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Within-cluster resampling for analysis of family

data: Ready for prime-time?

HEMANT K. TIwWARI*, AMIT PATKI AND DAVID B. ALLISON

Hoffman et al. [1] proposed an elegant resampling method
for analyzing clustered binary data. The focus of their paper
was to perform association tests on clustered binary data us-
ing within-cluster-resampling (WCR) method. Follmann et
al. [2] extended Hoffman et al.’s procedure more generally
with applicability to angular data, combining of p-values,
testing of vectors of parameters, and Bayesian inference.
Follmann et al. [2] termed their procedure multiple outputa-
tion because all “excess” data within each cluster is thrown
out multiple times. Herein, we refer to this procedure as
WCR-MO. For any statistical test to be useful for a partic-
ular design, it must be robust, have adequate power, and
be easy to implement and flexible. WCR-MO can be easily
extended to continuous data and is a computationally in-
tensive but simple and highly flexible method. Considering
family as a cluster, one can apply WCR to familial data in
genetic studies. Using simulations, we evaluated WCR-MO’s
robustness for analysis of a continuous trait in terms of type
I error rates in genetic research. WCR-MO performed well
at the 5% a-level. However, it provided inflated type I error
rates for a-levels less than 5% implying the procedure is lib-
eral and may not be ready for application to genetic studies
where « levels used are typically much less than 0.05.

KEYWORDS AND PHRASES: Correlated residuals, WCR,
Multiple outputation, Familial data, Genetic research, Type
I error.

1. INTRODUCTION

Data sets in which the residuals from a fitted model can-
not be expected or assumed to be independent across all
cases analyzed because cases are grouped into clusters are
common. This is especially so in genetic research where data
from related individuals are included. In such cases, families
constitute clusters. Naively analyzing such data with meth-
ods that assume the residuals are independent can lead to
inefficient estimation and low power when the alternative
hypothesis is true and type I error rate inflation when the
null hypothesis is true.

*Corresponding author.

Many methods have been proposed to accommodate such
data (e.g., [1-24]) and each has advantages and disadvan-
tages. WCR-MO has been mentioned as a technique of in-
terest for the problem of correlated residuals in at least 6
other methodologic papers [8, 20-24].

A detailed description of WCR-MO appears in section 2
below. In brief, WCR-MO entails identifying clusters of ob-
servations — in this context the families would constitute the
clusters — and then creating a new pseudo-dataset by ran-
domly selecting one observation from within each cluster.
The new dataset is analyzed with a data analyst’s preferred
‘standard’ procedure that is valid for data with indepen-
dent residuals and the results recorded. Then, one repeats
the process multiple times and finally compiles the results
using formulae that account for the dependency among the
multiple pseudo-datasets created. This technique potentially
takes any test that is legitimate if the observations are all
independent and converts it to a test that is legitimate even
if the observations are not independent. Conveniently, it
does so with no adjustment to the essential modeling proce-
dure but only by ‘wrapping’ that procedure in a re-sampling
based method for quantifying uncertainty.

In principle, WCR-MO has several very highly desirable
advantages. As Follmann et al. ([2]; p. 421) wrote “Multiple
outputation is very simple and only requires an appropriate
statistical procedure for independent data.” Therefore, one
might expect that it could be adapted to virtually any test-
ing situation as Wu and Huang [8] conjecture. This is per-
haps its greatest potential advantage. Second, programming
WCR-MO to couple it with existing statistical packages is
quite easy. Third, WCR-MO does not require any knowledge
or specification of the covariance structure among residuals
nor does it require that there is a constant covariance among
all pairs of observations within clusters. Finally, WCR is
both easy to understand and explain to colleagues.

A number of investigators have recognized the utility of
WCR-MO and utilized it in genetic and other analyses (e.g.,
[20-24]). From these applied papers, several things are no-
table. First, none of the authors mention and perhaps may
not be aware that the results supporting the use of WCR-
MO are asymptotic results. The extent to which WCR-MO
is valid (in terms of maintaining the type I error rate to the
nominal « level) across a variety of situations and, impor-
tantly, with the small « levels often used in genetic studies
due to frequent massive multiple testing is unknown. This
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is important because, as Mehta et al. [25] note, procedures
that work well at one « level, may not work well at others,
particularly at more stringent levels. Second, there was no
discussion of how challenges that may be encountered, such
as negative estimates of variance were dealt with. Third,
re-sample sizes in the applied studies ranged from 1,000 to
10,000 with no justification for the choice of resample num-
ber suggesting a need for guidance on this point. Finally, the
analyses conducted are important ones including some that
may immediately affect patient care and the lives of many
individuals (e.g., [20]). Therefore, taking the time to eval-
uate the performance of the method in finite sample sizes,
with realistic situations, and at small « levels seems vitally
important. The purpose of this paper is to conduct such an
evaluation.

The remainder of this paper is divided into four sections.
In Section 2, we provide an exposition of WCR-MO and
its connection to certain GEE methods. Section 3 explains
our simulation methodology; Section 4 offers results, and
Section 5 general discussion and conclusions.

2. THE WCR-MO METHOD
The steps are described below for WCR-MO procedure.

Step 1: From each of C clusters, select one individual with
replacement to create a new dataset that has exactly
C' independent observations. Repeat this m times to
create m such data sets.

Step 2: Analyze each of the m data sets using standard
complete-data methods such as SAS or SPSS.

Step 3: The last step is to integrate or combine m anal-
yses to get a single estimate of parameters and their
variances. This involves averaging the values of the pa-
rameter estimates across the m samples to produce a
single point estimate and variance. Formally, we can
describe it as follows:

Let m = the number of data sets analyzed,

Q; = Estimate of the parameter of interest from the "
set,

T; = Variance Estimate of the Ql from the 7" set.

The point estimate from the WCR method is the average
of the estimates from m analyses and is given by

(1) o= 3

The total variance estimate of the point estimate is
the difference of the average within-replicate variance
(U = L>" T;) and the among-replicate variance (B =

et i (Qi
(2)
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B
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The statistic:
(3) tr=t=-~>__"

is approximately distributed as t with v, degrees of free-
dom, where

SR U . ¥

When testing for effects of genetic loci in complex traits,
“...the locus-specific effects on complex and quantitative
traits cannot a priori be assumed to be additive and can
even be over-dominant ... For this reason, many investiga-
tors wisely choose to test for genotypic effects in two degrees
of freedom models ...rather than restricting themselves to
allelic (additive) effects” [26]. This necessitates that, in the
case of a di-allelic locus, we conduct 2 degree of freedom
(df) tests. The original formulation of WCR, was not set up
to do tests with more than 1 df. Follmann et al. [2] offer a
straightforward method for adapting WCR-MO from simple
1 df tests to any testing situation in which one can obtain
a legitimate p-values under the assumption of independence
of observations for each replicate and then combine the p-
values as described by Follmann et al. [2].

WCR-MO is simple to implement in any standard sta-
tistical packages, but the moment-based variance given in
equation (2) can be negative as we will show below (see Ta-
ble 1). To resolve the issue of negative variance, Follmann et
al. [2] proposed using an ML approach, where the estimate
of the variance is replaced by the average of the efficient
score divided by the Fisher information for data points of
the within cluster. However, deriving the likelihood of the
data may be challenging, Moreover, if one could derive the
likelihood of the data and be confident that the data were
sampled from the distribution specified, then one usually
could instead rely on existing ML-based procedures, obviat-
ing the need for WCR-MO.

Connection to GEE methods

Williamson et al. [6] and Benhin et al. [9] have shown
that, asymptotically in the number of resamples, WCR with
a dichotomous outcome and a logistic regression framework
is identical to a particular form of GEE when cluster size is
informative. Also, Follmann et al. [2] showed that GEE is
similar to the WCR-MO using simulation corresponding to
rectangular, Triangular, and L-shaped data structures. Fur-
thermore, Datta and Satten [10] had extended GEE to han-
dle non-normal data via a modified rank test. The beauty
of WCR-MO is that (in principle) it can be used in virtu-
ally any situation in which one has a legitimate method for
deriving tests if the observations were all independent [2].



Table 1. The null distribution of the test statistic for WCR-MO procedure using 100,000 replicates of 50 equal size families
(i.e. two siblings and both parents in the family). For each replicate we used 10,000 bootstrap samples

Test Nominal Total number of Number of times Number of Type I error
procedure a-level times the total total variance was times p-values rate using only
variance estimate negative resulting less than given non-missing
was positive in missing p-values a-level p-values
Testing 0.05 95,906 4,094 6,571 0.0685
B, with 1 0.01 95,906 4,094 2,674 0.0279
df test 0.001 95,906 4,094 1,183 0.0123
0.0001 95,906 4,094 713 0.0074
1 df test 0.05 92,129 7,871 4,601 0.0499
using 0.01 92,129 7,871 1,896 0.0206
- scores 0.001 92,129 7,871 901 0.0098
0.0001 92,129 7,871 583 0.0063
2 df test 0.05 97,431 2,569 4,904 0.0503
using 0.01 97,431 2,569 1,491 0.0153
7 scores 0.001 97,431 2,569 536 0.0055
0.0001 97,431 2,569 305 0.0031

3. SIMULATION METHODOLOGY AND
ANALYSIS MODELS

To examine performance under the null hypothesis for
WCR-MO, we first simulated correlated clusters consisting
of 50 nuclear families with both parents and two offspring
for a total of 400 individuals in each simulated dataset (see
Figure 1) and subsequently, datasets composed of unequal
correlated clusters of varying family size also with a total of
400 individuals per dataset (see Figure 2).

Equal Cluster Size: Data were simulated for 50 and 100
nuclear families with both parents and 2 offspring (see Fig-
ure 1). A phenotype for each individual was sampled from
a continuous distribution generated using a linear model
consisting of SNP effect, polygenic effect, and random non-
shared residual effect. The SNP markers were simulated for
all founders randomly and then the markers for offspring
were simulated using Mendel’s law of segregation assuming
population minor allele frequency of 0.2. Polygenic data for
founders were simulated from a standard normal distribu-
tion. Polygenic values for offspring were simulated from a
normal distribution with mean equal to average of parents’
polygenic values and variance equal to 0.5 (Elston et al.,
1992). To evaluate type I error rates we set SNP specific

O

Figure 1. Equal size pedigrees used for simulation.

heritabilities to zero.

phenotype = W/h’gzzolygenic X pOlygeniC +4/1- h’?)olygenic X &,

where ¢ is a random stochastic error and € ~ N (0, 1).
We assumed polygenic heritability hfmly genic = 0-3 and allele
frequency = 0.2.

Unequal Cluster Size: We also simulated unequal family
data for 50 and 100 families all parameters the same as
described above (see Figure 2).

We simulated 100,000 replicates (datasets) of both equal
and unequal families. We used a total of 10,000 bootstrap
samples for each replicate for WCR-MO testing of the asso-
ciation between SNP and phenotype. We tested at nominal
a-levels of 0.05, 0.01, 0.001, and 0.0001.

Analysis Models: We can analyze the data either testing
only additive effect of the SNP (i.e. one degree of freedom
test) or jointly testing additive and dominance effect of the
SNP (i.e. two degrees of freedom test). The following anal-
ysis models were used to determine the behavior of null dis-
tribution.

Analysis Model 1:

(1)

where A is additive effect of the SNP and is given by

Y=a+p1A+e¢,

1 if individual has AA genotype
A=<0 ifindividual has Aa genotype .
—1 if individual has aa genotype

Analysis Model 2:
(2) Y:a—|—ﬂ1A—|—ﬂ2D+€
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Figure 2. Unequal size pedigrees used for simulation.

where A is additive effect of the SNP given as above and
dominance effect D is given by

0 if individual has AA genotype
D =<1 ifindividual has Aa genotype .
0 if individual has aa genotype

The p-values corresponding to association tests were calcu-
lated using three ways as follows.

1) Testing (; from Model 1 with 1 df WCR-MO
t-test: Using a i-test in analysis model 1 implemented via
equation (3);

2) Testing (31 from Model 1 Using Z-scores: Testing
(1 by combining p-values in analysis model 1 as described
in Follmann et al. [2]. In short, we describe here a method
of combining p-values in WCR-MO procedure [2].

Except for non-parametric procedures in finite sample
sizes, a valid statistical procedure produces p-values that
follow a Uniform (0, 1) distribution under the null hypothe-
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sis. Hence, if valid, WCR-MO produces the exchangeable
p-values p1,ps,...,pnm, where M is the number of out-
putation re-samples, and each is marginally Uniform (0,
1) under the null hypothesis. Applying the transformation
Z; = @7 1(p;) produces Z1, Zs, ..., Zys of exchangeable ran-
dom variables that are marginally standard normal under
the null hypothesis, assuming p-values are independent [27].
Let Z = Zf\il Z;/M. The variance of Z can be obtained
by variance decomposition formula. If M is large enough,
then Z ~ E(Z;|X) and var(Z) =~ var{F(Z;| X)}, where
X is the raw data from that p-values were derived. Since
var(Z;) = 1 under the null hypothesis, we can approximate
var(Z) ~ 1 — 5%, where S% is the sample variance of M
Z;’s. We use the following statistic to get the final p-value
for each replicate: Z/4/1 — 5%, that is distributed as stan-
dard normal approximately.

3) 2 df test using Z-scores: In this method we jointly
tested 7 and [ and used Follmann et al.’s procedure as
described above to combine p-values in analysis model 2 [2].



Table 2. The null distribution of the test statistic for WCR-MOQO procedure using 100,000 replicates of 50 unequal size families
given in Figure 2. For each replicate we used 10,000 bootstrap samples

Test Nominal Total number of Number of times Number of Type I error
procedure a-level times the total total variance was times p-values rate using only
variance estimate negative resulting less than given non-missing
was positive in missing p-values a-level p-values
Testing 0.05 67,318 32,682 3,023 0.0449
B, with 1 0.01 67,318 32,682 1,730 0.0257
df test 0.001 67,318 32,682 1,092 0.0162
0.0001 67,318 32,682 788 0.0117
1 df test 0.05 68,220 31,780 2,199 0.0292
using 0.01 68,220 31,780 1,303 0.0175
7-scores 0.001 68,220 31,780 740 0.0109
0.0001 68,220 31,780 541 0.0077
2 df test 0.05 64,747 35,253 2,161 0.0334
using 0.01 64,747 35,253 1,280 0.0198
- scores 0.001 64,747 35,253 817 0.0126
0.0001 64,747 35,253 581 0.0090

Table 3. The null distribution of the test statistic for WCR-MO procedure using 100,000 replicates of 100 equal size families
(i.e. two siblings and both parents in the family). For each replicate we used 10,000 bootstrap samples

Test Nominal Total number of Number of times Number of Type I error
procedure a-level times the total total variance was times p-values rate using only
variance estimate negative resulting less than given non-missing
was positive in missing p-values a-level p-values
Testing 0.05 71,223 28,777 4,576 0.06425
By with 1 0.01 71,223 28,777 2,552 0.03583
df test 0.001 71,223 28,777 1,529 0.02147
0.0001 71,223 28,777 1,082 0.01519
1 df test 0.05 68,220 31,780 1,989 0.02916
using 0.01 68,220 31,780 1,193 0.01749
7 scores 0.001 68,220 31,780 743 0.01089
0.0001 68,220 31,780 528 0.00774
9 df test 0.05 72,578 27,422 3,064 0.04222
using 0.01 72,578 27,422 1,904 0.02623
7 scores 0.001 72,578 27,422 1,239 0.01707
0.0001 72,578 27,422 888 0.01223

Table 4. The null distribution of the test statistic for WCR-MO procedure using 100,000 replicates of 100 unequal size
families given in Figure 2. For each replicate we used 10,000 bootstrap samples

Test Nominal Total number of Number of times Number of Type I error
procedure a-level times the total total variance was times p-values rate using only
variance estimate negative resulting less than given non-missing
was positive in missing p-values a-level p-values
Testing 0.05 64,555 35,445 3,304 0.0512
B, with 1 0.01 64,555 35,445 1,903 0.0295
df test 0.001 64,555 35,445 1,172 0.0185
0.0001 64,555 35,445 834 0.0129
1 df test 0.05 62,695 37,305 1,723 0.0275
using 0.01 62,695 37,305 1,005 0.016
7 scores 0.001 62,695 37,305 584 0.0093
0.0001 62,695 37,305 409 0.0065
9 df test 0.05 64,191 35,809 1,903 0.0296
using 0.01 64,191 35,809 1,120 0.0174
7 scores 0.001 64,191 35,809 676 0.0105
0.0001 64,191 35,809 502 0.0078
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4. RESULTS

The simulated data were analyzed using the methods de-
scribed above and the p-values were calculated for each repli-
cate, by testing (57 with 1 df test, 1 df test using Z-scores,
and 2 df test using Z-scores when testing additive and dom-
inance effects together in the model.

Tables 1-4 show the empirical Type 1 error rates for the
WCR-MO procedure, allowing only testing for the additive
effect of the SNP (i.e. testing 3; with one df test), the ad-
ditive effect of the SNP by converting p-values to Z-scores,
and by allowing tests for both additive and dominance ef-
fects of the SNP with 2 df test using Z-scores. These values
serve as an evaluation of the conformity of the WCR-MO
procedure to its asymptotic for the cluster sizes of 50 and
100 with equal and unequal cluster size. As can be seen, the
empirical Type I error rates are nearly correct at the 5%
a-level, but inflated at levels less than or equal to 1% for
50 families of equal size (Table 1). For 100 unequally sized
families, the test procedures become conservative at 5% a-
levels, specifically corresponding to 1 df test using z-scores
and 2 df test using z-scores (Table 2). Similar results follow
as in equal size families at a-levels of greater than or equal
to 0.01. Tables 3 and 4 show similar pattern of type I error
rates distribution that the test procedures are conservative
at the 5% a-level and liberal levels less than or equal to 1%
(Tables 3-4). Also, we observed that approximately 1/3" of
the time; variance was estimated to be negative and could
not be included in the association test leading to missing p-
values. Exact numbers are given in column 4 of Tables 1-4.

5. DISCUSSION & CONCLUSIONS

The WCR-MO is an attractive simple to use procedure
for analyzing clustered data such as pedigree data in ge-
nomic studies. The advantages of WCR-MO include simplic-
ity to program; ability to use standard software; and use of
statistical procedure for independent data sets. We investi-
gated the utility of the WCR-MO procedure for association
studies in pedigree data. The pedigrees can be considered
as clusters and usually there is no between clusters corre-
lation, but within cluster correlations exist due to relation-
ships among individuals within the pedigree. We examined
the null distribution of the test-statistic for the WCR-MO
procedure using simulations with 100,000 replicates for 50
and 100 pedigrees of equal and varying size. We observed
that Type I error rate was close to the nominal level at
95% confidence for most of the situations, but was inflated
for confidence levels above 99%. Genetic studies, including
genome-wide association studies (GWAS), typically require
testing a large number of markers. The a-level to declare
significance in GWAS is usually less than or equal to 1077,
necessitating study of the behavior of test statistics at very
small a-levels. In spite of simplicity of WCR-MO procedure,
we have shown that WCR-MO is not yet ready to be used
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to analyze GWAS with pedigree data since it is very lib-
eral for small a-flevels. Further research is needed to modify
the WCR-MO to offer valid tests, especially at very small
a-levels. Note that, we have only tested WCR-MO for a
specific type of genetic study. We further advise other re-
searchers to perform simulation study before analyzing the
real data to test the validity of WCR-MO for their spe-
cific application. To facilitate the programming of WCR-
MO procedure for other applications, we have provided two
programs (1) to simulate pedigree data and (2) analyze it
with WCR-MO procedure as an example. Both modules of
the program were written in Java and can be accessed at
http://www.soph.uab.edu/ssg/software/wcr.
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