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Forecasting return volatility in the presence of
microstructure noise∗
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Measuring and forecasting volatility of asset returns is
very important for asset trading and risk management.
There are various forms of volatility estimates, including
implied volatility, realized volatility and volatility assumed
under stochastic volatility models and GARCH models. Re-
search has shown that these different methods are closely
related but have different perspectives, strengths and weak-
nesses. In order to exploit their connections and take advan-
tage of their different strengths, in this paper, we propose
to jointly model them with a vector fractionally integrated
autoregressive and moving average (VARFIMA) model. The
model is also used for forecasting purpose. In addition, we
investigate the impacts of the two realized volatility esti-
mators obtained from intra-daily high frequency data on
the forecasts of return volatility. Our methods are applied
to five individual stocks and forecasting performances are
compared with those from a GARCH(1,1) model and a ba-
sic stochastic volatility (SV) model and their extended ver-
sions. The proposed VARFIMA model outperforms other
volatility forecasting models in this study. Our results show
that including the two different realized volatility estima-
tors obtained from the intra-daily high frequency data in
the VARFIMA model imposes significant impacts on the
forecasting precision for return volatility.

Keywords and phrases: Intra-daily high frequency data,
Microstructure noise, Return volatility forecasting, Vector
ARFIMA model.

1. INTRODUCTION

Modeling and forecasting the return volatility of financial
assets have drawn significant attention from both academia
and the financial industry due to its importance in asset
pricing, volatility-related derivative trading, and risk man-
agement. However, volatility cannot be directly measured
and has to be inferred from the returns of an underlying
asset or its option prices observed in the market.
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search was partially supported by NSF grant DMS-0905763, DMS-
0915139 and DMS-0800183. Zhang’s research was partially supported
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Various models and methods have been developed for
measuring volatility, based on available data and assump-
tions. Among them, there are four major types of measures
and their extensions. Implied volatility (IV) is the volatility
implied by the observed option prices of the asset, based
on a theoretical option pricing model, for example, the
seminal Black-Scholes-Merton model (Black and Scholes,
1973; Merton, 1973) or its various extensions including
Black (1976), Cox et al. (1979), and Hull and White (1987),
among many others.

Realized volatility (RV) uses intra-daily high fre-
quency data to directly measure the volatility under a
general semimartingale model setting, using different
subsampling methods (Andersen and Bollerslev, 1998;
Andersen et al., 2001; Barndorff-Nielsen and Shephard,
2002; Dacorogna et al., 2001; Zhang et al., 2005; Zhang,
2006; Barndorff-Nielsen et al., 2008).

The Autoregressive Conditional Heteroscedasticity model
(ARCH) by Engle (1982) and the generalized ARCH model
(GARCH) by Bollerslev (1986) assess the latent volatility
process based on the return series of a financial asset, assum-
ing a deterministic relationship between the current volatil-
ity with its past and other variables. The stochastic volatil-
ity model (SV) extends the ARCH/GARCH model by in-
cluding randomness in the inter-temporal relationship of the
volatility process. For a sample of literature on this topic, see
Hull and White (1987), Scott (1987), and Wiggins (1987).
In addition, Bollerslev et al. (1994), Ghysels et al. (1995),
and Shephard (1996) provide reviews on ARCH/GARCH-
type and stochastic volatility models.

The aforementioned approaches provide closely re-
lated but different volatility measures. Each approach has
their strength and weakness. On the one hand, both
ARCH/GARCH-type and SV models successfully capture
the temporal dependence in the volatility process. How-
ever, they cannot accommodate the intra-daily variability
in the asset returns and tend to have poor forecast for ex-
post squared returns over a day or longer time horizon.
In contrast, by construction, daily realized volatility nat-
urally contains the information about the intra-day varia-
tions which ARCH/GARCH lacks. The realized volatility
by itself, however, cannot tell us the inter-temporal depen-
dence of the volatility process across days or longer horizon.
Finally, although implied volatility cannot directly measure
the variability of underlying asset returns, it does reflect, to
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some degree, the (options) market’s expectations on the as-
set volatility. In order to exploit the relationship of different
volatility measures and take advantage of their distinctive
strength, in this paper we first investigate the character-
istics of the volatility measures from the four approaches.
Our study shows that the relationship between the mea-
sures are closer than previously recognized in the literature,
with no apparent leading terms. Such an observation indi-
cates a joint vector modeling approach, instead of a trans-
fer function type of modeling in which one variable is the
output and others are input. In addition, all of these four
volatility measures display certain long memory character-
istic.

Our preliminary findings provide the motivation of mod-
eling the volatility measures jointly using a vector time se-
ries model. We consider two groups of measures: one in-
cluding GARCH(1,1) volatility, realized volatility and im-
plied volatility (Class I), and the other including the SV
volatility, realized volatility and implied volatility (Class II).
To capture the long memory characteristics of the volatil-
ity processes, a vector fractional integrated ARMA model
(VARFIMA) is used. Forecasting performance comparison is
then carried out with real data. It shows that the proposed
model indeed produces improved forecasting performances.
It is noted that the long memory behavior of the volatility
process can also be modeled by a regime switching process
(Hidalgo and Robinson, 1996) but it is beyond the scope of
this paper.

It is important to mention that there are studies that
combine different volatility measures for better modeling
and forecasting performance. For example, Andersen et al.
(2003) found that by incorporating the realized volatility
measure based on five-minute returns, volatility forecast im-
proved over the conventional GARCH forecast. Our cur-
rent paper adopts an improved measure of realized volatil-
ity, called two-scale realized volatility (TSRV, Zhang et al.
(2005)). TSRV is computed from tick-by-tick intra-day re-
turns – a much denser and richer returns series – and
it corrects the bias from the market microstructure noise
which is typically present in the high frequency data. The
enhanced accuracy in TSRV over conventional RV should
provide further improvement in a volatility forecast. Also
in the literature, by introducing lagged realized volatility
and implied volatility in the basic GARCH and SV mod-
els, Koopman et al. (2005) found that the inclusion of re-
alized volatility in GARCH improved the forecasting of the
daily return volatility, whereas the incorporation of implied
volatility in GARCH and the SV model helped very little.
Different from Koopman et al. (2005), we model the volatil-
ity measures jointly and thus are able to capture the long
memory characteristics of the process.

The rest of the paper is organized as follows. Section 2
provides some preliminaries, including details of the volatil-
ity measures used in the paper, a description of the data
set used in our study and some findings on the structures

and relationships of the measures. Section 3 introduces a
VARFIMA model for the volatility measures and provides
details on the model estimation approach. Section 4 com-
pares the one-day and five-day ahead out-of-sample return
volatility forecasts using the proposed model with some ex-
isting volatility forecasting models. Section 5 contains a brief
conclusion and remarks.

2. PRELIMINARIES

2.1 Volatility measurements

Our study focuses on four different daily volatility mea-
sures, namely implied volatility, realized volatility, volatility
based on a GARCH model and that based on a stochastic
volatility (SV) model. Details are as follows.
(i) Implied Volatility
Implied volatility (IV) of an underlying asset is the volatil-
ity implied from its option prices observed in the market.
It is typically derived from calibrating a theoretical option
pricing formula against the market price of the option. Be-
cause an option with a different strike price (or expiration
date) can yield a different IV, an IV index is often calcu-
lated from a weighted average of IVs of various options and
serves as a representative IV measure in practice. We used
IV index provided by IVolatility.com, where the weighting
scheme takes into account the delta and vega of each par-
ticipating option. For basic concepts in options pricing, we
refer to Hull (2008).
(ii) Realized Volatility
Realized volatility (RV), different from the implied volatil-
ity that conveys the market’s assessment of future volatility,
measures the market’s historical volatility in the past. They
are constructed by using intra-daily high frequency data. In
this study we use two different versions with the intention
to exploit their differences in forming volatility forecasts.
Both assume that the logarithmic (efficient) prices of a fi-
nancial asset follow a semi-martingale process. This rather
general assumption is required by the no-arbitrage law in
financial theory. The difference between RV and TSRV is
that the former assumes one observes the efficient prices pre-
cisely whereas in TSRV construction, one considers a hidden
semi-martingale setting, namely, one observes efficient prices
(modeled as semi-martingale) plus noise.

Specifically, let G be a complete collection of the trading
times in a day, G = {t0, t1, · · · , tn}, with t0 = 0 and tn =
T . Let {ytj} be the logarithmic price of a financial asset
observed at time tj , tj ∈ G. Also let H be a subset of G, with
sample size nsparse, nsparse ≤ n. The standard RV 2, realized
variance, is then calculated as the sum of the squared returns
within that day:

(1) RV 2 =
∑

tj ,tj,+∈H
(ytj,+ − ytj )

2
,
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where tj and tj,+ are the adjacent elements in H, with tj <
tj,+ . We obtain the standard RV by taking the square root
of that in (1).

In the absence of market microstructure in the data,
conventional RV in (1) is a consistent estimator of
the daily variation of returns, as the sampling interval
shrinks (Jacod and Protter, 1998). However, empirical stud-
ies suggest that market microstructure noise is preva-
lent in high frequency data (Andersen and Bollerslev, 1998;
Dacorogna et al., 2001). As prices are sampled at a finer in-
terval, microstructure noise becomes progressively dominant
and as a consequence, RV becomes increasingly unreliable
with a bias inversely proportional to the sampling interval
length (Zhang et al., 2005). In the empirical finance litera-
ture, the sampling period is typically equal to or larger than
5 minutes in order to reduce the impact of microstructure
noise. Following this literature, we choose five-minute sam-
pling intervals to compute the daily RV measure using the
intra-daily high frequency data1.

Zhang et al. (2005) proposed an approach to correct the
microstructure bias by combining the RV estimators from
two different time scales, resulting in two-scale realized
volatility (TSRV). Specifically, TSRV is obtained by tak-
ing the square root of the two-scale realized variance, which
is calculated as:

(2) TSRV 2 = (1 − n̄

n
)
−1 (

RV 2
K − n̄

n
RV 2

1

)

where n̄ = n−K+1
K and

(3) RV 2
K =

1
K

∑
tj ,tj+K∈G

(ytj+K
− ytj )

2.

RV 2
1 is a special case of (3) with K = 1. Note that

RV 2
K is the realized variance based on sampling every K-

th price while RV 2
1 is the RV based on all available prices

in G.
Our preliminary analysis show that the estimated TSRVs

are fairly robust to the choice of K, especially when K is
equal to or greater than 200.
(iii) GARCH Model and Its Extensions
The generalized autoregressive conditional heteroscedastic-
ity (GARCH) model was proposed by Bollerslev (1986). A
GARCH(p,q) model assumes a form of:

yt = σtεt, t = 1, . . . , T

σ2
t = α0 + α1y

2
t−1 + · · · + αpy

2
t−p + β1σ

2
t−1 + · · · + βqσ

2
t−q

(4)

where yt is the daily de-meaned returns of a financial asset,
σt the instantaneous volatility of the return process at time
t, p the order of the ARCH term, q the order of the GARCH

1Note that RV is not a sufficient statistic whereas TSRV is.

term. This model successfully describes most of the recog-
nized stylized features in asset return series, as mentioned
in Section 1.

A GARCH model can be extended by including realized
volatility (RV or TSRV) and implied volatility (IV) in the
variance equation, as follows,

yt = σtεt, t = 1, . . . , T

σ2
t = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j +

M∑
k=1

φkRV 2
t−k

+ · · · +
N∑

l=1

γlIV 2
t−l.

(5)

Estimation of the above models can be done through
maximum likelihood estimation (Doornik and Ooms, 2003;
Laurent and Peters, 2006).

In Section 4 where forecasting performance is eval-
uated, we also consider a different type of exten-
sion to GARCH(1,1), namely, the fractional integrated
GARCH(1,1) (FIGARCH(1,1)) model (Baillie et al., 1996).
This model is able to capture long memory property in the
return volatility. The general form of a FIGARCH model
can be written as:

yt = σtεt, t = 1, . . . , T

σ2
t = α0[1 −

q∑
j=1

βjB
j ]−1

+
[
1 − [1 −

q∑
j=1

βjB
j ]−1

p∑
i=1

αiB
i(1 − B)d

]
ε2
t

(6)

where yt is the demeaned returns, εt follows an i.i.d. stan-
dard normal distribution and B is the backshift operators
defined as: Bxt = xt−1. The fractional differencing param-
eter d is a non-integer real number. Similar to GARCH
model and its extensions, a FIGARCH model can be es-
timated using the maximum likelihood method, and the
G@rch package (Laurent and Peters, 2006) in Ox software
is employed for estimation and forecasting procedures in this
study.
(iv) Stochastic Volatility Model and Its Extensions
A basic stochastic volatility (SV) model (Taylor, 1986) is in
a form of:

(7) yt = σtεt, σ2
t = exp(ht), ht = μ + ϕht−1 + σηηt,

where yt and σ2
t are the de-meaned returns of a financial

asset and its instantaneous variance, respectively, at time t.
The noise processes εt and ηt are independent and follow
i.i.d. standard normal distributions. The logarithm of the
instantaneous variance ht has a persistence parameter ϕ,
which is positive and takes a value less than 1.
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Similar to Koopman et al. (2005), we extend SV model
to include realized volatility and/or implied volatility as fol-
lows:

yt = σtεt, σ2
t = exp(ht),

ht = μ + ϕht−1 +
M∑
i=1

pi log(RV 2
t−i

+
N∑

j=1

qj log(IV 2
t−j) + σηηt,

(8)

where M and N represent the maximum lags of realized
volatility (RV or TSRV) and implied volatility (IV), respec-
tively.

Gibbs sampler is used for estimating the SV-type models,
as well as for obtaining predictions. In each case, 50,000
samples are generated, with 2,000 burn-in samples.

2.2 Data

For our empirical study, we use five individual stocks
traded in the New York Stock Exchange (NYSE), namely
Microsoft (MSFT), Citi (C), Disney (DIS), Pfizer (PFE),
and General Electric (GE). All of them are highly liquid,
representing five different industries. The time period con-
sidered is from January 2, 2001 to December 31, 2003, with
752 daily observations in total for each series. Intra-daily
high frequency return data are also obtained in this period.

The daily return data set and the intra-day high fre-
quency data set are downloaded from Wharton Research
Database Services (WRDS). The intra-daily high frequency
data is the consolidated trades in the NYSE’s TAQ
database. When constructing the daily realized volatility
(RV and TSRV) with the intra-day high frequency data set,
we remove those prices with more than 1% bounceback, de-
fined as |yti−yti−1 | > 1% and |yti+1−yti | > 1% in additional
to the conditions that the consecutive returns yti −yti−1 and
yti+1 − yti hold opposite signs. Such incidents are often due
to data recording errors.

For the five stocks considered in the period of January 2,
2001 to December 31, 2003, the average daily observation
frequencies in the high frequency data are summarized in
Table 1. As is shown in Table 1, the ranges of daily observa-
tions differ from stock to stock. We use k = 200 for TSRV
calculation, as explained in Section 2.1 (ii).

Table 1. Summary of average daily observation frequency

Series Avg. Obs.

Citi 7,634

Disney 4,612

GE 12,910

Microsoft 43,954

Pfizer 8,530

2.3 Characteristics and relationship of the
volatility measures

When exploring the characteristics of different volatility
measures, we used the implied volatility series published in
www.Ivolatility.com, the estimated daily realized volatilities
RV and TSRV, and the instantaneous daily volatility mea-
sures under GARCH(1,1) and basic SV model for the five
stocks. Our findings for the five stocks are similar, so we
only report that of Microsoft. Figure 1 shows the autocor-
relation functions of four MSFT volatility series. The ACF
plot of RV is omitted since it is quite similar to TSRV. From
Figure 1, all the volatility measures have strong and persis-
tent autocorrelations, an evidence for the volatility cluster-
ing phenomenon.

In order to investigate the relationship between the
four different volatility measures, Figure 2 presents their
cross-correlation functions. It is evident that strong cross-
correlation exists in each pair of the volatility measures.
Within 20 leads/lags, the cross-correlations between any two
volatility measures are at least 0.4. The maximum correla-
tion between TSRV and other measures does not occur at
lag zero, instead, a lagged TSRV seems to have strong cross-
correlation with other volatility measures.

Both theoretical and empirical literature have docu-
mented long-memory volatility property. Early work in this
area includes Robinson (1991) and Ding et al. (1993).

This long-range dependence in volatility process can of-
ten be characterized by certain fractional integration models
where a fractional integrated process xt of order d can be
transformed into a stationary process via fractional differ-
encing. As its name suggests, the differencing parameter d
is a non-integer real number.

We apply the long memory R/S test proposed by Lo
(1991) to each of the volatility processes, using 20 as the
bandwidth for the cross variance. We also obtain the GPH
fractional differencing estimator d using the methodology
proposed by Geweke and Porter-Hudak (1983). Tables 2
and 3 present the R/S statistics and the GPH estimates,
respectively, for each of the five stocks’ volatility measures.

Table 2 shows that all of the R/S statistics are signifi-
cant at 0.05 level, with critical value 1.747, thus suggest-
ing all four volatility measures exhibit fractional integration
characteristics. In Table 3, the GPH estimates of the frac-
tional differencing parameters are listed, where the values
in the parentheses are standard deviations corresponding to
each of the GPH estimates. The GPH estimates show that,
although the different volatility measures are of long mem-
ory, the extent of fractional integration varies for different
volatility measures. The GPH estimates for GARCH(1,1)
volatility and basic SV volatility are larger than those of
realized volatilities (RV and TSRV), while the estimate for
implied volatility lies in between. This pattern holds for all
the five individual stocks.
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(a) GARCH(1,1) (b) SV

(c) TSRV (d) IV

Figure 1. Estimated autocorrelations of the four volatility measures of Microsoft. Time period: 01/02/2001-12/31/2003.

3. A VECTOR ARFIMA(p,d,q) MODEL FOR
VOLATILITY SERIES

The empirical evidence in Section 2 suggests that frac-
tional integration patterns exist in all the volatility series
and the volatility measures have strong short-term and long-
term cross-correlations. The extensions of GARCH and SV
models in the literature, as cited in Section 1, either do
not incorporate the rich information from the ultra-high-
frequency returns with microstructure noise correction, or
fail to capture the long memory property in the return
volatilities.

As a consequence, the forecasting performance from these
models is limited. We propose to model GARCH and SV
return volatility jointly with realized volatility and implied
volatility, using a vector fractionally integrated autoregres-
sive and moving average model (VARFIMA). This model
is able to capture the long memory characteristic property
of the individual volatility measure, as well as the interac-
tive relationship between each other. We will allow different

differencing parameter d’s to reflect different degrees of frac-
tional integration among the volatility measures.

Without losing generality, a VARFIMA(p,d,q) model
may be expressed as:

(9)
(I−Φ1B−· · ·−ΦpB

p)M(B)yt = (I−Θ1B−· · ·−ΘqB
q)εt

where yt is a de-meaned k × 1 vector consisting of k time
series at time t. Here we assume M(B) to be a k × k di-
agonal matrix with diagonal elements being (1− B)d1 , (1 −
B)d2 , . . . , (1−B)dk where di is the fractional differencing pa-
rameter of ith dimension. The noise vector εt is assumed to
be Gaussian with εt ∼ NID(0,Σ). Stationarity and other
properties of such processes are similar to that of univari-
ate ARFIMA model, established by (Dahlhaus, 1988, 1989;
Fox and Taqqu, 1986, 1987; Li and McLeod, 1986; Yajima,
1985).

We implement two classes of VARFIMA in this paper
with, both of three dimensional (k = 3):
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(a) GARCH(1,1) vs. SV (b) GARCH(1,1) vs. TSRV

(c) GARCH(1,1) vs. IV (d) SV vs. TSRV

(e) SV vs. IV (f) TSRV vs. IV

Figure 2. Estimated cross-correlations of the four volatility measures of Microsoft. In each figure, the first volatility measure
leads the second one when the lags are positive; the second volatility measure leads the first one when the lags are negative.

Time period: 01/02/2001-12/31/2003.

VARFIMA I:
In this class of models we use the three dimensional
time series yt = (VGARCH,t, VRealized,t, VImplied,t)

′
in

model (9). where VGARCH,t, VRealized,t, and VImplied,t

represent the GARCH volatility, realized volatility, and
implied volatility at time t, respectively. All three are

treated as observed, either directly or estimated as de-
scribed in Section 2. The AR coefficients ΦI,1, . . . ,ΦI,p

and MA coefficients ΘI,1, . . . ,ΘI,q are 3 by 3 matri-
ces, and εt is a 3 by 1 vector. The AR and MA or-
ders (p, q) will be determined with model selection cri-
teria.
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Table 2. R/S statistics of the volatility measures

Series GARCHVol SVVol RVol TSRVol ImpVol

Citi 1.8990 1.9504 2.0244 1.9799 1.9231

Disney 1.9303 1.9084 2.0403 2.0138 1.9872

GE 1.8226 2.0640 1.9264 1.9407 1.8845

Microsoft 1.7735 1.9458 1.9229 1.8358 1.8714

Pfizer 1.8776 1.9794 1.8238 1.9628 1.8765

VARFIMA II:
Here we use yt = (VStochastic,t, VRealized,t, VImplied,t)

′

in model (9), where VStochastic,t, VRealized,t, and
VImplied,t represent the stochastic volatility, realized
volatility, and implied volatility at time t, respectively.

In both cases, we use the standard RV or the TSRV for
realized volatility VRealized and compare the impacts of these
two realized volatility estimators on the volatility forecasts.
The corresponding models are hence labelled as Class I-RV
and I-TSRV and Class II-RV and II-TSRV, respectively.

Maximum likelihood method is employed for model
estimation. Theoretical properties of the estimators are
direct extensions of the results obtained for univariate
ARFIMA models in (Beran, 1995; Chung, 1996; Dahlhaus,
1989; Li and McLeod, 1986; Robinson, 2001; Sowell, 1992;
Yajima, 1985). The estimation is computationally intensive
due to the nonlinearity in the fractional integration param-
eters d1, d2 and d3 and the large number of parameters in
coefficient matrices Φ(B) and Θ(B). Specifically we use a
grid search for d1, d2, and d3 around the initial value of the
GPH estimates of each individual univariate series, shown in
Table 2. For each combination of grid values of (d1, d2, d3),
its likelihood function value is obtained by estimating the
corresponding VARFIMA(p,(d1,d2,d3),q) model. The opti-
mal values of d1, d2, and d3 are those which generate the
maximum likelihood value for the specified VARFIMA(p,q)
model. Given optimal d1, d2, and d3 values, the rest of the
parameters are estimated through a standard estimation
procedure for vector ARMA model with refinements.

Here we only report the results of Microsoft stock. Find-
ings for other stocks show similar features and are omitted
to avoid redundancy.

Table 4 lists the estimates of d’s and the corresponding
maximum likelihood values with different specifications of p
and q as well as their corresponding AIC (Akaike, 1969) val-
ues. In Table 4, dI,k, k = 1, 2, 3, are the estimated fractional
differencing parameter corresponding to GARCH volatility,
TSRV and implied volatility in the Class I, respectively. Sim-
ilarly, dII,k, k = 1, 2, 3 are those in the Class II, respectively.

According to the AIC values in Table 4, the best model
in Class I is VARFIMA(2,(1.09, 0.68, 0.90),1) and the best
model in Class II is VARFIMA(2,(0.98, 0.65, 0.91),1). We
can see that the orders p and q do have certain effect on the
fractional integration order.

Table 3. GPH estimators of fractional differencing parameters

Series GARCHVol SVVol RVol TSVol ImpVol

Citi 1.0159 1.0935 0.5367 0.6441 0.7538
(0.0467) (0.0328) (0.0479) (0.0570) (0.0510)

Disney 0.7923 1.0165 0.4770 0.5180 0.7029
(0.0540) (0.0285) (0.0464) (0.0527) (0.0503)

GE 0.8664 0.9730 0.5023 0.5173 0.6589
(0.0492) (0.0253) (0.0438) (0.0494) (0.0473)

Microsoft 0.9299 0.9934 0.5538 0.6082 0.7864
(0.0497) (0.0227) (0.0429) (0.0465) (0.0506)

Pfizer 0.9519 1.0916 0.4922 0.5221 0.7970
(0.0512) (0.0282) (0.0502) (0.0474) (0.0512)

To obtain more accurate coefficient estimation and to
avoid model ambiguity often encountered in vector ARMA
models (Tiao and Tsay, 1989; Tsay, 1989), we employ a
coefficient-refining procedure with fixed di’s to zero-out the
insignificant coefficients in the AR and MA coefficient ma-
trices. Specifically, with fixed di’s, a backward elimination
procedure is used to remove insignificant coefficients one at
a time with models re-estimated iteratively, until all remain-
ing coefficients are significant at 5% level.

The estimated AR and MA coefficient matrices with their
standard errors, as well as the estimated covariance ma-
trix for the error term in our VARFIMA model, from the
two best models in Classes I and II are given below. As
shown in the estimated coefficient matrices, the estimated
significant coefficients do reflect the inter- and cross- corre-
lation among the three different volatility measures in both
models. Specifically, for the best model in Class I, the non-
zero lag-1 AR and MA coefficients are only related to real-
ized volatility, except the MA(1) coefficient of the realized
volatility itself. Hence it seems that the past observations
of the realized volatility has more influences on all three
volatility measures under this model. In addition, the es-
timated noise covariance matrix shows that the noises in
realized volatility series and implied volatility series have
higher correlation than the other two pairs. The structure
of the coefficient matrices in the best model of Class II is
very different from that in Class I, showing the difference
between volatility measures based on GARCH models and
SV models. However, the noises in realized volatility series
and implied volatility series still have higher correlation than
other two pairs in the best model in Class II, showing a con-
stant pattern.

Φ̂I,1 =

⎛
⎝ 0 0.21(0.06) 0

0 0 0
0 −0.55(0.14) 0

⎞
⎠ ;

Φ̂I,2 =

⎛
⎝ −0.08(0.03) 0.08(0.02) 0

0 0 0.18(0.05)
0 −0.13(0.03) 0.29(0.06)

⎞
⎠ ;
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Table 4. Estimation results of the VARFIMA(p,(d1, d2, d3),q) models

Model d̂I,1 d̂I,2 d̂I,3 MLI AICI d̂II,1 d̂II,2 d̂II,3 MLII AICII

VARFIMA(1,di,0) 0.91 0.59 0.81 10,364.00 −36.79 0.96 0.63 0.86 10,733.43 −37.92
VARFIMA(2,di,0) 0.90 0.55 0.84 10,368.24 −36.93 0.92 0.59 0.85 10,738.27 −37.99
VARFIMA(3,di,0) 0.98 0.54 0.85 10,373.11 −37.03 0.96 0.57 0.89 10,741.03 −37.99
VARFIMA(4,di,0) 0.92 0.57 0.83 10,376.89 −36.86 0.95 0.61 0.83 10,743.95 −37.96
VARFIMA(5,di,0) 1.02 0.58 0.86 10,378.20 −36.92 0.99 0.59 0.88 10,747.21 −38.03
VARFIMA(1,di,1) 0.88 0.61 0.76 10,373.90 −36.57 0.93 0.57 0.89 10,744.95 −37.95
VARFIMA(2,di,1) 1.09 0.68 0.90 10,393.29 −37.18 0.98 0.65 0.91 10,753.92 −38.26
VARFIMA(3,di,1) 0.96 0.53 0.77 10,381.09 −37.05 0.96 0.57 0.82 10,749.10 −37.98
VARFIMA(1,di,2) 1.03 0.67 0.86 10,378.27 −36.86 0.99 0.63 0.85 10,746.73 −37.96
VARFIMA(2,di,2) 0.89 0.52 0.73 10,376.39 −36.83 0.92 0.51 0.76 10,745.39 −37.82
VARFIMA(3,di,2) 0.93 0.46 0.72 10,391.55 −37.04 0.95 0.55 0.68 10,749.51 −37.99
VARFIMA(1,di,3) 0.90 0.44 0.71 10,383.09 −36.98 0.92 0.47 0.77 10,746.25 −37.93
VARFIMA(2,di,3) 0.97 0.46 0.75 10,396.42 −37.13 0.97 0.49 0.71 10,750.44 −37.93
VARFIMA(3,di,3) 1.01 0.55 0.81 10,393.87 −36.99 1.03 0.57 0.85 10,748.99 −37.90

Θ̂I,1 =

⎛
⎝ 0 0.22(0.06) 0

0 0.28(0.04) −0.50(0.07)
0 −0.59(0.14) 0

⎞
⎠ ;

Σ̂I =

⎛
⎝ 0.20E-05 0.43E-06 0.86E-07

0.43E-06 0.12E-04 0.20E-05
0.86E-07 0.20E-05 0.30E-05

⎞
⎠ ;

Φ̂II,1 =

⎛
⎝ 0.85(0.02) 0 0

0 0 −0.82(0.35)
1.02(0.24) −0.38(0.10) 0

⎞
⎠ ;

Φ̂II,2 =

⎛
⎝ 0 −0.005(0.002) 0

1.39(0.36) 0 0.26(0.07)
0 −0.07(0.03) 0.18(0.06)

⎞
⎠ ;

Θ̂II,1 =

⎛
⎝ 0 0 −0.017(0.005)

0 0.25(0.04) −1.31(0.35)
0.88(0.33) −0.41(0.10) 0

⎞
⎠ ;

Σ̂II =

⎛
⎝ 0.50E-07 -0.25E-07 0.12E-07

-0.25E-07 0.12E-04 0.20E-05
0.12E-07 0.20E-05 0.30E-05

⎞
⎠ .

4. VOLATILITY FORECASTING

The practical relevance of sophisticated volatility model-
ing to a large extent hinges on its forecasting performance.
In practice, volatility forecasting is very important due to its
close relation to asset pricing, derivatives’ pricing and trad-
ing, and risk management. For example, in derivative trad-
ing, volatility swap, volatility corridor and variance swap
are traded in the over-the-counter market every day. Bet-
ter forecasts of an asset’s return volatility can help prac-
titioners gauge a market trend and make a more intelli-
gent trading decision. In risk management, reliable and long-
horizon volatility forecasts make risk assessment and man-

agement feasible, both from regulators and financial insti-
tutions’ viewpoints.

Based on an estimated VARFIMA(p,d,q) model for the
volatility series, we can obtain volatility forecast through
standard methods. Specifically, based on model (9), we have

M(B)yt+� = Φ1M(B)yt−1+� + . . . + ΦpM(B)yt−p+�

+ (I − Θ1B − · · · − ΘqB
q)εt+�

(10)

Hence,

yt+� = (I − M(B))yt+� + Φ1M(B)yt−1+�(11)
+ . . . + ΦpM(B)yt−p+�

+ (I − Θ1B − · · · − ΘqB
q)εt+�

where I is a k × k identity matrix. Since the expression
(I − M(B))yt+� does not involve yt+�, the above equation
can be used for prediction. By taking expectations on both
sides, the predictor ŷt+� can be easily obtained (Box et al.,
2008) through the following rules: E(yt+j) = yt+j for j ≤ 0,
E(yt+j) = ŷt(j) for 0 < j ≤ 
, where ŷt(j) represents the
j-step ahead forecasted ŷt at time t; E(εt+j) = 0 for j > 0,
and E(εt+j) = ε̂t+j for j ≤ 0 (the estimated residuals), and

(1 − B)d = 1 +
∞∑

k=1

Γ(−d+k)
Γ(−d)Γ(k+1)B

k is approximated by the

finite summation using only available data.
We shall compare the forecasting power of different

volatility models, including VARFIMA I, VARFIMA II (the
number of dimension is k = 3), as well as the GARCH(1,1)
and basic SV model together with their extensions as speci-
fied in Section 2. Note that for Class VARFIMA I, we eval-
uate the forecasting performance of the GARCH volatility,
and for Class VARFIMA II, we evaluate the forecasting per-
formance of the SV volatility.

It is well known that the microstructure noise is promi-
nent in the intra-daily high frequency data, hence presents a
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concern in estimating the daily realized volatility. Since the
TSRV is constructed to remove the effect of the microstruc-
ture noise on volatility estimation, we shall be particularly
interested in the impacts of including RV versus TSRV on
our VARFIMA(p,d,q) forecasts.

We focus on one-day and five-day forecasts of return
volatility, which are widely followed in practice, to inves-
tigate the forecasting power of our approach. Specifically,
we perform out-of-sample rolling forecasting with a total of
251 one-day and five-day ahead daily forecasts, where the
out-of-sample period is from 12/31/2002 to 12/31/2003. In
the forecasting procedure, we fix the fractional differencing
parameters di where i = 1, 2, 3 by using the estimated di’s
in our VARFIMA Classes I and II from the procedures in-
troduced in Section 3, and then exact maximum likelihood
estimates on all AR and MA parameters in the model are
obtained in each of the rolling windows, and the one-day and
five-day ahead forecasts for the return volatility are made
based on the fitted model accordingly. Following the results
in Section 3, we employ a V ARFIMA(2, d, 1) model for
both Class VARFIMA I and VARFIMA II here. Therefore,
a more explicit version of equation (11) may be written as:

yt+� = (I − M(B))yt+� + Φ1M(B)yt−1+�(12)
+ Φ2M(B)yt−2+� + (I − Θ1B)εt+�

where Φ1 and Φ2 are the AR(2) coefficients matrices, and
Θ1 is the MA(1) coefficients matrix. M(B) follows the same
definition as that in model (9) with k = 3.

In addition, we also obtained out-of-sample one-day
ahead and five-day ahead volatility forecasts using the ba-
sic GARCH(1,1) and SV model, as well as the extended
GARCH and SV models expressed in (2) and (4) with lag-1
realized volatility and implied volatility included in the vari-
ance and log-variance equations, respectively. Furthermore,
we derived the volatility forecasts from the FIGARCH(1,1)
model. Whenever realized volatility is involved, both RV and
TSRV are considered.

Following Andersen and Bollerslev (1998), we treat the
daily realized volatility obtained from the intra-daily high
frequency data as the true return volatility. Specifically we
use the daily TSRV, instead of the standard RV, as the
benchmark of the daily return volatility, as TSRV is a more
precise estimator (Zhang et al., 2005).

To evaluate the forecasting performance of different mod-
els, we used three criteria: regression R2, heteroscedasticity-
adjusted root mean squared error (HRMSE), and
heteroscedasticity-adjusted mean absolute error (HMAE).
Specifically, Goodness-of-fit measured by R2 is obtained by
regressing the volatility benchmark σ̃2

t – in our case, TSRV
– against the volatility forecast σ̂2

t within the same time
horizon.

The R2 is obtained using the OLS approach:

(13) σ̃2
t = α + βσ̂2

t + εt.

A higher R2 suggests a higher proportion of the variation in
the benchmark can be explained by the volatility forecast.

HRMSE is computed as:

(14) HRMSE =

√√√√ 1
M − 


M∑
j=1

(
1 −

σ̂2
j

σ̃2
j

)2

where M is the total number of the forecasts, 
 = 1 or
5 depending on whether the forecast is one day or five
days ahead. Again,σ̃t and σ̂t are the benchmark TSRV and
volatility forecast on day t, respectively.

Different from the R2 measure, HRMSE measures the
local fluctuations of the forecasted return volatility from the
benchmark. HMAE is similar to HRMSE except that it uses
mean absolute error. It is defined as:

(15) HMAE =
1

M − 


M∑
j=1

∣∣∣∣∣1 −
σ̂2

j

σ̃2
j

∣∣∣∣∣
Tables 5 and 6 compare the one-day-ahead and five-day-

ahead forecasting performance, using all five stocks. Column
A indicates whether standard RV or TSRV is used as a repre-
sentative for realized volatility in different forecasting mod-
els (Columns C-I). Column B is about different forecasting
evaluation criteria.

For both one-day forecasts (Table 5) and five-day fore-
casts (Table 6), the VARFIMA models outperform the other
models, yielding the highest R2’s and lowest HRMSE’s and
HMAE’s for most of the stocks under consideration. In par-
ticular, one-day-ahead VARFIMA volatility forecasts can
explain 55.1%–66.8% of the variation (R2) in the benchmark
σ̃2

t , while five-day-ahead forecasts explain 35.1%–40.4% of
such variation, across stocks. For each evaluation criteria in
Column B, the incremental improvement in the forecast per-
formance has a clear pattern across models. First, extended
GARCH forecast (Column G) outperforms basic GARCH
forecast (Column E), indicating that realized volatility and
implied volatility bring in additional information in the
GARCH forecast. Similarly, extended SV (Column H) has
better forecasting power than basic SV (Column F). Sec-
ond, the capability of capturing long-memory characteristic
in volatility measure helps the forecasting. This is evident
from the superior forecast of FIGARCH (Column I) over
extended GARCH model (Column G). Also, the VARFIMA
II (Column D) forecasts perform much better than the ex-
tended SV forecast. Third, overall enhancement in the fore-
cast performance from FIGARCH to VARFIMA I (Column
C) seems to indicate that joint modeling of the dynamic re-
lations between different volatility measures has a gain. And
finally, for any given volatility model, using the TSRV in-
stead of the standard RV as the realized volatility estimator
consistently improves the forecasting. This could be caused
by two reasons: one is that TSRV is constructed from a
much richer return series (i.e. tick-by-tick data) whereas the
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Table 5. Evaluation of one-day ahead return volatility forecasting performance

A B C D E F G H I

V ARFIMA I V ARFIMA II GARCH SV GARCH + RV + IV SV + RV + IV FIGARCH

Citi: TSRV R2 0.642 0.652 0.449 0.471 0.535 0.540 0.573
HRMSE 0.315 0.310 0.393 0.385 0.341 0.335 0.321
HMAE 0.293 0.289 0.376 0.371 0.327 0.323 0.307

Citi: RV R2 0.561 0.579 0.388 0.392 0.441 0.445 0.509
HRMSE 0.357 0.348 0.425 0.409 0.376 0.382 0.361
HMAE 0.322 0.318 0.390 0.384 0.350 0.345 0.333

Disney: TSRV R2 0.625 0.618 0.437 0.441 0.530 0.537 0.562
HRMSE 0.332 0.337 0.409 0.402 0.347 0.338 0.334
HMAE 0.309 0.319 0.383 0.391 0.332 0.326 0.319

Disney: RV R2 0.557 0.551 0.359 0.355 0.438 0.440 0.500
HRMSE 0.348 0.353 0.436 0.443 0.385 0.380 0.366
HMAE 0.335 0.338 0.398 0.403 0.357 0.353 0.331

GE: TSRV R2 0.626 0.633 0.442 0.450 0.537 0.543 0.573
HRMSE 0.331 0.323 0.394 0.389 0.340 0.334 0.328
HMAE 0.304 0.297 0.378 0.370 0.328 0.319 0.311

GE: RV R2 0.565 0.578 0.370 0.383 0.443 0.450 0.507
HRMSE 0.353 0.348 0.430 0.425 0.379 0.371 0.355
HMAE 0.333 0.319 0.387 0.381 0.350 0.345 0.325

Microsoft: TSRV R2 0.623 0.631 0.451 0.459 0.543 0.549 0.585
HRMSE 0.339 0.328 0.388 0.379 0.332 0.328 0.319
HMAE 0.309 0.302 0.367 0.359 0.317 0.311 0.307

Microsoft: RV R2 0.570 0.581 0.382 0.389 0.448 0.453 0.519
HRMSE 0.348 0.339 0.419 0.413 0.368 0.360 0.348
HMAE 0.327 0.311 0.380 0.373 0.340 0.338 0.316

Pfizer: TSRV R2 0.660 0.668 0.463 0.471 0.557 0.563 0.593
HRMSE 0.325 0.309 0.379 0.370 0.325 0.318 0.308
HMAE 0.298 0.297 0.350 0.343 0.304 0.299 0.290

Pfizer: RV R2 0.577 0.585 0.398 0.402 0.469 0.481 0.535
HRMSE 0.337 0.331 0.405 0.400 0.357 0.350 0.331
HMAE 0.317 0.308 0.368 0.360 0.330 0.323 0.301
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Table 6. Evaluation of five-day ahead return volatility forecasting performance

A B C D E F G H I

V ARFIMA I V ARFIMA II GARCH SV GARCH + RV + IV SV + RV + IV FIGARCH

Citi: TSRV R2 0.395 0.392 0.201 0.189 0.225 0.231 0.297
HRMSE 0.497 0.500 0.639 0.660 0.579 0.568 0.525
HMAE 0.462 0.469 0.582 0.594 0.560 0.552 0.507

Citi: RV R2 0.371 0.374 0.177 0.170 0.202 0.206 0.271
HRMSE 0.543 0.536 0.650 0.673 0.585 0.579 0.548
HMAE 0.504 0.496 0.610 0.618 0.549 0.544 0.513

Disney: TSRV R2 0.380 0.400 0.194 0.199 0.233 0.239 0.313
HRMSE 0.509 0.508 0.643 0.638 0.570 0.563 0.517
HMAE 0.468 0.471 0.595 0.590 0.552 0.543 0.498

Disney: RV R2 0.352 0.351 0.181 0.186 0.207 0.214 0.296
HRMSE 0.535 0.529 0.649 0.645 0.591 0.580 0.523
HMAE 0.510 0.513 0.603 0.597 0.573 0.565 0.501

GE: TSRV R2 0.399 0.404 0.206 0.213 0.241 0.249 0.324
HRMSE 0.497 0.499 0.633 0.625 0.563 0.558 0.503
HMAE 0.459 0.461 0.580 0.572 0.544 0.538 0.489

GE: RV R2 0.360 0.369 0.186 0.190 0.212 0.215 0.305
HRMSE 0.529 0.518 0.640 0.640 0.579 0.573 0.511
HMAE 0.491 0.492 0.594 0.588 0.560 0.553 0.493

Microsoft: TSRV R2 0.390 0.385 0.196 0.193 0.233 0.228 0.319
HRMSE 0.520 0.523 0.637 0.643 0.581 0.589 0.519
HMAE 0.470 0.471 0.606 0.613 0.552 0.548 0.497

Microsoft: RV R2 0.365 0.378 0.182 0.177 0.207 0.201 0.301
HRMSE 0.545 0.535 0.653 0.664 0.589 0.594 0.523
HMAE 0.511 0.503 0.608 0.619 0.573 0.577 0.505

Pfizer: TSRV R2 0.397 0.402 0.207 0.213 0.238 0.245 0.334
HRMSE 0.503 0.498 0.624 0.616 0.575 0.569 0.504
HMAE 0.468 0.463 0.592 0.589 0.550 0.541 0.490

Pfizer: RV R2 0.370 0.377 0.193 0.200 0.215 0.219 0.315
HRMSE 0.538 0.531 0.638 0.633 0.581 0.573 0.509
HMAE 0.512 0.512 0.613 0.602 0.568 0.560 0.498
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standard RV is calculated from a sparse return series (i.e.
five-minute returns), the other reason is that TSRV is a more
precise volatility measure in the sense that it corrects the
bias from the microstructure noise whereas standard RV is
vulnerable to the microstructure noise in the high frequency
data.

5. CONCLUSIONS

In this study, we proposed a vector ARFIMA model to
capture the long memory and cross-correlation of different
volatility measures of a financial return series. The volatility
measures involved in our VARFIMA model are the volatil-
ity generated from the GARCH(1,1) model, the volatility
generated from the basic SV model, two realized volatil-
ity estimators (RV and TSRV) constructed from intra-daily
high frequency data set, and the implied volatility.

In an out-of-sample forecasting comparison, the proposed
vector model outperforms some existing volatility models in
the literature, including GARCH(1,1) and its extension, ba-
sic SV and its extension, as well as FIGARCH(1,1). Our
VARFIMA model has three attractive features: (a) it suc-
cessfully captures the long memory properties in the volatil-
ity process; (b) it incorporates richer information from op-
tions market (through implied volatility) and from intra-
daily tick-by-tick data, meanwhile it is shielded from the mi-
crostructure noise in the intra-daily data (through TSRV);
and (c) it jointly models the dynamic inter-day relations be-
tween different volatility measures. Our data analysis sug-
gests that all above features contribute to a better volatility
forecast.
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