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Local linear logistic Peters–Belson regression
and its application in employment
discrimination cases
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∗
, Efstathia Bura and Joseph L. Gastwirth

In cases involving possible discrimination in hiring or
promotion plaintiffs allege that they were treated differ-
ently than similarly qualified majority individuals. The
data are typically analyzed using logistic regression with a
minority indicator variable. Alternatively, the Peters–Belson
(PB) regression method, which fits a regression model to
the majority data and compares the status of each minor-
ity member to its prediction obtained from the majority
equation, has also been accepted by courts. The average dif-
ference estimates the disparity in treatment accounting for
job-related covariates. The appropriateness of these para-
metric models depends on whether they reflect the process
generating the data. To lessen the dependence of the ulti-
mate inference on the assumed parametric model, the ma-
jority equation is fit by local linear logistic regression and
the response of each minority is predicted from it. Large
sample properties of this PB-type procedure are obtained
and a simulation study shows that the method loses little
power relative to parametric methods even when the as-
sumed parametric method is correct. Moreover, it yields
more reliable estimates of the disparity when the data do
not follow the assumed model. Data from the Berger v.
Iron Workers Local 201 case are used to illustrate the
method.

Keywords and phrases: Covariate adjustment, Disparity
studies, Employment discrimination, Legal statistics, Local
likelihood estimation, Local logistic regression.

1. INTRODUCTION

In employment discrimination cases involving hiring and
promotion decisions, plaintiffs often allege that they received
different treatment from that of similarly qualified major-
ity group members. Often, both the plaintiff and defendant
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submit statistical evidence to support or refute the claim
of disparate treatment. The Supreme Court stated in Baze-
more v. Friday1 that a proper statistical analysis should
account for the major variables or covariates influencing the
response of interest. The standard approach (see Gastwirth,
1989) to account for the effects of major covariates on the
binary response (e.g., 1 = hired, 0 = not hired) is to use an
indicator or dummy variable that represents minority status
in a logistic regression model.

Gastwirth and Greenhouse (1995) suggested an alterna-
tive approach based on Peters–Belson (PB) regression (Pe-
ters, 1941; Belson, 1956). This method fits a logistic regres-
sion model to the majority group data and measures the
difference between each minority’s response (0 or 1) and
the predicted probability obtained from the majority only
model. The average of the differences between the observed
and predicted responses estimates the difference between the
treatment a minority member received and the treatment
s/he would have received had s/he belonged to the majority
group.

While logistic regression, either in the standard or PB
form, is a widely used method, its usefulness depends on
whether the data follow the assumed logit link function and
on how well the relationship between the response and the
covariates can be approximated by a parametric model such
as the linear or quadratic. When the relationship is not
straightforward, nonparametric regression (see Takezawa,
2006), in which the data are used to derive the model struc-
ture, is a natural alternative. In this paper, we introduce
Peters–Belson local linear logistic regression (see Loader,
1999, Chapter 4, for a discussion of local linear logistic re-
gression) and obtain the statistical properties of the estima-
tor of the disparity between two groups. Local linear regres-
sion was chosen as it is a nonparametric extension of lin-
ear regression and enjoys some of its optimality properties
(Fan and Gijbels, 1996). The major advantage of local lin-
ear logistic regression in the context of discrimination cases
is that in estimating the success probability of a minority

1Bazemore v. Friday, 478 U. S. 385, 1986.
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member under a fair system, majority members with qual-
ifications (i.e., values of covariates) that are most similar
to those of the minority member receive higher weight and
those with quite different qualifications receive little or no
weight.

The paper is organized as follows. In section 2, we re-
view the classical PB approach, which essentially uses re-
gression to create a “statistical match” for each minority
member. In section 3, we introduce the Local Linear Logis-
tic PB regression method and present statistical properties
of the disparity estimator. Section 4 reports the results from
a simulation study comparing the statistical properties of
Local Linear Logistic PB with those of other conventional
methods. In section 5, the method is applied to data from
the Berger v. Iron Workers Local 201 2 case. We show that
local linear PB provides a more accurate disparity estimate
when the linear link logistic model does not provide a good
fit to the data. We end with concluding remarks in sec-
tion 6.

2. REVIEW OF THE PETERS–BELSON
METHOD

The Peters–Belson (PB) regression method was intro-
duced by Peters (1941) and Belson (1956) and discussed
by Cochran and Rubin (1973) for continuous response vari-
ables in order to compare mean responses of two groups
(e.g., majority vs. minority). It is an alternative to dummy
variable regression analysis, and both have been accepted
by courts (Gray, 1993). Gastwirth and Greenhouse (1995)
adapted the PB method to logistic regression for a bi-
nary response. Nayak and Gastwirth (1997) extended it
to a broader class of generalized linear models. In the PB
method, a regression model is fitted to the majority group
data, and the difference between any minority member’s ac-
tual response and its estimated response obtained from the
majority only regression equation is the estimated dispar-
ity of the minority member. The average of these differ-
ences provides a summary measure of the disparity for all
minority members having accounted for the relevant covari-
ates.

Suppose that the success (e.g., hired, promoted) prob-
abilities are determined by the following inverse logit link
functions with d relevant covariates:

Minority: p1(x1) =
eβ10+

∑d

k=1
β1kx1k

1 + eβ10+
∑d

k=1
β1kx1k

Majority: p2(x2) =
eβ20+

∑d

k=1
β2kx2k

1 + eβ20+
∑d

k=1
β2kx2k

2Berger v. Iron Workers Local 201, 42 FEP Cases 1161 (D.D.C. 1985),
843 F.2d 1395 (D.C. Cir. 1988).

where x1 and x2 are vectors of the same d covariates for
minority and majority, respectively. Note that the subscript
1 is used for minority and 2 is used for majority.

Then, the disparity for the i-th minority member is ex-
pressed by

(1) δi = p1(x1i) − p2(x1i)

and the average disparity in terms of success probability for
all n1 minority members is

(2) δ =
∑n1

i=1(p1(x1i) − p2(x1i))
n1

To estimate δi in (1), we fit the following logistic regression
model to the majority data:

(3) ln
(

p2(x2)
1 − p2(x2)

)
= β20 +

d∑
k=1

β2kx2k

The estimate of δi is the difference between the observed
response value of the i-th minority and its predicted
success probability from the majority logistic regression
model (3):

Di = Y1i −
eβ̂20+β̂21x11i+β̂22x12i+···+β̂2dx1di

1 + eβ̂20+β̂21x11i+β̂22x12i+···+β̂2dx1di

The average of Di over all minority members

(4) D̄ =
∑n1

i=1 Di

n1

serves as an estimator of the average disparity δ in (2).
Using the asymptotic properties of the maximum likeli-

hood estimators of the β2 coefficients in (3), Gastwirth and
Greenhouse (1995) obtained the asymptotic normality of D̄

and proposed the test statistic D̄/
√

v̂ar(D̄) for testing the
null hypothesis of no disparity H0 : δ = 0.

In the context of legal cases, such as hiring discrimination,
the PB approach is particularly attractive, for the method
is intuitive and relatively easy to relate to general audiences
with little or no statistical knowledge as can be the case
for many judges and juries. Using the majority model to
estimate the predicted response value for a minority mem-
ber provides a statistical match for the minority member’s
response if s/he were majority. Thus, if all other potential
factors are accounted for and the two groups received a sim-
ilar treatment, one would expect the difference between the
observed and the estimated response values from the major-
ity model to be very small.
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3. LOCAL LINEAR LOGISTIC PB REGRESSION METHOD

In order to lessen the dependence of the results on the parametric model choice, we adapt local linear logistic regression
to the PB method. The method uses the local likelihood approach in estimating unknown parameters, which was first
proposed by Brillinger (1977) and further studied by Tibshirani (1984) and Tibshirani and Hastie (1987). Although the
local likelihood approach can be applied to any response variables with a density from the exponential family, since our
interest is in binary responses, here we focus on local linear logistic regression.

Suppose that the success probabilities for minority and majority group members are given by

Minority: p1(x1i) =
em1(x1i)

1 + em1(x1i)
or, ln

(
p1(x1i)

1 − p1(x1i)

)
= m1(x1i)(5)

Majority: p2(x2j) =
em2(x2j)

1 + em2(x2j)
or, ln

(
p2(x2j)

1 − p2(x2j)

)
= m2(x2j)(6)

where x1i = (x11i x12i . . . x1di)T and x2j = (x21j x22j . . . x2dj)T are d dimensional vectors of covariate values for the
i-th minority and the j-th majority members and m1(x) and m2(x) are unknown functions of the covariates for the
minority and majority groups, respectively. We assume all the second partial derivatives of m1(x) and m2(x) exist and are
continuous. The true amount of disparity for the i-th minority member δi is as defined in (1), and the average disparity
of all minority members δ is as defined in (2).

In local linear regression, m2(x2j) is approximated by its first order Taylor expansion around x1i:

(7) m2(x2j) ≈ m2(x1i) + m
(1)
2 (x11i)(x21j − x11i) + m

(2)
2 (x12i)(x22j − x12i) + · · · + m

(d)
2 (x1di)(x2dj − x1di)

where m
(c)
2 (x1ci) = ∂m2(x1i)/∂x1ci, c = 1, 2, . . . , d. We call the point at which m2(x) is estimated, namely x1i in this

case, the “design point.” Let

dij =
(
1 (x21j − x11i) (x22j − x12i) · · · (x2dj − x1dj)

)T(8)

β =
(
m2(x1i) m

(1)
2 (x11i) m

(2)
2 (x12i) · · · m

(d)
2 (x1di)

)T

(9)

To estimate m2 amounts to maximizing the following local log-likelihood function with respect to β,

(10) lx1i
(diβ;y2) =

n2∑
j=1

K

(
||x2j − x1i||

h

)(
y2jdT

ijβ − ln
(
1 + edT

ijβ
))

where di = (di1,di2, . . . ,din2)
T , K(·) is a symmetric bounded probability density function with bounded support (kernel

function) and

||x2j − x1i||2 =
d∑

k=1

(
x2kj − x1ki

Sk

)2

where Sk is a sample standard deviation of x2k − x1k for the majority members for the k-th covariate. More specifically,
Loader (1999, p. 20) suggested the following scaling

Sk =

(∑n2
j=1(x2kj − x1ki − (

∑n2
j=1 x2kj − x1ki)/n2)2

n2 − 1

)1/2

Alternatively, Cleveland and Devlin (1988) suggest dividing each covariate by its sample standard deviation prior to
applying the distance function.

The bandwidth h defines the width of the “local neighborhood” about the design point. Since the approximation (7)
is accurate only near x1i, the method puts greater weight on this local neighborhood. One may use a global bandwidth
that is the same for all design points, or a nearest neighbor bandwidth, which uses a fixed fraction of the data to find
the fitted value of y at the design point (Cleveland and Devlin, 1988; Loader, 1999). This fraction is called the smoothing
parameter and determines the value of h for that design point. In this case, since the bandwidth will vary for each design
point, it is more accurate to denote it by h(x1i).
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In this paper, we use the Epanechnikov kernel,

K

(
||x2j − x1i||

h

)
=

3
4

(
1 −

(
||x2j − x1i||

h

)2
)

I

(∣∣∣∣ ||x2j − x1i||
h

∣∣∣∣ ≤ 1
)

and the value of h may vary with the design points.
In the estimation process, the majority observations that lie further from x1i than h in the vector distance receive

zero weight and those within the neighborhood receive weights that decrease as the distance from the design point grows.
The fact that the link function m(x) in (6) can be any adequately smooth function is what makes local linear regression
flexible. Moreover, Loader (1999, p. 61) notes that the choice of a link function is not restrictive as the local regression
technique does not assume a global model.

The first element of the d dimensional vector β̂ is m̂2(x1i) and is used to compute the predicted success probability for
the i-th minority member if s/he were a majority group member:

p̂2(x1i) =
em̂2(x1i)

1 + em̂2(x1i)

The estimator of the disparity δi defined in (1) is

Di = Y1i −
em̂2(x1i)

1 + em̂2(x1i)

with the estimator of the average disparity δ defined in (2),

(11) D̄LOC =

∑n1
i=1

(
Y1i − em̂2(x1i)

1+em̂2(x1i)

)
n1

In order to make inference on δ, we show that the asymptotic distribution of D̄LOC is normal in Theorem 1. The theorem
requires the following first and second derivatives of the local log-likelihood (10):

l′x1i
(diβ;y2) =

∂lx1i
(diβ;y2)
∂β

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n2
j=1 K

(
||x2j−x1i||

h

)(
y2j − edij

T β

1+edij
T β

)
∑n2

j=1(x21j − x11i)K
(

||x2j−x1i||
h

)(
y2j − edij

T β

1+edij
T β

)
...∑n2

j=1(x2dj − x1di)K
(

||x2j−x1i||
h

)(
y2j − edij

T β

1+edij
T β

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12)

l′′x1i
(diβ;y2) =

∂2lx1i(diβ;y2)
∂β2 = −

n2∑
j=1

K

(
||x2j − x1i||

h

)
(13)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e
dT
ij
β

(1+e
dT
ij
β

)2

(x21j−x11i)e
dT
ij
β

(1+e
dT
ij
β

)2
· · · (x2dj−x1di)e

dT
ij
β

(1+e
dT
ij
β

)2

(x21j−x11i)e
dT
ij
β

(1+e
dT
ij
β

)2

(x21j−x11i)
2e

dT
ij
β

(1+e
dT
ij
β

)2
· · · (x21j−x11i)(x2dj−x1di)e

dT
ij
β

(1+e
dT
ij
β

)2

...
. . .

(x2dj−x1di)e
dT
ij
β

(1+e
dT
ij
β

)2

(x2dj−x1di)(x21j−x11i)e
dT
ij
β

(1+e
dT
ij
β

)2
· · · (x2dj−x1di)

2e
dT
ij
β

(1+e
dT
ij
β

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Thus, l′x1i

(diβ;y2) is a (d + 1) × 1 vector and l′′x1i
(diβ;y2) is a (d + 1) × (d + 1) matrix, no longer depending on the

majority response y2.
Let Hm2(x1) denote the d × d Hessian matrix of m2(·) and ν denote any diagonal element of

∫
uuT K(u)du. Also let

Ai0, Ai1, . . . , Aid be the 1st row elements of (−l′′x1i
(diβ;y2))−1.
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Theorem 1. Suppose h = O(1/nα
2 ) where 0 < α < 1 and n2h

3d → ∞, h → 0, and n1 = O(n2) → ∞. Furthermore,
suppose that |x1li| and |x2lj | are bounded by M for all l = 1, . . . , d and the range of x1li is contained in that of x2lj ∀ l.
The joint densities of x1 and x2 are both assumed to be bounded and continuous.

Then,

var
(
D̄LOC

)
≈ 1

n2
1

n1∑
i=1

p1(x1i)q1(x1i) +
1
n2

1

n1∑
k=1

em2(x1k)

(1 + em2(x1k))2

n1∑
i=1

σik
em2(x1i)

(1 + em2(x1i))2

where

σik =
n2∑

j=1

(
d∑

l=0

Ail(x2lj − x1li)

)(
d∑

l=0

Akl(x2lj − x1lk)

)
K

(
||x2j − x1i||

h

)
K

(
||x2j − x1k||

h

)
p2(x2j)q2(x2j)

and the asymptotic distribution of D̄LOC − δ is normal. Furthermore, the asymptotic bias of D̄LOC is

h2

2

∫
νtr(Hm2(x1))p2(x1)q2(x1)f1(x1)dx1 + o(h2)

and its asymptotic variance is O(1/(nαd
1 n2h

d)).

The proof of Theorem 1 is given in the Appendix. As one would expect, the nonparametric estimate of disparity D̄LOC

suffers from the bias-variance trade-off. That is, we see from the asymptotic bias and bound for the asymptotic variance
of D̄LOC that smaller bandwidths result in smaller bias for D̄LOC at the expense of larger variance, and vice versa.

We propose the following test statistic for H0 : δ = 0:

t = D̄LOC/
√

ˆvar(D̄LOC) = D̄LOC/

√√√√ 1
n2

1

n1∑
i=1

p̂1(x1i)q̂1(x1i) +
1
n2

1

n1∑
k=1

(
em̂2(x1k)

(1 + em̂2(x1k))2

n1∑
i=1

σ̂ik
em̂2(x1i)

(1 + em̂2(x1i))2

)
(14)

which has a standard normal asymptotic distribution under H0 based on Theorem 1.
When all d covariates are discrete, the asymptotic form of D̄LOC and its variance become more explicit and interpretable.

Corollary 2 summarizes these results.

Corollary 2. Let all d covariates be discretely valued. Suppose all the conditions of Theorem 1 are satisfied. Let r be
the number of covariate value combinations for the minority group and n1k and n2k denote the numbers of minority and
majority members, respectively, who have the k-th covariate value combination where k = 1, 2, . . . , r. Then,

D̄LOC =
1
n1

r∑
k=1

n1k(ȳ1k − ȳ2k)(15)

And D̄LOC − δ is asymptotically distributed as normal with zero mean and variance

var
(
D̄LOC

)
=

1
n2

1

r∑
k=1

n2
1k

(∑n1k

i=1 p1(x1ki)q1(x1ki)
n2

1k

+

∑n2k

j=1 p2(x2kj)q2(x2kj)
n2

2k

)

where ȳ1k and ȳ2k are the sample mean responses of minority and majority members who have the k-th covariate value
combination, and x1ki and x2kj are the minority and majority covariate vectors with the k-th covariate combination,
respectively.

This corollary implies that when all the covariates are discrete and the bandwidth is sufficiently small, D̄LOC simply
reduces to the weighted average of differences in success probabilities between the minority and the majority members
having the same covariate values. Considering the 2×2 table of success probability at each covariate value combination as
a stratum, the procedure is analogous to Cochran’s (1954) statistic for combining the tests of significance of the differences
in proportions into a summary test, which adjusts for the effect of the covariates. The difference in the form of the test
statistic between ours in Corollary 2 and Cochran’s is that the latter uses n1kn2k/(n1k + n2k) as the weight, instead of
n1k in our case (15), and the denominator is

∑r
k=1(n1kn2k)/(n1k + n2k), instead of n1.
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4. SIMULATION RESULTS

This section compares the statistical properties of the different estimators of disparity when there is a single covariate.
We consider the following methods and models:

a) Logistic regression with a minority indicator variable:

(16) ln
(

p(xi)
1 − p(xi)

)
= β0 + β1xi + β2 × minorityi

b) Parametric logistic PB regression:

(17) ln
(

p2(x2i)
1 − p2(x2i)

)
= β20 + β21x2i

c) Local Linear Logistic PB:

(18) ln
(

p2(x2i)
1 − p2(x2i)

)
= m2(x2i)

The estimators of the average disparity, D̄, for b) parametric logistic PB and c) Local Linear Logistic PB have been defined
in (4) and (11), respectively. The estimated average disparity D̄ using a) ordinary logit regression with an indicator variable
is obtained by fitting the following logit model:

ln
(

p(xi)
1 − p(xi)

)
= β0 + β1xi + β2Ii

where I is a 0–1 variable indicating minority status (i.e., I = 1 for minority). The estimated average disparity for all
minority members is obtained by:

(19) D̄ =
1
n1

n1∑
i=1

(
eβ̂0+β̂1x1i+β̂2

1 + eβ̂0+β̂1x1i+β̂2
− eβ̂0+β̂1x1i

1 + eβ̂0+β̂1x1i

)

We will investigate two cases: the true underlying success probabilities are given by 1) linear logistic regression models
and 2) curvilinear models. For both models, the covariate values are generated from Gamma(2, 1/2) for the minority and
Gamma(3, 1/2) for the majority group; hence, the majority group has higher mean and variance. The Gamma distribution
was chosen because Bhattacharya and Gastwirth (1999) found that prior experience for a labor union admission case,
Berger v. Iron Workers, Local 201, was approximately Gamma distributed. After we generate the covariate values, each
observation receives a success probability based on the underlying probability model of our choice (i.e., logit link models
as in (20) and (21) and curvilinear model as in (22) and (23)). Then, the binary response values are randomly generated
from the Bernoulli distribution with the assigned success probabilities.

Because inference with the Local Linear Logistic PB method as well as the other two parametric logistic regression
based methods utilize large sample results, a study of the sample size needed for these methods is also included. In the
simulations, the majority sample size is incrementally increased from 40 to 250 and the minority sample size is set to
be half that of the majority. For each sample size setting, the normality of the test statistics is checked with the robust
Jarque Bera (JB) test (see Gel and Gastwirth, 2008, for details) and the Shapiro-Wilk test. Also, the bias, power and
alpha level computations for each method for the two sided hypothesis (i.e., H0 : δ = 0 vs. H1 : δ �= 0) are based on 500
iterations. The bandwidth for each sample size setting is determined by automatic bandwidth selection methods using
the Akaike Information Criterion (AIC) and Likelihood Cross Validation (LCV) (see Loader, 1999, pp. 68–69 for details).

4.1 Logistic regression model

The success probabilities are determined by:

Minority: p1(x1) =
e−5+3x1

1 + e−5+3x1
(20)

Majority: p2(x2) =
e−4+3.5x2

1 + e−4+3.5x2
(21)
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Table 1. Bias, power, and Type I error of the three methods under logistic regression models in (20) and (21)

LLLPB* PLPB** OLRI***
Bias Power Bias Power Bias Power[Nmaj , Nmin , δ, h]

(Stderr) (TypeI) (Stderr) (TypeI) (Stderr) (TypeI)

.017 .554 .014 .460 .011 .354[40, 20,−.164, .110]
(.101) (.100) (.084) (.064) (.084) (.040)

−.001 .720 −.002 .698 −.003 .662[50, 25,−.201, .232]
(.100) (.164) (.082) (.068) (.082) (.048)

−.003 .590 .006 .600 .000 .606[75, 37,−.153, .225]
(.087) (.058) (.069) (.054) (.068) (.042)

−.027 .840 .001 .876 −.001 .878[100, 50,−.187, .379]
(.100) (.050) (.060) (.048) (.060) (.042)

.013 .906 .001 .934 −.003 .938[150, 75,−.154, .521]
(.081) (.060) (.045) (.058) (.044) (.046)

−.000 .986 .000 .986 −.004 .992[200, 100,−.176, .482]
(.079) (.060) (.040) (.058) (.039) (.046)

−.000 .988 .001 1.000 −.000 1.000[250, 125,−.187, .583]
(.075) (.064) (.037) (.062) (.036) (.056)

* LLLPB = Local Linear Logistic PB
** PLPB = Parametric logistic PB: logit = β20 + β21 ∗ x
*** OLRI = Ordinary logistic regression with indicator: logit = β0 + β1 ∗ x + β2 ∗ Indicator

Table 2. Normality tests for D̄ of the three methods under logistic regression models in (20) and (21)

LLLPB PLPB OLRI
P-value P-value P-value P-value P-value P-value[Nmaj , Nmin , δ, h]
RJB* SW** RJB* SW** RJB* SW**

[40, 20,−.164, .110] .000 .000 0.129 0.068 0.182 0.220
[50, 25,−.201, .232] 0.293 0.270 0.224 0.223 0.089 0.071
[75, 37,−.153, .225] 0.000 0.001 0.972 0.939 0.292 0.426
[100, 50,−.187, .379] 0.000 0.001 0.071 0.054 0.963 0.609
[150, 75,−.154, .521] 0.674 0.842 0.643 0.909 0.432 0.526
[200, 100,−.176, .482] 0.030 0.002 0.103 0.022 0.224 0.184
[250, 125,−.187, .583] 0.916 0.815 0.552 0.468 0.501 0.430

* RJB = Robust Jarque Bera test for normality
** SW = Shapiro-Wilk test for normality

The values of these parameters were chosen so that the true disparity δ is near −.15. Table 1 reports bias and power
calculations. The first column shows majority and minority sample sizes for each simulation setting along with the true
value of δ and the bandwidth chosen by AIC and LCV (average of the two). For each set of simulations, the bias, standard
deviation of the bias, and power of the test are reported. In addition, the Type I error rate is calculated assuming H0 using
α = .05; under H0 the minority members’ success probabilities were also determined by the majority probability function
(21). The p-values for the normality tests of D̄LOC are given in Table 2. Both the robust JB and Shapiro-Wilk tests
test the null hypothesis of normality; a p-value larger than the predetermined α level indicates that D̄ is approximately
normally distributed.

In Table 1, all the three methods show a negligible amount of bias regardless of the sample sizes. Although there is
some fluctuation, Local Linear Logistic PB requires at least 75 majority observations (preferably over 150) to yield a
Type I error rate near .05 and for D̄LOC to be approximately normally distributed (see Table 2). On the other hand, both
parametric logistic PB and ordinary logistic regression with an indicator variable yielded the Type I errors that are close
to .05 and achieved normality of D̄ even with only 40 majority members. The power of ordinary logit regression with an
indicator variable and parametric logistic PB is very similar when the majority sample size is 75 or more, whereas the
power of Local Linear Logistic PB, with 75 or more majority observations, is slightly lower (by less than 4%) than the
other two methods.

In summary, when the underlying success probability functions are precisely modeled by the logit link function, Local
Linear Logistic PB yields slightly poorer results than the other two parametric methods. The difference was rather small
and its power was slightly lower. However, its use requires a larger sample size than the two parametric methods.
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Table 3. Bias and power of the three methods under curvilinear models in (22) and (23)

LLLPB* PLPB** OLRI***
Bias Power Bias Power Bias Power[Nmaj , Nmin , δ, h]

(Stderr) (TypeI) (Stderr) (TypeI) (Stderr) (TypeI)

0.005 0.156 −0.027 0.290 −0.024 0.244[40, 20,−.164, .205]
(0.201) (0.128) (0.138) (0.092) (0.137) (0.048)

−0.053 0.214 −0.103 0.580 −0.082 0.460[50, 25,−.172, .365]
(0.164) (0.084) (0.127) (0.060) (0.127) (0.052)

0.007 0.552 0.020 0.464 0.022 0.420[75, 37,−.205, .466]
(0.101) (0.066) (0.098) (0.072) (0.098) (0.040)

−0.016 0.574 −0.077 0.802 −0.066 0.746[100, 50,−.170, .501]
(0.089) (0.058) (0.086) (0.236) (0.086) (0.206)

−0.015 0.646 −0.103 0.946 −0.107 0.964[150, 75,−.162, .458]
(0.074) (0.058) (0.069) (0.236) (0.066) (0.228)

−0.002 0.844 −0.057 0.974 −0.050 0.972[200, 100,−.181, .365]
(0.062) (0.042) (0.061) (0.364) (0.061) (0.236)

−0.005 0.874 −0.089 0.996 −0.084 0.998[250, 125,−.168, .345]
(0.055) (0.068) (0.052) (0.262) (0.051) (0.172)

* LLLPB = Local Linear Logistic PB
** PLPB = Parametric logistic PB: logit = β20 + β21 ∗ x
*** OLRI = Ordinary logistic regression with indicator: logit = β0 + β1 ∗ x + β2 ∗ Indicator

Table 4. Normality tests for D̄ of the three methods under curvilinear models in (22) and (23)

LLLPB PLPB OLRI
P-value P-value P-value P-value P-value P-value[Nmaj , Nmin , δ, h]
RJB* SW** RJB* SW** RJB* SW**

[40, 20,−.164, .205] .000 .000 .040 .024 .935 .786
[50, 25,−.172, .365] .231 .384 .976 .927 .505 .721
[75, 37,−.205, .466] .916 .878 .600 .535 .719 .637
[100, 50,−.170, .501] .011 .008 .915 .208 .140 .024
[150, 75,−.162, .458] .001 .004 .151 .234 .107 .196
[200, 100,−.181, .365] .179 .249 .272 .200 .341 .209
[250, 125,−.168, .345] .952 .918 .385 .678 .736 .667

* RJB = Robust Jarque Bera test for normality
** SW = Shapiro-Wilk test for normality

4.2 Curvilinear model

To examine the potential gain in using our nonparametric method, we use the following success probability functions
(curvilinear):

Minority: p1(x1) = .9 ∗ x1 − .5 ∗ x1.4
1(22)

Majority: p2(x2) = 1.1 ∗ x2 − .5 ∗ x1.5
2(23)

The models in (16), (17), and (18) are fitted to the data and the accuracy of the resulting inferences are examined. Again,
the values of the parameters in (22) and (23) are chosen so that δ remains near −.15.

Tables 3 and 4 summarize the results. As expected, parametric logistic PB and ordinary logistic regression with an
indicator variable now produce noticeably biased estimates of δ and their Type I error is not preserved at .05, especially
for larger sample sizes. On the other hand, Local Linear Logistic PB yields a negligible amount of bias and a reasonable
level of Type I error when the majority sample size is 75 or greater. Although there is some fluctuation in the results, the
normality tests show that the distribution of D̄LOC seems to be normal when the majority sample size is large.

Notice that when the logistic model is not the true one, both parametric logit PB and ordinary logistic regression with
an indicator variable overestimate the disparity by a practically meaningful amount (e.g., .1 in some cases). In contrast,
Local Linear Logistic PB was able to fit the model reasonably well and provide a nearly unbiased estimate of δ.
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5. RE-ANALYSIS OF DATA FROM BERGER V. IRON WORKERS LOCAL 201

The Berger v. Iron Workers Local 201 3 case concerned the admission exam used by Local 201 of the Iron Workers
Union. The plaintiffs sued the union claiming the exam discriminatorily denied black rodmen the benefits of the union
membership as black applicants had a statistically significantly lower pass rate of the exam than whites. Before taking the
exam, applicants were required to serve as apprentices or work as part of an auxiliary labor pool: the auxiliary workers
were called upon in periods of high demand when there was an insufficient number of union members. The average prior
experience of black applicants exceeded that of whites; hence, the difference in passing rates cannot be explained by the
amount of prior experience.

The data consisted of 35 black applicants and 34 white applicants with their hours of prior experience. In order to
avoid the problem of extrapolation (the maximum value of hours for white members was 8,667.2, whereas that for black
applicants was 10,433.6), the hours of three black applicants were truncated to 8,600; originally, they had 9,770.9, 9,905.8,
and 10,433.6, respectively. All three of these black applicants failed the exam.

At trial, plaintiffs compared the fraction (12/35 = .343) of blacks passing the exam to that of whites (24/34 = .706).
The χ2 test for independence applied to this 2× 2 table (white/black vs. pass/not pass) yielded the test statistic value of
7.71 with p-value = .0055. Since one expects that more experience should increase one’s probability of passing, the fact
that blacks had more hours of prior work experience suggests that the true disparity is even greater than the one obtained
from the simple comparison of the proportions of passing. Table 5 presents summary statistics showing that the typical
black applicant has about twice the amount of experience of a typical white applicant. The Wilcoxon rank sum test yields
the test statistic 1,022 with a p-value of almost 0, which indicates that the distribution of number of hours for blacks is
shifted to the right of the hour distribution of whites.

Figure 1 shows the proportion of passing the exam by three groups created by hours. The three groups were created
by dividing the data at 33rd percentile and 67th percentile values of hours:

Group 1: 0 < Hours ≤ 2580.27
Group 2: 2580.27 < Hours ≤ 4488.50
Group 3: 4488.50 < Hours ≤ 8667.20

Table 5. Summary statistics of “Hours” for white and black

Mean Median Minimum 1st Quartile 3rd Quartile Maximum Std. Dev.

White (n = 34) 2763 2528 1019 1883 3309 8667 1380.83
Black (n = 35) 5441 5612 1408 3900 7341 8600 2144.05

1 2 3
Black White Black White Black White

# Pass 1 14 4 8 7 2
# Fail 3 5 6 5 14 0
Total # 4 19 10 13 21 2

% pass 25.0% 73.7% 40.0% 61.5% 33.3% 100.0%

Figure 1. Proportion of passing the exam by groups defined by “hours”.

3Berger v. Iron Workers Local 201, 42 FEP Cases 1161 (D.D.C. 1985), 843 F.2d 1395 (D.C. Cir. 1988).
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Figure 1 shows that in each group the pass rate for whites is higher than that for blacks. It also shows that the white
pass rate decreases from Group 1 to Group 2 but reaches up to 100% in Group 3. On the other hand, for black applicants,
having more prior experience does not seem to help their pass rate much; the pattern of pass rate change appears much
flatter than that for the whites. We would like to caution, though, that since the sample sizes are small for both groups,
the patterns we observe in Figure 1 could change by altering the threshold values of hours to define the groups.

As before, the racial disparity will be examined using: a) ordinary logistic regression with an indicator variable, b) para-
metric logit PB, and c) Local Linear Logistic PB.

a) Ordinary logistic regression with an indicator variable
The ordinary logistic regression model:

ln
(

p(xi)
1 − p(xi)

)
= β0 + β1Hoursi + β2Black i

is fitted to the data where Black is the indicator variable for black applicants.

b) Parametric logit PB
In applying parametric logit PB, we fit the following logistic regression model to the data on whites:

ln
(

pw(xwi)
1 − pw(xwi)

)
= βw0 + βw1Hourswi

then the differences between the observed and the predicted response values of blacks are used to compute the average
estimated disparity as defined in (4).

c) Local Linear Logistic PB
For the Local Linear Logistic PB method, we use .3 as the bandwidth (fraction of data) chosen by the automatic AIC

and GCV criteria and by taking into account the relatively small sample size of whites.
Table 6 summarizes the results obtained from these three methods. Since hours of prior experience can be expected to

be an important predictor, we include it in the model even though it was not statistically significant in both the ordinary
logistic regression with the indicator and the parametric logit PB methods.

The estimated coefficient, β̂ = −1.8343, of the race indicator is highly significant (t = −2.703 with p-value = .0069).
This translates to an estimated odds ratio of .067. The estimated disparity D̄ as defined in (19) is:

1
nb

nb∑
i=1

(
eβ̂0+β̂1Hoursbi+β̂2

1 + eβ̂0+β̂1Hoursbi+β̂2
− eβ̂0+β̂1Hoursbi

1 + eβ̂0+β̂1Hoursbi

)
= −.4187

This means that the probability that a black applicant would pass the exam was about .42 less than that of a white with
the same prior experience.

Table 6. Summary of results from applying the three methods to the Berger v. Iron Workers Local 201 data

OLRI PLPB* LLLPB**

β̂ z value β̂ z value β̂ z value
(Std.error) (p-value) (Std.error) (p-value) (Std.error) (p-value)

.5760 1.049 −.4096 −.362 –Intercept
(.5491) (.2941) (1.1304) (.717) –

.0001 0.738 .0005 1.142 –Hours
(.0001) (.4605) (.0004) (.253) –

-1.8343 -2.703 – –Black
(.6787) (.0069) – –

D̄ −.4187 −.5287 −.5712
Test stat −2.703 −4.7123 −7.074
P-value .0069 .0000 .0000

* The results related to estimated coefficients under PLPB are for the white only model.
** The white local linear logistic regression model was fitted using bandwidth = .3.

OLRI: Ordinary logistic regression with an indicator variable
PLPB: Parametric logit PB
LLLPB: Local linear logistic PB
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◦ = Blacks’ predicted prob’s if they were white from Local Linear Logistic PB
× = Blacks’ predicted prob’s if they were white from ordinary logit model with the indicator variable
+ = Blacks’ predicted prob’s if they were white from parametric logit PB

Figure 2. Blacks’ predicted probabilities using the three regression methods.

The estimated disparity obtained from the parametric logistic PB is −.5278, while that yielded by Local Linear Logistic
PB is −.5712: both estimates are highly significant. All three results show a significant disparity against black applicants.

To assess which method “fits” the data best, it is useful to graph their predicted probabilities. Figure 2 presents the
predicted probabilities of black applicants if they were white obtained from the three methods. The vertical dotted lines
represent the threshold values of hours defining the three groups in Figure 1. This graph clearly reveals the differences
among the three methods. Ordinary logistic regression with an indicator variable fits an almost linear line but does not
reach probability one even at the maximum number of hours of experience. Parametric logit PB starts lower than ordinary
logistic regression with an indicator variable and fits a smooth quadratic type curve that almost reaches probability one
for higher values of hours.

On the other hand, Local Linear Logistic PB fits a non-monotone curve around lower values of hours and better
reflects the patter observed in Figure 1 where the white pass rate is lower in Group 2 (61.5%) than in Group 1 (73.7%).
This demonstrates the ability of local linear logistic regression to better adjust to the data and model a non-monotone
relationship.

The results from our simulation studies indicate that the Local Linear Logistic PB method requires at least 75 obser-
vations for D̄LOC to achieve asymptotic normality. Since the majority sample size in this Berger data is 35, the accuracy
of its inferential result needs to be investigated. We apply a bootstrap method and resample 35 blacks and 34 whites from
the original data. Then, we fit the local linear logistic regression model to white only data and calculate the predicted
probabilities for blacks from this white only model. Using these predicted probabilities, we randomly generate the 1–0
response values for blacks. Finally, we calculate D̄LOC by taking the average of the differences between the randomly
generated 1–0 response values and their predicted probabilities. We repeat this 5,000 times and create the bootstrap null
distribution of D̄LOC .

This null distribution ranges from −.209 to .186 and its mean and standard deviation are approximately 0 and 0.035.
Since the observed value, D̄LOC = −.5712, is well outside this range, we can confidently conclude that the hypothesis
testing from Local Linear Logistic PB gives a highly significant result.
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Finally, Judge R. A. Posner in Allen v. Seidman4 noted that since it is easy to criticize regression studies submitted into
evidence for omitting a possible predictor, the critic should demonstrate that including the additional covariate “explains”
the disparity. The Berger case illustrates this point as the disparity between black and white pass rates increased, rather
than decreased, when prior experience was included.

6. CONCLUDING REMARKS

This paper extended the Peters–Belson approach to local linear logistic regression. This method provides a more flexible
way to model the relationship between a response and predictor variables. Its usefulness was illustrated on data from an
actual equal employment case. Since the method does not rely on parametric assumptions, it does not rely on a particular
specified model. Furthermore, when a reasonably large sample size is available, Local Linear Logistic PB loses little power
compared to the other parametric methods even when the data follow the assumed parametric model. On the other hand,
when the model generating the data differs from the assumed parametric model, Local Linear Logistic PB yields more
reliable inferences. This was seen both in the simulation study and the re-analysis of the data from Berger v. Iron Workers
Local 201. While this paper was motivated by a legal application, the method can be used in epidemiology where the
exposure rate of cases is compared to that of an otherwise similar control group.

APPENDIX A. PROOF OF THEOREM 1

Proof. First, we asymptotically approximate the distribution of the following quantity:

n1∑
i=1

(p̂2(x1i) − p2(x1i)) =
n1∑
i=1

(
em̂2(x1i)

1 + em̂2(x1i)
− em2(x1i)

1 + em2(x1i)

)
=

n1∑
i=1

(g(m̂2(x1i)) − g(m2(x1i)))(24)

where g(m2(x1i)) = em2(x1i)/(1 + em2(x1i)). We will compute this distribution for two different cases: (I) at least one of
the d covariates is continuous and (II) all the d covariates are discrete.

Case I: At least one covariate is continuous
Here, g(m̂2(x1i)), for i = 1, 2, . . . , n1, are locally dependent random variables. Also, g(m̂2(x1i)) and g(m̂2(x1j)) where

i �= j are dependent, if the local neighborhoods of x1i and x1j overlap. If they do not overlap, g(m̂2(x1i)) and g(m̂2(x1j))
are independent.

Using similar notation as Chen (2005), let I1 be a finite index set of cardinality n1. Also let

ξi =
g(m̂2(x1i)) − g(m2(x1i))

(var(
∑n1

i=1 g(m̂2(x1i)) − g(m2(x1i))))1/2
(25)

W =
n1∑
i=1

ξi =
n1∑
i=1

g(m̂2(x1i)) − g(m2(x1i))
(var(

∑n1
i=1 g(m̂2(x1i)) − g(m2(x1i))))1/2

(26)

Applying Theorem 4 of Fan, Heckman, and Wand (1995, p. 146), we obtain E(W ) = 0 asymptotically, and clearly
var(W ) = 1. Then, assumption (LD1) discussed by Chen (2005) on p. 17 is met; that is,

(LD1) For each i ∈ I1, there exists Ai ⊂ I1 such that ξi and ξAc
i

are independent.

Here, Ai is a index set of the minority members whose neighborhoods overlap with that of the i-th minority member;
hence, their g(m̂2(x1))’s are dependent with g(m̂2(x1i)). Also, let mi be the cardinality of Ai and m = max1≤i≤n1mi.
When (LD1) is met, by Stein’s method of approximating the distance between two distributions, Theorems 3.1 and 3.4
of Chen (2005) give

(27) sup
z
|P (W ≤ z) − φ(z)| ≤ 2ψ1/2

where φ(z) is the distribution function of the standard normal distribution and

(28) ψ = 4E

∣∣∣∣∣
n1∑
i=1

(
ξi

∑
j∈Ai

ξj − E(ξi

∑
j∈Ai

ξj)
)∣∣∣∣∣ +

n1∑
i=1

E

∣∣∣∣∣ξi

(∑
j∈Ai

ξj

)2
∣∣∣∣∣

4Allen v. Sideman, 881 F.2d 375 (7th Cir. 1989).
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Thus, our goal is to show that ψ goes to zero at some rate, which proves the asymptotic normality of W . To show this,
using Theorem 4 of Fan, Heckman, and Wand (1995, p. 146) that states var(g(m̂2(x1i))) is of the order of magnitude
(n2h

d)−1, one can show that var(
∑n1

i=1[g(m̂2(x1i)) − g(m2(x1i))]) is of the order of magnitude mh−d. Then,

(29) ξi =
(
g(m̂2(x1i)) − g(m2(x1i))

)
× O((hd/m)1/2)

Furthermore, the same theorem shows that g(m̂2(x1i))−g(m2(x1i)) is asymptotically normally distributed with the mean
approaching to zero at O(h2). Thus, (g(m̂2(x1i)) − g(m2(x1i)))2/var(g(m̂2(x1i))) is approximately χ2 distributed with
one degree of freedom. Hence,

(30) var
(
(g(m̂2(x1i)) − g(m2(x1i)))2

)
= 2

[
var(g(m̂2(x1i)))

]2 = O(1/n2
2h

2d)

The first expectation of ψ in (28) is

4E

∣∣∣∣∣
n1∑
i=1

(
ξi

∑
j∈Ai

ξj − E(ξi

∑
j∈Ai

ξj)
)∣∣∣∣∣ ≤ 4

(
E

[
n1∑
i=1

(
ξi

∑
j∈Ai

ξj − E(ξi

∑
j∈Ai

ξj)
)]2)1/2

(31)

= 4

(
n1∑
i=1

E

[
ξi

∑
j∈Ai

ξj − E(ξi

∑
j∈Ai

ξj)
]2

+
n1∑ n1∑

i �=l

E

[(
ξi

∑
j∈Ai

ξj − E(ξi

∑
j∈Ai

ξj)
)(

ξl

∑
j∈Al

ξj − E(ξl

∑
j∈Al

ξj)
)])1/2

= 4

(
n1∑
i=1

var

(
ξi

∑
j∈Ai

ξj

)
+

n1∑ n1∑
i �=l

cov

(
ξi

∑
j∈Ai

ξj , ξl

∑
j∈Al

ξj

))1/2

var

(
ξi

∑
j∈Ai

ξj

)
=

mi∑
j=1

var(ξiξj) +
mi∑ mi∑

j �=l

cov(ξiξj , ξiξl)(32)

var(ξiξj) =E(ξiξj − E(ξiξj))2(33)

=O(h2d/m2)var((g(m̂2(x1i)) − g(m2(x1i)))(g(m̂2(x1j)) − g(m2(x1j))))

=O(h2d/m2)E((g(m̂2(x1i)) − g(m2(x1i)))2(g(m̂2(x1j)) − g(m2(x1j)))2)

− O(h2d/m2)
[
E((g(m̂2(x1i)) − g(m2(x1i)))(g(m̂2(x1j)) − g(m2(x1j))))

]2
E((g(m̂2(x1i)) − g(m2(x1i)))2(g(m̂2(x1j)) − g(m2(x1j)))2)(34)

= cov((g(m̂2(x1i)) − g(m2(x1i)))2, (g(m̂2(x1j)) − g(m2(x1j)))2)

+ E((g(m̂2(x1i)) − g(m2(x1i)))2)E((g(m̂2(x1j)) − g(m2(x1j)))2)

≤
(
var((g(m̂2(x1i)) − g(m2(x1i)))2)var((g(m̂2(x1j)) − g(m2(x1j)))2)

)1/2

+ var(g(m̂2(x1i)))var(g(m̂2(x1j)))

= O((n2h
d)−2)

where the last equality follows from (30) and the result g(m̂2(x1i)) is of the order of magnitude (n2h
d)−1.[

E((g(m̂2(x1i)) − g(m2(x1i)))(g(m̂2(x1j)) − g(m2(x1j))))
]2(35)

=
(
cov((g(m̂2(x1i)) − g(m2(x1i))), (g(m̂2(x1j)) − g(m2(x1j))))

)2
≤

(
(var(g(m̂2(x1i)))var(g(m̂2(x1j))))1/2

)2
= O((n2h

d)−2)
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Using (34) and (35) in (33),

(36) E(ξiξj − E(ξiξj))2 ≤ O

(
1

m2n2
2

)
Similarly, one can show that

cov(ξiξj , ξiξl) =E(ξ2
i ξjξl) − E(ξiξj)E(ξiξl)(37)

≤O

(
h2d

m2

)
× O

(
1

n2
2h

2d

)
+ O

(
h2d

m2

)
× O

(
1

n2
2h

2d

)
=O

(
1

m2n2
2

)
Using (36) and (37) in (32) yields

(38) var

(
ξi

∑
j∈Ai

ξj

)
≤ O

(
1
n2

2

)

Next, the second piece of (31) is

n1∑ n1∑
i �=l

cov

(
ξi

∑
j∈Ai

ξj , ξl

∑
j∈Al

ξj

)
=

n1∑
i=1

∑
l∈A∗

i

i �=l

cov

(
ξi

∑
j∈Ai

ξj , ξl

∑
j∈Al

ξj

)
(39)

where A∗
i is an index set of the minority members whose ξl

∑
j∈Al

ξj is dependent with ξi

∑
j∈Ai

ξj . In other words,
these minority members are within 4h in the vector distance ||x1l − x1i|| from x1i. Let the cardinality of A∗

i be m∗
i and

m∗ = max1≤i≤n1m
∗
i . Then, (39) becomes

n1∑
i=1

∑
l∈A∗

i

i �=l

O
(
m2cov (ξiξj , ξlξk)

)
≤ O

(
n1m

∗m2

m2n2
2

)
= O

(
m∗

n2

)
(40)

Finally, using (38) and (40) in (31) yields

(41) 4E

∣∣∣∣∣
n1∑
i=1

(
ξi

∑
j∈Ai

ξj − E(ξi

∑
j∈Ai

ξj)
)∣∣∣∣∣ ≤ O

(
1
n2

)
+ O

(
m∗

n2

)
= O

(
m∗

n2

)

Recall that m∗
i is the number of minority observations that lie within 4h in the vector distance ||x1l − x1i|| from x1i. In

other words, the space which contains the m∗
i minority members can be defined as a d dimensional ball with x1i as its

center and 4h as its radius. The volume of this ball can be obtained by (4h)dπd/2/Γ(d/2 + 1) (see Wade, 2004, p 444),
where d is the number of covariates and is finite. Let the joint density of x1 be bounded by B. Then, with h = 1/nα

1

where 0 < α < 1,

(42) m∗
i ≤ (4h)dπd/2/Γ(d/2 + 1) × B × n1 = (4n−α

1 )dπd/2/Γ(d/2 + 1) × B × n1 = O(n1−αd
1 ) ∀ i

Thus, (41) is O(n−αd
1 ) which goes to zero.

Now, the second component of ψ in (28) is

n1∑
i=1

E

∣∣∣∣∣ξi

(∑
j∈Ai

ξj

)2
∣∣∣∣∣ =

n1∑
i=1

E

∣∣∣∣∣O(h3d/2/m3/2) ×
(
g(m̂2(x1i)) − g(m2(x1i))

)(∑
j∈Ai

g(m̂2(x1j)) − g(m2(x1j))
)2

∣∣∣∣∣(43)

Factoring out the squared term in (43), we have four types of components:

(a) one of (g(m̂2(x1i)) − g(m2(x1i)))3 × O(h3d/2/m3/2)
(b) mi − 1 of (g(m̂2(x1i)) − g(m2(x1i)))(g(m̂2(x1j)) − g(m2(x1j)))2 × O(h3d/2/m3/2)
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(c) 2(mi − 1) of (g(m̂2(x1i)) − g(m2(x1i)))2(g(m̂2(x1j)) − g(m2(x1j))) × O(h3d/2/m3/2)
(d) m2

i − 3mi + 2 of (g(m̂2(x1i)) − g(m2(x1i)))(g(m̂2(x1j)) − g(m2(x1j)))(g(m̂2(x1l)) − g(m2(x1l))) × O(h3d/2/m3/2)

Each of the four forms has the same rate, so we will show it using only (a).

E
∣∣∣(g(m̂2(x1i)) − g(m2(x1i)))3 × O(h3d/2/m3/2)

∣∣∣
≤ O

(
h3d/2

m3/2

)√
E(g(m̂2(x1i)) − g(m2(x1i)))4E(g(m̂2(x1i)) − g(m2(x1i)))2

by the Cauchy-Schwarz inequality. Using (30),

E
∣∣∣(g(m̂2(x1i)) − g(m2(x1i)))3 × O(h3d/2/m3/2)

∣∣∣(44)

≤ O

(
h3d/2

m3/2

)√
O(1/(n2

2h
2d))O(1/(n2hd)) = O

(
1

m3/2n
3/2
2

)

Using (44) for all the components in (a) through (d) above, we get

n1∑
i=1

E

∣∣∣∣∣ξi

(∑
j∈Ai

ξj

)2
∣∣∣∣∣ ≤ n1

(
O

(
1

m3/2n
3/2
2

)
+ O

(
m

m3/2n
3/2
2

)
+ O

(
m

m3/2n
3/2
2

)
+ O

(
m2

m3/2n
3/2
2

))
(45)

Recall m = max1≤i≤n1mi where mi is the number of minority members (including the i-th minority) whose estimated
m2(·) depends on some common majority members that are used to find the estimated m2(·) for the i-th minority member.
Those mi observations are within 2h in the vector distance ||x1k−x1i|| from x1i. In other words, the space which contains
the mi minority members can be defined as a d dimensional ball with x1i as its center and 2h as its radius. The volume
of this ball equals (2h)dπd/2/Γ(d/2 + 1) (see Wade, 2004, p 444), where d is the number of covariates and is finite. We let
the joint density of x1 be bounded by B. Then, with h = 1/nα

1 , where 0 < α < 1,

(46) mi ≤ (2h)dπd/2/Γ(d/2 + 1) × B × n1 = (2n−α
1 )dπd/2/Γ(d/2 + 1) × B × n1 = O(n1−αd

1 ) ∀ i

Using (46) in (45),

n1∑
i=1

E

∣∣∣∣∣ξi

(∑
j∈Ai

ξj

)2
∣∣∣∣∣ ≤ O

(
n1m

2

m3/2n
3/2
2

)
= O

(
m1/2

n
1/2
1

)
= O

(
n
−1/2αd
1

)
(47)

Combining (41) and (47) in (27), we get

(48) sup
z
|P (W ≤ z) − φ(z)| ≤ O

(
n
−1/4αd
1

)
Therefore, the distribution of W can be approximated by the standard normal distribution and, as a result, we can claim
that

(49)
n1∑
i=1

(p̂2(x1i) − p2(x1i)) =
n1∑
i=1

(g(m̂2(x1i)) − g(m2(x1i)))
D∼ Normal

Case II: All the covariates are discrete
When all covariates are bounded and discrete, the potential values of the vector distance ||x2j − x1i|| will be discrete

and finite as well. As h → 0, h becomes smaller than the minimum distance between any two discrete values of ||x2j−x1i||.
Thus, only those majority observations x2j having the same covariate values as the design point x1i will receive non-zero
weight in computing m̂2(x1i). When this occurs, the local log-likelihood (10) becomes equivalent to

(50) lx1i
(diβ;y2) =

n2∑
j=1

K

(
||x2j − x1i||

h

)(
y2jm2(x1i) − ln

(
1 + em2(x1i)

))
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This is the local log-likelihood for local constant regression. Then, the estimator of p2(x1i) can be explicitly solved as

(51) p̂2(x1i) =

∑n2
j=1 K

( ||x2j−x1i||
h

)
y2j∑n2

j=1 K
( ||x2j−x1i||

h

)
which is the local constant estimator.

Without loss of generality, assume E (p̂2(x1i)) = 0 for all i.

n1∑
i=1

p̂2(x1i) =
n2∑

j=1

n1∑
i=1

1∑n2
j=1 K

( ||x2j−x1i||
h

)K

(
||x2j − x1i||

h

)
y2j(52)

Thus,

var

(
n1∑
i=1

p̂2(x1i)

)
=

n2∑
j=1

(
n1∑
i=1

K
( ||x2j−x1i||

h

)∑n2
j=1 K

( ||x2j−x1i||
h

))2

p2(x2j)q2(x2j)(53)

Since K(·) is bounded,

(54) var

(
n1∑
i=1

p̂2(x1i)

)
= O(n2)

Then,

1

[var (
∑n1

i=1 p̂2(x1i))]
3/2

n1∑
i=1

E
(
|p̂2(x1i)|3

)
=O

(
1

n
3/2
2

)
n1∑
i=1

E

⎛⎝∣∣∣∣∣
∑n2

j=1 K
( ||x2j−x1i||

h

)
y2j∑n2

j=1 K
( ||x2j−x1i||

h

)
∣∣∣∣∣
3
⎞⎠(55)

≤O

(
1

n
3/2
2

)
n1∑
i=1

∣∣∣∣∣
∑n2

j=1 K
( ||x2j−x1i||

h

)∑n2
j=1 K

( ||x2j−x1i||
h

)
∣∣∣∣∣
3

= O

(
1

n
1/2
2

)

Thus, it meets Lyapunov’s condition and (49) holds.
To obtain the form of var (

∑n1
i=1(g(m̂2(x1i)) − g(m2(x1i)))), let h(m̂2(x1)) =

∑n1
i=1 g(m̂2(x1i)) where m̂2(x1) =

(m̂2(x11), m̂2(x12), . . . , m̂2(x1n1)). The first order Taylor expansion of h(m̂2(x1)) around m2(x1) is

(56) h(m̂2(x1)) ≈ h(m2(x1)) + h′(m2(x1))(m̂2(x1) − m2(x1)) + o(h2)

where h′(m2(x1)) =
(

em2(x11)

(1+em2(x11))2
. . . e

m2(x1n1
)

(1+e
m2(x1n1

)
)2

)
. The remainder of the expansion above is o(h2) due to Theorem

3 of Fan, Heckman, and Wand (1995, p. 146). Using (56)

(57) var(h(m̂2(x1))) ≈ h′(m2(x1))Σh′(m2(x1))T

where Σ is the variance covariance matrix of m̂2(x1) whose (i, k)-th element is:

σik =
n2∑

j=1

(
d∑

l=0

Ail(x2lj − x1li)

)(
d∑

l=0

Akl(x2lj − x1lk)

)
K

(
||x2j − x1k||

h

)
p2j(x2j)q2j(x2j)(58)

Ai0, Ai1, . . . , Aid are the first row elements of (−l′′x1i
(diβ;y2))−1. To obtain this, first, we approximate l′x1i

(diβ̂;y2) using
a first order Taylor expansion around β:

l′x1i
(diβ̂;y2) = 0 ≈ l′x1i

(diβ;y2) + l′′x1i
(diβ;y2)(β̂ − β) + o(h2)(59)

(β̂ − β) = − (l′′x1i
(diβ;y2))−1l′x1i

(diβ;y2) + o(h2)
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Again, the remainder term of the above expansion is o(h2) due to Theorem 3 of Fan, Heckman, and Wand (1995, p. 146).
The first element of the (d + 1) × 1 vector β̂ − β is m̂2(x1i) − m2(x1i) and can be expressed as:

(m̂2(x1i) − m2(x1i)) =
d∑

l=0

Ail

⎛⎝ n2∑
j=1

(x2lj − x1li)K
(
||x2j − x1i||

h

)(
Y2j −

edT
ijβ

1 + edT
ij
β

)⎞⎠ + o(h2)

where x20j − x10i = 1

=
n2∑

j=1

(
d∑

l=0

Ail(x2lj − x1li)

)
K

(
||x2j − x1i||

h

)(
Y2j −

edT
ijβ

1 + edT
ij
β

)
+ o(h2)

From this, one can obtain (58). Thus,

var

(
n1∑
i=1

(g(m̂2(x1i)) − g(m2(x1i)))

)
≈h′(m2(x1))T Σh′(m2(x1))(60)

=
em2(x11)

(1 + em2(x11))2

n1∑
i=1

σi1
em2(x1i)

(1 + em2(x1i))2
+ · · ·

+
em2(x1n1 )

(1 + em2(x1n1 ))2

n1∑
i=1

σin1

em2(x1i)

(1 + em2(x1i))2

=
n1∑

k=1

(
em2(x1k)

(1 + em2(x1k))2

n1∑
i=1

σik
em2(x1i)

(1 + em2(x1i))2

)

Next, we will show that
∑n1

i=1(Y1i − p1(x1i)) is asymptotically normally distributed because it satisfies the Lyapunov
condition:

1

(var (
∑n1

i=1(Y1i − p1(x1i))))
3/2

n1∑
i=1

E(|(Y1i − p1(x1i))|3) ≤ O

(
1

n
3/2
1

)
O(n1) = O

(
1

n
1/2
1

)

Therefore,

(61)
n1∑
i=1

Y1i −
n1∑
i=1

p1(x1i)
D∼ Normal

and var(
∑n1

i=1 Y1i −
∑n1

i=1 p1(x1i)) =
∑n1

i=1 p1(x1i)q1(x1i). Finally, combining (49) and (61) and because of their indepen-
dence:

1
n1

(
n1∑
i=1

Y1i −
n1∑
i=1

p1(x1i) −
n1∑
i=1

p̂2(x1i) +
n1∑
i=1

p2(x1i)

)

=
1
n1

(
n1∑
i=1

Y1i −
n1∑
i=1

p̂2(x1i)

)
− 1

n1

(
n1∑
i=1

p1(x1i) −
n1∑
i=1

p2(x1i)

)

= D̄LOC − δ
D∼ Normal

Furthermore, using (60),

var(D̄LOC) ≈ 1
n2

1

n1∑
i=1

p1(x1i)q1(x1i) +
1
n2

1

n1∑
k=1

(
em2(x1k)

(1 + em2(x1k))2

n1∑
i=1

σik
em2(x1i)

(1 + em2(x1i))2

)
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In order to obtain the form of the asymptotic bias, notice

E(D̄LOC − δ) = E

(∑n1
i=1(Y1i − p1(x1i))

n1
−

∑n1
i=1(p̂2(x1i) − p2(x1i))

n1

)
(62)

= 0 − E

(∑n1
i=1(p̂2(x1i) − p2(x1i))

n1

)
=

n1∑
i=1

1
n1

E (p̂2(x1i) − p2(x1i))(63)

Using Theorem 4 of Fan, Heckman, and Wand (1995) and applying the strong law of large numbers

E(D̄LOC − δ) =
h2

2

∫
νtr(Hm2(x1))p2(x1)q2(x1)f1(x1)dx1 + o(h2)

The order of the asymptotic variance is obtained as follows.

var
(
D̄LOC − δ

)
= var

(∑n1
i=1(Y1i − p1(x1i))

n1
−

∑n1
i=1(p̂2(x1i) − p2(x1i))

n1

)
= var

(∑n1
i=1(Y1i − p1(x1i))

n1

)
− var

(∑n1
i=1(p̂2(x1i) − p2(x1i))

n1

)

var

(∑n1
i=1(Y1i − p1(x1i))

n1

)
=

n1∑
i=1

1
n2

1

var(Y1i)(64)

=
n1∑
i=1

1
n2

1

p1(x1i)q1(x1i)

= O(1/n1)

since p1(x1i)q1(x1i) is bounded.

var

(∑n1
i=1(p̂2(x1i) − p2(x1i))

n1

)
=

1
n2

1

var

(
n1∑
i=1

p̂2(x1i)

)
(65)

=
1
n2

1

[
n1∑
i=1

var (p̂2(x1i)) +
n1∑ n1∑

i �=l

cov (p̂2(x1i), p̂2(x1l))

]

=
1
n2

1

[
n1∑
i=1

var (p̂2(x1i)) +
n1∑
i=1

mi∑
l=1

i �=l

cov (p̂2(x1i), p̂2(x1l))

]

≤ 1
n2

1

n1∑
i=1

var(p̂2(x1i)) +
1
n2

1

n1∑
i=1

mi∑
l=1

i �=l

√
var (p̂2(x1i)) var (p̂2(x1l))(66)

Theorem 4 of Fan, Heckman, and Wand (1995) states that the asymptotic variance of p̂2(x1i) is of order O((n2h
d)−1).

Using this in (66) and the fact that m ≤ O(n1−αd
1 ), the asymptotic variance of (65) is O

(
1

nαd
1 n2hd

)
. Hence, the asymptotic

variance of D̄LOC − δ is O
(

1
nαd

1 n2hd

)
.

This completes the proof of this theorem.

APPENDIX B. PROOF OF COROLLARY 2

Proof. The distribution of D̄LOC is normal due to Theorem 1.
As discussed in the proof of Theorem 1, when all the covariates are bounded and discrete, the potential values of the

vector distance ||x2j − x1i|| will be discrete and finite as well. As h → 0, h becomes smaller than the minimum distance
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between any two discrete values of ||x2j − x1i||. Thus, only those majority members x2j having the same covariate values
as the design point x1i will receive a non-zero weight in finding m̂2(x1i); all these majority members receive the same
weight, and we denote it by K

( ||x2j−x1i||
h

)
= w. Then, using (51), D̄LOC becomes

D̄LOC =
∑n1

i=1 y1i

n1
−

∑n1
i=1 p̂2(x1i)

n1
(67)

=
∑n1

i=1 y1i

n1
− 1

n1

n1∑
i=1

∑n2
j=1 K

( ||x2j−x1i||
h

)
y2j∑n2

j=1 K
( ||x2j−x1i||

h

)
=

∑r
k=1

∑n1k

i=1 y1ki

n1
−

∑r
k=1

∑n1k

i=1

∑n2k

j=1
wy2kj

n2kw

n1

=
∑r

k=1

∑n1k

i=1 y1ki

n1
−

∑r
k=1

n1k

n2k

∑n2k

j=1 y2kj

n1

=
1
n1

r∑
k=1

(
n1k∑
i=1

y1ki −
n1k

n2k

n2k∑
j=1

y2kj

)

=
1
n1

r∑
k=1

n1k

(∑n1k

i=1 y1ki

n1k
−

∑n2k

j=1 y2kj

n2k

)
(68)

=
1
n1

r∑
k=1

n1k (ȳ1k − ȳ2k)

Using the form of D̄LOC in (68),

E

(
1
n1

r∑
k=1

n1k (ȳ1k − ȳ2k)

)
=

1
n1

r∑
k=1

n1k (p1(x1k) − p2(x1k))(69)

where x1k indicates the minority covariate vector with the k-th covariate value combination. Now,

δ =
1
n1

n1∑
i=1

(p1(x1i) − p2(x1i))(70)

=
1
n1

r∑
k=1

n1k∑
i=1

(p1(x1ki) − p2(x1ki))

=
1
n1

r∑
k=1

n1k (p1(x1k) − p2(x1k))

Since E
(
D̄LOC

)
in (69) and δ in (70) are the same, E(D̄LOC − δ) = 0.

Using the form of D̄LOC in (67),

var
(
D̄LOC

)
= var

(
1
n1

r∑
k=1

(
n1k∑
i=1

y1ki −
n1k

n2k

n2k∑
j=1

y2kj

))

=
1
n2

1

r∑
k=1

(
n1k∑
i=1

var(y1ki) +
n2k∑
j=1

n2
1k

n2
2k

var(y2kj)

)

=
1
n2

1

r∑
k=1

(
n1k∑
i=1

p1(x1ki)q1(x1ki) +
n2k∑
j=1

n2
1k

n2
2k

p2(x2kj)q2(x2kj)

)

This completes the proof of this corollary.
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