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A joint model of longitudinal and competing risks
survival data with heterogeneous random effects
and outlying longitudinal measurements
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This article proposes a joint model for longitudinal
measurements and competing risks survival data. The
model consists of a linear mixed effects sub-model with
t-distributed measurement errors for the longitudinal out-
come, a proportional cause-specific hazards frailty sub-
model for the survival outcome, and a regression sub-model
for the variance-covariance matrix of the multivariate latent
random effects based on a modified Cholesky decomposi-
tion. A Bayesian MCMC procedure is developed for param-
eter estimation and inference. Our method is insensitive to
outlying longitudinal measurements in the presence of non-
ignorable missing data due to dropout. Moreover, by mod-
eling the variance-covariance matrix of the latent random
effects, our model provides a useful framework for handling
high-dimensional heterogeneous random effects and testing
the homogeneous random effects assumption which is oth-
erwise untestable in commonly used joint models. Finally,
our model enables analysis of a survival outcome with inter-
mittently measured time-dependent covariates and possibly
correlated competing risks and dependent censoring, as well
as joint analysis of the longitudinal and survival outcomes.
Illustrations are given using a real data set from a lung study
and simulation.

Keywords and phrases: Joint model, Competing risks,
Bayesian analysis, Cholesky decomposition, Mixed effects
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1. INTRODUCTION

In the past decades, much work has been done in the
field of joint modeling of longitudinal and survival data.
Joint models have been proposed to adjust inferences
on longitudinal measurements in the presence of non-
ignorable missing values due to dropout (Schluchter, 1992;
DeGruttola and Tu, 1994; Little, 1995; Hogan and Laird,
1997; Henderson et al., 2000; Elashoff et al., 2007, 2008); to
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solve difficulties in Cox proportional hazards model arising
from time-dependent covariates which are possibly missing
at some event times or subject to substantial measurement
error (Faucett and Thomas, 1996; Wulfsohn and Tsiatis,
1997; Faucett et al., 1998; Wang and Taylor, 2001;
Xu and Zeger, 2001; Song et al., 2002; Brown and Ibrahim,
2003; Tseng et al., 2005; Ye et al., 2008); and to as-
sess covariates effects on both endpoints simultaneously
(Henderson et al., 2000; Zeng and Cai, 2005; Elashoff et al.,
2007, 2008; Liu et al., 2008).

Most joint models in the literature assume a normal
random error for the longitudinal sub-model. The normal
model, however, can be sensitive to outliers or heavy-tailed
data. For example, the profile plot of repeated measured
FVC (Forced Vital Capacity) in Figure 1 reveals several
suspiciously large values. We demonstrate in Section 3 that
the normal model is sensitive to the extreme values. We also
observe in a simulation study (see Tables 2, 3) that the re-
gression and random effects parameters in a normal model
can be seriously biased in the presence of outliers.

This paper proposes a new joint model of longitudinal
and competing risks survival data. Our model consists of
three sub-models: a linear mixed effects sub-model with a
t-distributed measurement error, a cause-specific hazards
sub-model for the survival outcome, and a variance-
covariance sub-model for the multivariate latent random
effects based on a modified Cholesky decomposition. A
Bayesian MCMC method is developed for estimation and
inference. Our model has several distinct features from
existing models. The inference resulting from the linear
mixed effects sub-model with a t-distributed measurement
error is more robust to outlying longitudinal measurements
or heavy-tailed data than its normal-error counterpart.
Secondly, the cause-specific hazards sub-model for the
survival outcome allows one to account for possibly cor-
related competing risks and dependent censoring. The
random effects of the two sub-models induce the correlation
between the longitudinal and survival outcomes. Finally,
by extending the idea of Pourahmadi (1999), the sub-model
for the variance-covariance matrix of the multivariate latent
random effects based on a modified Cholesky decomposi-
tion allows for high-dimensional heterogeneous covariance
matrices of the multivariate random effects and the result-
ing estimated covariance matrices are guaranteed to be
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positive definite. Our method also provides a framework
for testing the homogeneous random effects assumption of
a homogeneous joint model.

It is worth noting that compared to other robust meth-
ods such as Huber’s robust regression (Huber, 1973), the t-
distribution based method is mathematically more tractable
and computationally simple. The use of the t-distribution
in applications with heavy-tailed or outlying data is well-
developed in the literature. Lange et al. (1989) and Liu
(1996) used it in linear and nonlinear regressions. Rosa et al.
(2003) applied a class of normal/independent distribu-
tions (Lange and Sinsheimer, 1993), which include the t-
distribution as a special case, in linear mixed effects models
with ignorable missing data. Li et al. (2009) extended the
idea to a robust joint model for longitudinal and survival
data with possible non-ignorable missing data due to some
terminating events. Our approach is distinct from Li et al.
(2009) in several aspects. Our Bayesian MCMC method can
easily handle high-dimensional random effects that other-
wise complicates the likelihood-based method of Li et al.
(2009). Secondly, Li et al. (2009) assume a homogeneous
variance-covariance matrix for the random effects, while we
allow heterogeneous random effects. Finally, the homoge-
neous variance-covariance assumption is untestable under
the Li et al. (2009) model. Our model provides a useful
framework to test this assumption.

This paper is organized as follows: in Section 2 we define
the robust joint model and derive a Bayesian estimation
procedure. In Section 3, we illustrate our method using a
data set from scleroderma lung study (Tashkin et al., 2006).
In Section 4, the performance of our method is examined
by simulation. A discussion of the method is provided in
Section 5. Technical details of the MCMC algorithm are
deferred to the Appendix.

2. MODEL AND ESTIMATION

2.1 Robust joint model

Suppose there are m subjects in the study. For the ith

subject at time t, the longitudinal outcome Yi(t) follows a
linear mixed effects model:

Yi(t) = X
(1)
i (t)T β + Zi(t)T Ui + εi(t)(1)

where X
(1)
i (t) and Zi(t) are vectors of covariates associated

with the fixed effects β (p × 1) and the random effects Ui

(q×1) respectively. Assume that the measurement error εi(t)
is t(0, σ2, κ) distributed with κ degrees of freedom. Assume
further that εi(t) ⊥ Ui and εi(t1) ⊥ εi(t2) for any t1 �= t2.

During follow-up, each subject may experience one of g
distinct competing causes of failure or may be right cen-
sored. Let Ci = (Ti, Di) be the competing risks survival
data on subject i, where Ti is the failure or censoring time,
and Di assumes a value from 0, 1, . . . , g, with Di = 0 in-
dicating a noninformative censored event and Di = k in-
dicating the kth failure type, k = 1, . . . , g. Dependent (or

informative) censoring is treated as one of the g types of
failures. The cause-specific hazards sub-model for the com-
peting risks survival data is specified as follows:

λk(t; X(2)
i (t), υi, γk, νk)

(2)

= lim
h→0

P [t ≤ Ti < t + h, Di=k|Ti ≥ t, X
(2)
i (t), υi, γk, νk]

h

= λ0k(t) exp{X(2)
i (t)T γk + νkυi}.

The function λk(t; X(2)
i , vi, γk, νk) is the instantaneous fail-

ure rate from cause k at time t given the vector of covariates
X

(2)
i (t) and the latent unknown factor vi, in the presence of

all other failure types. The regression coefficient νk repre-
sents the effect of the latent variable vi with ν1 set to 1
to ensure identifiability. The parameter γk represents the
effects of the observed covariates X

(2)
i (t) on cause k. We

further assume that the kth baseline hazard is a step func-
tion, λ0k(t) = λ

(s)
0k , for t

(s−1)
k < t ≤ t

(s)
k , where 0 < t

(1)
k <

· · · < t
(Sk)
k < ∞ is a partition of (0,∞) and Sk indicates the

number of steps for the kth baseline hazard. The competing
risks model is one of the useful methods to handle dependent
censoring. The identification of dependent competing risks
models in which each risk has a mixed proportional hazard
specification with regressors, and the risks are dependent by
way of the unobserved heterogeneity, or frailty components,
has been proved by Abbring and Van den Berg (2003).

Assume that

Wi =
(

Ui

vi

)
∼ Nq+1

((
0
0

)
, Σi =

(
ΣUi ΣUvi

ΣT
Uvi

σ2
vi

))
.(3)

Similar to Pourahmadi (1999), we model the covariance
matrices Σi through a modified Cholesky decomposition
MiΣiM

T
i = Hi, where Hi is a diagonal matrix with positive

entries and Mi is the lower triangular matrix with −φi,jl

as its (j, l)th entry. This decomposition has a clear statisti-
cal interpretation: the below-diagonal entries of Mi are the
negatives of generalized autoregressive parameters (GARP),
φi,jl, in the autoregressive model

Wij =
j−1∑
l=1

φi,jlWjl + eij , j = 1, . . . , q + 1.(4)

The diagonal entries of Hi are the innovation variances (IV)
h2

ij = var(eij) and we have cov(eij , ejk) = 0 if j �= k
(1 ≤ j, k ≤ q + 1 and i = 1, . . . ,m). The GARPs and the
logarithms of the IVs are modeled with linear and log link
functions:

(5)

{
φi,jl = aT

i,jlη1 for i = 1, . . . , m

log h2
ij = bT

ijη2 j = 1, . . . , q + 1, l = 1, . . . , j − 1

where ai,jl and bij are covariates, and η1 and η2 are low-
dimensional parameter vectors. For example, ai,jl and bij
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may contain group indicators, implying that the random ef-
fects covariances are heterogeneous. The homogeneous ran-
dom effects assumption in existing joint models becomes a
testable assumption within our model framework. Further-
more, the resulting estimated covariance matrix is guaran-
teed to be positive definite. The latent association between
the longitudinal measurements and survival outcomes can
be assessed by testing the hypothesis ΣUvi = 0.

2.2 Likelihood

The standard maximum likelihood method involves inte-
grating out latent variables from the log-likelihood function
which is difficult when dealing with high-dimensional vari-
ables. We develop a Bayesian estimation procedure and a
Markov chain Monte Carlo (MCMC) method for estimation
and inference. To make the sampling of σ2 and β easier, we
use the fact that the t-distributed error can be represented
as εij = τ

−1/2
ij εij , where τij |κ ∼ Gamma(κ/2, κ/2) is in-

dependent of Ui and εij ∼ N(0, σ2). We define the param-
eter set in the joint model as: Ω = {β, σ2, γ, ν, λ0, η1, η2},
where γ = (γ1, γ2, . . . , γg), ν = (ν2, . . . , νg) and λ0 =
(λ(1)

01 , λ
(2)
01 , . . . , λ

(Sg)
0g ). We assume that for each subject i the

longitudinal data are independent of the survival data, given
all the parameters in Ω, latent factors θ = (W, τ), and co-
variates (Xi, Zi). For simplicity, we assume κ is prespecified.
Thus, the full likelihood function for Ω, conditional on the
data (Yi, Ci) for i = 1, . . . , m and covariates, is:

L(Ω|Y, C)(6)

∝
m∏

i=1

p(Yi, Ci|Ω) =
m∏

i=1

∫
θ

p(Yi|θ, Ω)p(Ci|θ, Ω)p(θ|Ω)dθ

It is convenient to work directly with the joint distribution
of the observed data (Y, C) and the unobservable random
vector θ, conditional on Ω, which facilitates the MCMC im-
plementation. The conditional joint density of (Y, C) and θ
is:

p(Y, C, θ|Ω)

(7)

=
m∏
i

p(Yi|θi, Ω)p(Ci|θi, Ω)p(θi|Ω)

∝
m∏

i=1

ni∏
j=1

(
2π

σ2

τij

)− 1
2

exp
{
− τij

2σ2
(Yij − X

(1)T
ij β − ZT

ijUi)2
}

×
g∏

k=1

((λk(Ti))I(Di=k) exp{−Hk(Ti)})

× exp
{
−1

2

q+1∑
j=1

[
bT
ijη2 +

(
Wij−

j−1∑
l=1

aT
ijlη1Wil

)2

× exp(−bT
ijη2)

]}

where λk(Ti) = λ0k(Ti) exp{X(2)
i (Ti)γk + νkvi} and

Hk(Ti) = exp(νkvi)
Sk∑
s=1

I(Ti > t
(s−1)
k )λ(s)

0k(8)

×
∫ min(Ti,t

(s)
k

)

t
(s−1)
k

exp(X(2)
i (t)γk)dt

2.3 Estimation and inference

Our Bayesian method involves a combination of di-
rect sampling from the full conditional distribution,
Metropolis-Hastings (MH) sampling (Hastings, 1970;
Chib and Greenberg, 1995) and adaptive rejection sampling
(ARS) (Gilks and Wild, 1992). We estimate the parameters
by their posterior medians. Approximate 95% probability
intervals are based on the 2.5th and 97.5th percentiles. Stan-
dard errors are obtained from the standard deviations of the
posterior samples. The convergence of the Gibbs sampler is
monitored by examining time series plots of the parameters
over iteration and the Gelman and Rubin (1992) approach
of using multiple chains.

We assume independent priors for Ω. We specify Nor-
mal priors for the parameters β, γ, ν, η1 and η2, lead-
ing to conjugate posteriors for β and some components of
the η1. We use an inverse Gamma prior for the measure-
ment error variance σ2 and a gamma prior for each step
of the kth baseline hazard function λ0k by which conju-
gate posterior distributions are easy to obtain. Because the
full conditional distributions of the parameters β, σ2, and
λ

(s)
0k , (s = 1, . . . , Sg, k = 1, . . . , g) are standard distributions,

drawing random variates from their full conditional distri-
butions is straightforward. The full conditional distribution
of the random variate τij given κ is also known. For other
parameters and the random effects (Ui, vi), we either use
a Metropolis-Hastings step with the normal approximation
to the full conditional distribution as the candidate distri-
bution or apply the adaptive rejection sampling technique.
The technical details on the sampling distributions are given
in the Appendix.

The initial values of the parameters for sampling are
obtained by modeling the longitudinal data and survival
data separately by a linear mixed model and a cause-
specific proportional hazards model. The initial value for
λ

(s)
0k (s = 1, . . . , Sk, k = 1, . . . , g) can be obtained by draw-

ing a random variate from the gamma full conditional dis-
tribution described in the Appendix.

3. AN EXAMPLE

We apply the developed method to analyze a data
set from a scleroderma lung study (SLS) (Tashkin et al.,
2006) to evaluate the effectiveness of oral cyclophosphamide
(CYC) for scleroderma lung disease. The SLS enrolled 158
patients, which were randomized to receive either CYC (79
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patients) or placebo (79 patients) for 12 months. An addi-
tional year of follow-up was performed to determine if CYC
effects persisted after treatment. The primary outcome is
forced vital capacity (FVC, % predicted) which was mea-
sured at 3-month intervals from the baseline. Treatment fail-
ure was defined as a ≥ 15% (absolute) decrement in %FVC
from baseline occurring at least 3 months into treatment
that was sustained for at least 1 month.

Our analysis is based on the 6–24 months %FVC scores
of 141 patients. The longitudinal profile of %FVC over time
for the two groups (Figure 1) reveals some potential out-
liers. We are particularly concerned how these outlying data
points would affect the joint model inference. We observe 14
treatment failures or deaths, 32 informative dropouts and
5 noninformative dropouts. A dropout is noninformative if
there is no evidence showing that the dropout is related
to the disease or the treatment, and informative otherwise.
Since the informative dropout is potentially related to the
patient’s disease condition, it causes not only non-ignorable
missing data in %FVC, but also dependent censoring for
treatment failure or death.

We consider two baseline factors in our joint model
when assessing the CYC treatment effects: baseline %FVC

(FV C0), and lung fibrosis (FIB0). It is suggested by clin-
icians that the beneficial effects of CYC on pulmonary
function continue to increase after stopping treatment at
12 months and eventually begin to wane after 18 months.
Therefore, we fit the following linear spline mixed effects
model with a change point at month 18 for the longitudinal
measurements %FVC:

(9)
%FV Cij = β0 + β1FV C0i + β2FIB0i + β3CY Ci

+ β4Timeij + β5(Timeij − 18)+ + β6FV C0i

× CY Ci + β7FIB0i × CY Ci + β8Timeij

× CY Ci + β9(Timeij − 18)+ × CY Ci

+ ZijUi + εij

where Ui = (Ui1, Ui2)T is the subject-specific random effects
and the εij is the mutually independent measurement errors.
Since we include baseline %FVC as a fixed effect covariate,
we don’t consider random intercept to avoid possible con-
founding effects and Zij = (Timeij , (Timeij − 18)+).

A cause-specific competing risks sub-model was applied
to model disease-related dropout (risk 1) and treatment fail-

Figure 1. (a)–(b) Profile plots of observed %FVC for CYC group vs. placebo group including potential outlying
measurements: ◦ for treatment failure or death; 
 for informatively censored events; � for noninformatively censored events.
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ure or death (risk 2):

(10)
λ1(t) = λ01(t) exp(γ11FV C0i + γ12FIB0i + γ13CY Ci

+ γ14FV C0i × CY Ci + γ15FIB0i × CY Ci + vi)

and

(11)
λ2(t) = λ02(t) exp(γ21FV C0i + γ22FIB0i + γ23CY Ci

+ γ24FV C0i ×CY Ci + γ25FIB0i × CY Ci + ν2vi).

The latent variables from both sub-models are assumed to
have a multivariate normal distribution with mean zero and
variance-covariance matrices

Σi =
(

ΣUi ΣUvi

ΣT
Uvi

σ2
vi

)
.

We first test the homogeneous random effects covariance
matrix assumption by considering subject-dependent covari-
ates for aijl and bij . Specifically, we choose aijl = bij =
(1, CY Ci), which allows heterogeneous covariance matrices
for different treatment groups, and test the null hypothesis
by examining if the 95% credible interval of CYC effects
contains zero for all the GARP and IV parameters. None
of the 95% CIs for CYC of all the covariance parameters
exclude zero (results not shown here), suggesting no obvi-
ous violation of the homogeneous random effects covariances
assumption.

We use independent noninformative prior distributions
for all the parameters with relatively large variances. A 3-
step baseline hazard function, with the time points defin-
ing the steps being equally-split percentiles of the observed
event times, is utilized for the informatively censored events
and the event of treatment failure or death. Sensitivity
analyses with 4- and 5-step baseline hazard functions are
conducted and show no significant difference. The corre-
sponding priors for the parameters are β0 ∼ N(70, 103) and
βl ∼ N(0, 103) for l = 1, . . . , 9; σ2 ∼ IG(10−3, 10−3); γkr ∼
N(0, 103) for k = 1, 2 and r = 1, . . . , 5; λ

(s)
0k ∼ Γ(0.1, 0.1)

for s = 1, . . . , Sk and S1 = S2 = 3; ν2 ∼ N(0, 105); and
each element of η1 and η2 ∼ N(0, 105). We use 30,000 itera-
tions of MCMC sampling chains following a 15,000-iteration
“burn-in” period.

We identify 7 possible outlying data points by examining
the residuals from our robust joint model. Table 1 compares
results from a normal joint model with and without the out-
liers together with a model with a t-distributed error (κ = 3)
using all data points. The estimation procedure for the nor-
mal joint model is the same except that there is no need
to estimate parameter τij (Huang, 2008). First, the outliers
are observed to be influential to the parameter estimates for
the longitudinal endpoint. The t-model with all data and
the normal model without outliers yield consistent conclu-
sions. For example, both methods reveal a significant time

trend in the placebo group before 18 months (β1), which
indicates a more steep decrease before 18 months in %FVC
scores than that estimated from the normal joint model with
all the data points. They also both identify a significant in-
teraction (β8) between the time trend (before 18 months)
and the treatment group. In contrast, these effects are not
significant using the normal method with all data points.
Secondly, comparable estimates at the survival endpoint are
obtained for all three models. Thirdly, all models identify a
negative significant covariance ΣU1v between the random
slope before 18 months in the longitudinal model and the
latent variable of the survival model, and a positive signif-
icant covariance ΣU2v between the random slope after 18
months in the longitudinal model and the latent variable
from the survival model, which indicates a dependence be-
tween the longitudinal measurement %FVC and the survival
endpoint. We also observe a significant positive coefficient ν2

which suggests a latent positive association between the two
competing risks. Finally, the negative sign of ΣU1v and pos-
itive sign of ΣU2v together with the positive ν2 indicate that
before month 18, there is a lower risk of treatment failure
or death and informative dropout for patients with higher
than average increasing rate of %FVC over time; after 18
months, the trend is reversed due to the negative associa-
tion between the two slopes. In summary, the longitudinal
sub-model with a normal error is not robust against poten-
tial outliers in the longitudinal data, although the outliers
may not have much impact on the estimation of the survival
model parameters.

The models are assessed using the Deviance Informa-
tion Criterion (DIC) (Spiegelhalter et al., 2002). The robust
joint model gives the lowest DIC of 5089.35, which indicates
the best fit. We note that there are several versions of DIC
for missing data models (Celeux et al., 2006; Chen, 2006).
Here we use the DIC constructed from the conditional distri-
bution while treating both Ω and W as parameters because
it is easy to compute. We conduct a small simulation to eval-
uate the DIC which selects 147 times out of 200 datasets and
the effective dimension is always positive.

4. SIMULATION STUDY

We carry out a simulation study to assess the perfor-
mance of our robust joint model and compare it to the
joint model with a normal measurement error. The longi-
tudinal measurements are simulated from the following ran-
dom slope model:

(12) Yij = β0 + β1tij + β2X2i + Uitij + εij

where tij = 0, 0.15, 0.3, . . . , 3, represents the scheduled
visit time and X2i ∼ Bernoulli(0.5) is a group indicator.
We generate 1% outliers in the placebo group from normal
distributions N(60, 100) and N(−60, 100) with rates 30%
and 70%, respectively. The rest of the data have measure-
ment error εij ∼ N(0, 5). We simulate two competing risks
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Table 1. Analysis of 6–24 months scleroderma lung study data

Normal distribution t-distribution (κ = 3)

With outliers Without outliers With outliers
Estimate (95%CI) Estimate (95%CI) Estimate (95%CI)

Longitudinal outcome %FVC

T ime (β1) −0.13(−0.30, 0.05) −0.18(−0.33,−0.02) −0.20(−0.36,−0.03)
T ime18 (β2) 0.23(−0.25, 0.74) 0.15(−0.25, 0.53) 0.22(−0.13, 0.56)
FV C0 (β3) 0.92(0.83, 1.03) 0.88(0.79, 0.98) 0.93(0.85, 1.01)
FIB0 (β4) −2.05(−3.22,−0.94) −1.83(−2.84,−0.81) −1.88(−2.75,−0.99)
CYC (β5) −1.38(−3.66, 1.00) −1.00(−2.89, 0.88) −1.12(−2.83, 0.59)
FV C0 × CY C (β6) 0.11(−0.04, 0.25) 0.15(−0.02, 0.27) 0.09(−0.01, 0.20)
FIB0 × CY C (β7) 2.03(0.43, 3.69) 1.74(0.32, 3.19) 2.25(0.92, 3.52)
T ime × CY C (β8) 0.26(−0.01, 0.51) 0.23(0.01, 0.45) 0.24(0.01, 0.47)
T ime18 × CY C (β9) −0.64(−1.33, 0.07) −0.43(−0.96, 0.13) −0.41(−0.92, 0.09)
p-value for H0:Overall CYC Effects=0 0.040 0.022 0.003

Cause-specific hazards

(informatively censored events)

FV C0 (γ11) −0.06(−0.13,−0.01) −0.06(−0.12,−0.01) −0.06(−0.12,−0.01)
FIB0 (γ12) 0.21(−0.28, 0.77) 0.21(−0.29, 0.76) 0.21(−0.27, 0.79)
CYC (γ13) 0.24(−0.61, 1.20) 0.29(−0.55, 1.21) 0.25(−0.57, 1.18)
FV C0 × CY C (γ14) 0.11(0.03, 0.18) 0.10(0.03, 0.18) 0.11(0.04, 0.19)
FIB0 × CY C (γ15) 0.13(−0.58, 0.83) 0.12(−0.61, 0.81) 0.08(−0.63, 0.78)

Cause-specific hazards

(treatment failure of death)

FV C0 (γ21) 0.01(−0.07, 0.11) 0.02(−0.06, 0.10) 0.01(−0.07, 0.09)
FIB0 (γ22) 0.25(−0.68, 1.22) 0.22(−0.62, 1.13) 0.25(−0.67, 1.20)
CYC (γ23) −1.24(−3.20, 0.35) −1.19(−3.29, 0.22) −1.20(−3.50, 0.34)
FV C0 × CY C (γ24) −0.06(−0.20, 0.08) −0.07(−0.20, 0.07) −0.05(−0.19, 0.09)
FIB0 × CY C (γ25) −0.55(−2.26, 1.07) −0.52(−2.12, 0.94) −0.51(−2.22, 1.02)

Random effects

ν2 3.34(1.34, 8.35) 3.28(1.42, 8.81) 3.25(1.18, 7.84)
ΣU11 0.27(0.20, 0.36) 0.28(0.21, 0.37) 0.25(0.19, 0.33)
ΣU12 −0.36(−0.61,−0.18) −0.32(−0.53,−0.17) −0.27(−0.45,−0.15)
ΣU22 1.60(0.89, 2.59) 0.93(0.51, 1.61) 0.73(0.39, 0.1.25)
σ2

v 0.40(0.07, 1.59) 0.31(0.05, 1.16) 0.35(0.06, 1.31)

Covariance of Ui and vi

ΣUv1 −0.25(−0.53,−0.09) −0.25(−0.50,−0.09) −0.23(−0.47,−0.08)
ΣUv2 0.69(0.24, 1.50) 0.42(0.11, 1.02) 0.39(0.11, 0.93)

Model fit

DIC 5693.08 5295.18 5089.35
Note: The bold numbers indicate the significant results(p-value < 0.05).

failure times with the following cause-specific hazards:

λ1(t; X1i, X2i, υi, γ1)(13)
= λ01(t)exp{γ11X1i + γ12X2i + υi}

λ2(t; X1i, X2i, υi, γ2, ν2)(14)
= λ02(t)exp{γ21X1i + γ22X2i + ν2υi}

where X1 ∼ N(2, 1.0), and X2 is shared with the longitudi-
nal model. We use constant baseline hazards of 0.12 and 0.25
for risk 1 and risk 2, respectively, to generate the survival
data. The random effects are generated from the multivari-

ate normal distribution with covariance matrices Σi which
are decomposed into the GARPs and IVs modeled with co-
variates aijl = bij = (1, X2i). In other words, the covariance
matrices are different in the two groups: strong positive cor-
relation in one group and strong negative correlation in the
other. The parameter values are given in Table 2. With this
setup, the rate of risk 1 is approximately 0.44, the rate of
risk 2 is 0.36 and the censoring rate is 0.20. Longitudinal
responses are missing after the observed or censored event
times. The average number of total longitudinal observa-
tions is 7.8 per subject. We use a vague prior of N(0, 105)
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Table 2. Comparison of the joint model with a normal distribution versus that with a t-distribution for εij (sample size = 250)

Normal distribution t-distribution
m Parameter True Bias SE CP Bias SE CP

250 Longitudinal

Fixed effects
β0 10 0.295 0.352 0.655 0.020 0.137 0.903
β1 −1 0.059 0.735 0.927 −0.009 0.221 0.952
β2 1.5 0.272 0.340 0.807 −0.015 0.155 0.949

Survival
Fixed effects

γ11 0.8 −0.004 0.121 0.953 −0.011 0.130 0.923
γ12 −1 0.042 0.286 0.927 0.002 0.248 0.954
γ21 0.5 −0.025 0.128 0.927 −0.012 0.119 0.929
γ22 −1 0.026 0.260 0.960 −0.034 0.255 0.959

Random effects
ν2 0.5 0.147 0.688 0.895 −0.004 0.308 0.939
σ2

u1 2.5 −0.117 1.640 0.876 0.109 0.561 0.944
σuv1 1.5 −0.018 0.890 0.931 0.036 0.514 0.949
σ2

v1 1 0.253 0.713 0.949 0.063 0.585 0.959
σ2

u0 0.5 0.719 0.967 0.887 0.039 0.259 0.938
σuv0 −0.4 −0.492 2.905 0.840 0.002 0.297 0.908
σ2

v0 0.5 0.054 0.530 0.895 −0.018 0.416 0.929

Note: The bold numbers represent relatively large biases.

for each component of β, γ, ν, η1 and η2, IG(10−3, 10−3) for
σ2, and Γ(10−3, 10−3) for λ0. The simulation is based on 200
Monte Carlo samples with a sample size of 250. The MCMC
sampling is run using 5, 000 iterations, and the estimation
results are based on the last 2, 500 iterations.

The bias, standard deviations of the posterior medians
and coverage rate of 95% credible intervals are given in
Table 2. In the presence of outliers, the joint model with
a normal measurement error shows large bias for the lon-
gitudinal fixed effects β, the joint random effects covari-
ance matrix parameters and ν2. In particular, the group
effect β2 is overestimated since the outliers only exist in
the placebo group and have a higher probability of being
negative. Furthermore, these biases do not disappear for
a large sample size of 500 (Table 3). In the contrast, our
robust joint model yields much smaller biases for all the
parameters. Both methods produce comparable estimates
for the fixed effects for the competing risks survival end-
point.

5. DISCUSSION

We propose a robust joint model for longitudinal mea-
surements and competing risks survival data with heteroge-
neous random effects. The robustness against potential out-
liers in the longitudinal measurements is achieved by speci-
fying a t-distribution for the measurement error in the linear
mixed effects sub-model. In addition, the proposed approach
allows for high-dimensional random effects and heterogenous
covariance matrices of the multivariate random effects, and

the resulting estimated covariance matrices are guaranteed
to be positive definite.

The t-distribution model is a robust model in two ways.
First, with t-distributed random errors, τij reweights the
observations according to their residuals, and thus we are
able to obtain robust estimation by downweighting the out-
liers. Secondly, we carried out simulation to compare the
two models (t-model and normal model) when there were
no outliers, that is, the underlying measurement error fol-
lowed a zero-mean normal distribution. There are almost
unbiased estimates for all the parameters in both methods
and the simulated coverage probabilities are close to 0.95,
although the joint model with the t-distribution produces
a little bit larger standard errors for the parameters at the
longitudinal endpoint.

We did some sensitivity analyses of the estimates to mis-
specification of the variance-covariance structure and found
out that we may obtain biased parameter estimates for the
survival endpoint when combining the information of the
longitudinal outcome if the correlation of the two endpoints
is incorrectly modeled. Therefore, ignoring the heterogeneity
can result in biased estimates and invalid inference.

The t-distributed error with κ = 3 has demonstrated nice
properties for the purpose of guarding against outliers in
the longitudinal data in our numerical study, even though
it can also be estimated as a parameter. General principles
of parsimony suggest that κ be fixed for small data sets and
estimated for large ones (Lange et al., 1989). Lange et al.
(1989) also suggest that estimated values of degree of free-
dom below 1 should be regarded with suspicion. In addi-
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Table 3. Comparison of the joint model with a normal distribution versus that with a t-distribution for εij (sample size = 500)

Normal distribution t-distribution
m Parameter True Bias SE CP Bias SE CP

500 Longitudinal

Fixed effects
β0 10 0.249 0.239 0.594 0.004 0.091 0.935
β1 −14 −0.064 0.413 0.934 −0.026 0.157 0.936
β2 1.5 0.231 0.239 0.791 −0.008 0.114 0.907

Survival
Fixed effects

γ11 0.8 0.007 0.085 0.955 −0.004 0.081 0.947
γ12 −1 −0.002 0.191 0.938 0.007 0.173 0.947
γ21 0.5 −0.005 0.084 0.934 −0.010 0.087 0.931
γ22 −1 0.011 0.182 0.934 −0.021 0.170 0.955

Random effects
ν2 0.5 −0.027 0.299 0.910 −0.006 0.192 0.931
σ2

u1 2.5 −0.375 0.540 0.796 0.072 0.388 0.951
σuv1 1.5 −0.013 0.457 0.959 −0.009 0.385 0.943
σ2

v1 1 0.153 0.457 0.951 −0.015 0.396 0.927
σ2

u0 0.5 1.266 1.129 0.575 0.050 0.154 0.939
σuv0 −0.4 −0.204 0.699 0.868 −0.022 0.170 0.923
σ2

v0 0.5 −0.051 0.292 0.877 −0.012 0.232 0.907

tion to the t-distribution, other normal/independent dis-
tributions (Lange and Sinsheimer, 1993), such as the slash
distribution or the contaminated normal distribution, can
be adapted for the measurement error in our robust joint
model. Rosa et al. (2003) pointed out that the t process is
the most commonly used thick-tailed distribution for robust
inference which is often a good alternative to a Gaussian
distribution; the contaminated normal distribution is more
flexible but at the expense of an additional parameter, while
the slash distribution is rarely encountered in the literature
despite its relatively easier implementation in hierarchical
modeling.

Our model can be extended to clustered data. Clustered
data arise frequently from multi-site clinical trials, in which
each site can be viewed as a cluster, or from studies across
families, in which each family may be treated as a cluster.
The cluster effect can easily be incorporated as a random
effect or as a design vector for the GARP/IV parameters
in order to take into account the heterogeneity across the
cluster.

Finally, it is possible to extend our method to handle
recurrent event data when each subject may repeatedly
experience a certain event. Typical medical examples
are multiple infection episodes and tumor recurrences.
Zhang et al. (2008) considered a joint mixed-effects regres-
sion model for time series measures and recurrent events to
analyze the air quality and respiratory symptom data. Their
work may represent the first attempt to include a latent
process in both the hazard and recovery rates of a recurrent
event process. Extension of our joint model to incorporate
recurrent event data would offer another promising ap-
proach. A possible choice of the sub-model for the recurrent

event data is the semiparametric transformation models
with random effects described by Zeng and Lin (2007).

APPENDIX A: FULL CONDITIONAL
DENSITIES

This section provides details for the full conditional dis-
tributions of the parameters used in the Gibbs sampling
algorithm. We use p(.) and p(.|.) to denote marginal and
conditional densities, respectively. We denote the prior dis-
tribution by p0(.). Based on the modified Cholesky decom-
position, the random effects vi can be written as vi =∑q

l=1 aT
iqlη1Uil + ei,q+1 where ei,q+1 ∼ N(0, exp(bT

i,q+1η2)).
Instead of sampling vi directly, we sample ei,q+1, leading to
a faster convergence rate.

1. Sample τij from

p(τij |.) ∼ Γ
(

1 + κ

2
,

1
2

[
κ +

1
σ2

(Yij − βT X
(1)
i (tij) − UT

i Z(tij))2
])

2. Sample σ2 from

p(σ2|.) ∼ IG

(∑m
i=1 ni

2
+ α1,

1
2

m∑
i=1

ni∑
j=1

τij

× (Yij − βT X
(1)
i (tij) − UT

i Z(tij))2 + α2

)

where p0(σ2) = Γ(α1, α2).
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3. Sample β from

p(β|.) ∼ N

((∑m
i=1 X

(1)T
i SiX

(1)
i

σ2
+ Σ−1

β

)−1

×
(∑m

i=1 X
(1)T
i Si(Yi − ZiUi)

σ2
+ Σ−1

β β0

)
,

(∑m
i=1 X

(1)T
i SiX

(1)
i

σ2
+ Σ−1

β

)−1)

where Si = Diag(τij)ni and p0(β) = N(β0, Σβ).
4. Sample the random effects Ui from

p(Ui|.) ∝ N(μUi|Yi
, ΣUi|Yi

)

×
g∏

k=1

exp
{( q∑

l=1

aT
iqlη1Uil + ei,q+1

)

× νkI(Di = k) − Hk(Ti)
}

where ΣUi|Yi
= (ZT

i SiZi

σ2 + Σ−1
ui

)−1, μUi|Yi
=

ΣUi|Yi
[ZT

i Si(Yi−Xiβ)
σ2 ], and Σ−1

ui
= M∗T

i H∗−1
i M∗

i , M∗
i is

a q × q matrix consisting of the first q columns and
rows of Mi, H∗

i is a q × q matrix consisting of the
first q columns and rows of Hi. We use the one-step
Metropolis-Hastings algorithm to obtain the update in
the sampling sequence with the normal density from
the longitudinal data as the proposal density. The ran-
dom effects Ui is obtained by first sampling a random
variable form the conditional density based on the lon-
gitudinal data and then using the conditional likelihood
contribution from the survival data to determine the
acceptance of the new draw.

5. Sample η1 from

p(η1|.) ∝ N

(( m∑
i=1

QT
i H∗−1

i Qi

)−1( m∑
i=1

QT
i H∗−1

i Ui

)
,

( m∑
i=1

QT
i H∗−1

i Qi

)−1) g∏
k=1

exp
{( q∑

l=1

aT
iqlη1Uil

+ ei,q+1

)
νkI(Di = k) − Hk(Ti)

}
p0(η1),

where Qi is a q × q1 matrix with first row Qi1 = 0 and
jth row Qij =

∑j−1
l=1 aT

ijlUil for j = 2, . . . , q. We sample
η1 in two steps: sample the entries only involving Ui

from the normal conditional density, sample the entries
involving Ui and vi with adaptive rejection sampling.
It is worth noting that for the homogeneous case where
the variance-covariance matrix Σ is diagonal, we have
Σ = H and M = I. In this case, there is no need to
sample η1 and it should be set to zero in the sampling
procedure.

6. Sample η2 from

p(η2|.) ∝ exp
[
−1

2

m∑
i=1

( q∑
j=1

{
bT
ijη2

+
(

Uij−
j−1∑
l=1

aT
ijlη1Uil

)2

× exp(−bT
ijη2)

}

+ bT
i,q+1η2 + e2

i,q+1 exp(−bT
i,q+1η2)

)]
p0(η2).

We use a Metropolis-Hastings step with a normal ap-
proximation to the full conditional as the candidate
distribution. For details, see Daniels and Pourahmadi
(2002).

7. Sample γkr, k = 1, . . . , g, r = 1, . . . , R from

p(γkr|.) ∝ exp
[
γkr

m∑
i=1

I(Di = k)X(2)
ir (Ti)

−
m∑

i=1

Hk(Ti)
]
p0(γk).

We use a Metropolis-Hastings step within the single
component sampler to update the values of these pa-
rameters. For each of these parameters, we propose a
normal density as the proposal density, which has the
current value of the parameter as its mean and its stan-
dard deviation is set equal to four times the standard
error of a maximum partial likelihood estimate from a
standard Cox model (Wang and Taylor, 2001).

8. Sample νk with ARS from

p(νk|.) ∝ exp
[ m∑

i=1

I(Di = k)νk

( q∑
l=1

aT
iqlη1Uil + ei,q+1

)

−
m∑

i=1

∫ Ti

0

λ0k exp
(

γT
k X

(2)
i

+ νk

( q∑
l=1

aT
iqlη1Uil + ei,q+1

))
dt

]
p0(νk).

9. Sample ei,q+1 (i = 1, . . . ,m) from

p(ei,q+1|.) ∝ N(0, exp(bT
i,q+1η2))

×
g∏

k=1

exp[ei,q+1νkI(Di = k) − Hk(Ti)].

The sample is obtained by first sampling a candidate
from the normal densities as its assumption and then
using the conditional likelihood contribution from the
survival data to determine the acceptance of the new
draw.

10. Sample each piece of λ0k (k = 1, . . . , g) from

p(λ(s)
0k |.) ∝ Γ(αs

k, βs
k)p0(λ

(s)
0k ),
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where αs
k =

∑m
i=1 I(Di = k, t

(s−1)
k < Ti ≤

t
(s)
k ) + 1 indicates the number of events occur-

ring in the time interval (t(s−1)
k , t

(s)
k ], and βs

k =∑m
i=1 I(Ti > t

(s−1)
k )

∫ min(Ti,t
(s)
k

)

t
(s−1)
k

exp(γT
k X

(2)
i + νkvi)dt,

for s = 1, . . . , Sk.
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