) P (6m) Y FF2) - O(BI + LY,

(,1)k1+k2
hfﬁ+1h£2+l

where g(-) is a function whose derivatives grmTHret1(§, )
exist and are bounded.

Proof of Lemma Al. See Horowitz (1996). O

Lemma A2. Letd;;; = w, Uet 0, dt i =Wy UOt, t=m,v.

For any given @y € Qmy, 0 = w00 and (5t = wtat,
t = m,v. Denote

oy Ami’_(gm
Fror(Ormo) = Nh Ty Z Z <;17m)

1=1 j=pVg+1

C/l\v,ij -
<Ky (T

dy
),T':O,l,

K n;

— 1 2r dm,’bj - 6m
Fmv,’r‘(‘smv) - Nyhphy Z . Z Yai Kom < hm
=1 j=pVq+1
x K. (%) r=0,1.
As K — oo,
ﬁmv,o(gmv) = Fmv,O(amv) + (0 - 0 ) 100) (5mv 51}7 wm)

+ (/év - 01},0) F1(J010 (571’“ 5’Uy w'u)
+ 0p(|0m — Omol) + 0, (10, — 0y 0]),
ﬁmv,l(gmv) = Fmv 1(6mv) + (/ém - Om O)IA(IOO) (5m7 5'Ua wm)
(0 - 0 )/A(Olo)(émuévawv)

+0p(0m = O 0]) + 0, (18, — 8., 0]),
where Ty (dmy, i) = — {E(Wt|dimo = Omu) — @t} Do (0mo),
and
At(émvawt - {E(y Wt|dmv - va) - M(émv)wt}
X pmv(énw)a t= m,v.
Proof of Lemma A2. We prove the first result for

Fmv,o(dm,gv) and the second can be proved in a simi-
lar way. Let the first-order Taylor expansion gives, with
r =0,



(15) where Yo Oy @m) = — {E(Win|dm = 0m) — @} P (Om),
and Am((smawm) = 7{E(ywm|dm = 67")
—m(am)wm}pm(ém)-

~

Frns.0(0m 3)

Y i=1j=pVa+l line of the proof for Lemma A2. O

(1) m,iJ m
S 3 ()
d 151 Jmpvatt Pmof of Theorem 2. First, it follows from (4) that
X Ky ( M;z v) (W, ij — @) (O — 6:m.0) ( loom) = E(y|(5 ) = G )/Gm 0( ) Applying the
’ results of Lemma A3 concermng val and Gm70, we obtain

T DI DN L)

m, 1 677’74 v, ) ’U
N h h Z K ( . ) Ky < I ) Proof of Lemma A3. Lemma A3 can be shown on a similar
m ) 7”
)

UV i=1 j=pVg+1 (18)
kD (B =00 () (@, - 6,0) G
v v, v v v, ~ m m 5m m
A( hay ) N E(y|wm) _ m((;m) _ 1( )G E(s )) ( )
+0p(|0m — Om 0]) + 0p(|0v — Ov,0]) m,0(0m
At 00 (Bm0) + T (s @) o — Orm) L Bu—00) (A Gy @) = () T50 (6 ) }
+T2,K(wmaw1))/(b\v — 91;,0) Gm,o(é’m)
+ 0p(|§m —Omol) + Op(‘/év —6u,0()- +o (|”0‘ ) 0|) _ Gm,l((sm) — m(ém)Gm,O((sm)
' m m, =
Pm (O
It follows from Theorem 2.37 of Pollard (1984, p. 34) that - (10) (Om) (10)
B = 01m.0)' {AG7 (s @im) = (0 ) T8 (B ) |
su T 5 (@Wmo) — E{TYy 1 (o +
e, T, s (o) = BAT i (o)} Pm(6m)
37 41/2 S 1
:O{logK/(Khmhv) } +O;D(|0m70m70|)+OP N _h h :

By Lemma Al, we obtain E{Ti x(@mn,)} -— o R A
L0 g ) = Ot 5 ), whore me s the S, from (5) we have EQln) = BBn) =

~

order of kernel K;, t = m,v. Hence, under Condition B3, Finw,1(8m0)/ Frno,0(8mo).- 1t follows from Lemma A2 that

(16) Tl,K(wm'U) - Fsrlzoo)(fsmv Oy, W) = Op(l)- (19)
Similar arguments result in . Fono 1 (8mv) — M(8mo) Fino.0(Sms)

E(y?|wmo) — M (8mv) =

(010) FmU,O((smv)
(17)  To x(@Wmw) =Ty (0, 0n, o) = 0p(1). R
@ = Om0) { AL Gy @) = (BP0 B )}
Then, Lemma A2 follows from (15), (16) and (17). o + Fono0 (3me)
Lemma A3. Denote forr=0,1, @, — 8, {A§010)(6mv,wv) _ M(5mU)F7gOlO)(5mv,wu)}
~ 1 K o ni C/i\ S * Finv,0(0mo)
G (6,) = TG, | i ZOm ) . N 1
)= N ;gp;ly ’ i (B =B+ 5B =600+ 0 (755
1 & dmij — Om :
G (6m) = N Z YKo hi . uniformly over @, € Q.
T =1 j=pt1 " Second, noting that Ny = O(K),t = m,v, the estimates
S ~ Hm and 0 are the roots of the following equations,
For large K, with §; = w}0;,t = m,v,
é\:rn gm - Gm 5m + am - em /T'E;}LO) 5ma m
0(0m) ’O(A) ( O)A (Om, @m) KZ Z {yi; — E(Y|Win.ij) JWim.ij = 0,
+0p(10m — O o)) +0p(16, — 0y 0]), i=1 j=p+1
Gt (Om) = G 1(6m) + (B — O10) ALO) 5m,wm
1(6m) ,1(A) ( ,o)A ( ) KZ Z {12 — B2 Wi i) }Woij = 0,
+0p(|0m — O 0) + 0p(100 — B40]), i=1 j=pVg+1
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which can be rewritten as follows,

(20)
1 K Mg
% D> Ay = mldinig) YW

i=1 j=p+1

1 K nig N
~% > AE Wi [ Won.i5) = m(du,i5) YW iy = 0,
i=1 j=p+1

(21)

K 2
% Z Z {y’?j - M(dmv,ij)}WU»ij

i=1 j=pVq+1

K ng
1 - =~
K > > {E(yzlwmv,m‘) - M(dmv,z‘j)} Woij = 0.
1=1 j=pVq+1
Plugging (18) into (21) and (19) into (21), exchanging the
order of two summations, and applying Condition B1, we
obtain

K n;
1 k3
e Yo > i — (i) Wi
i=1 j=p+1
1 K ng
K Z Z T (dm,ig) {yi; — m(dim,ij) }
i=1 j=p+1
— Al(am —0,,0) = OP(K*1/2)’
and
1 K ng
Ve Yoo > Ay M(dnoig)hwoy,
i=1j=pVq+1
1 K n;
K Z Z To(dmo,ij) {Z/z?j - M(dmv,ij)}
i=1 j=pVq+1
_ Bl(/ém - Bm,O) — Bg(av — HU,O) = Op(K_1/2),
Hence, Theorem 2 is proved. 0
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