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A weighted cluster kernel PCA prediction model
for multi-subject brain imaging data

YING Guo

Brain imaging data have shown great promise as a useful
predictor for psychiatric conditions, cognitive functions and
many other neural-related outcomes. Development of pre-
diction models based on imaging data is challenging due to
the high dimensionality of the data, noisy measurements,
complex correlation structures among voxels, small sam-
ple sizes, and between-subject heterogeneity. Most existing
prediction approaches apply a dimension reduction method
such as PCA on whole brain images as a preprocessing step.
These approaches usually do not take into account the clus-
ter structure among voxels and between-subject differences.
We propose a weighted cluster kernel PCA predictive model
that addresses the challenges in brain imaging data. We first
divide voxels into clusters based on neuroanatomic parcel-
lation or data-driven methods, then extract cluster-specific
principal features using kernel PCA and define the predic-
tion model based on the principal features. Finally, we pro-
pose a weighted estimation method for the prediction model
where each subject is weighted according to the percent of
variance explained by the principal features. The proposed
method allows assessment of relative importance of various
brain regions in prediction; captures nonlinearity in feature
space; and helps guard against overfitting for outlying sub-
jects in predictive model building. We evaluate the perfor-
mance of our method through simulation studies. A real
fMRI data example is also used to illustrate the method.

KEYWORDS AND PHRASES: Kernel PCA, prediction, multi-
subject data, cluster, functional magnetic resonance imaging
(fMRI), weighted estimation.

1. INTRODUCTION

In vivo functional neuroimaging, such as functional mag-
netic resonance imaging (fMRI), has become an important
tool for studying patterns of brain activity that are as-
sociated with cognitive functions, mental conditions and
behavior. Traditionally, the analysis of neuroimaging data
primarily focuses on identifying brain regions significantly
associated with an experimental task and characterizing
functional connectivity between various regions in cognitive
functions. In recent years, there have been a lot of efforts
devoted to predicting cognitive state, psychiatric conditions

and clinical outcomes based on brain images. Pattern recog-
nition techniques such as neural networks (Hanson et al.,
2004), support vector machines (Cox and Savoy, 2003) have
been used to predict what kind of cognitive state the brain
is in given an acquired image.

There are several major challenges in building predictive
models using brain imaging data. First, there are enormous
amount of voxels in each brain image while the number
of observed images is much smaller. This means predictive
model based on voxel-specific measures is infeasible since
the number of predictors mostly far exceeds the number
of samples. Secondly, there exists correlation between the
measurements across voxels in the brain. The connectivity
among voxels are due to underlying structural connection
or the coordinated functions. Thirdly, there is often consid-
erable between-subject heterogeneity in brain images. Sub-
jects may have different noise levels or brain activity pat-
terns in their images. Most existing predictive methods first
perform a PCA on the whole image, and then develop pre-
dictive models based on the extracted principal components
(O’Toole et al. 2005; Mourao-Miranda et al., 2005; Kjems
et al., 2002; Carlson et al., 2003; Strother et al., 2004).
Limitations of these approaches include: underlying cluster
structure in brain images is not taken into account resulting
in less efficient summary measures of the activity in var-
ious brain regions; ignoring between-subject heterogeneity
in predictive model building can cause overfitting and sen-
sitivity to outliers.

Instead of performing the dimension reduction on the
whole image, we propose to first divide voxels into clusters
and then extract the principal features within each cluster.
There are several advantages of taking into account the clus-
ter structure: the brain is a very complex biological systems
with enormous amount of neurons. Various brain regions
are associated with different types of anatomical structures
and neurological functions. Clustering brain voxels allows
us to divide voxels into groups where within-cluster voxels
share similar functions and activity patterns. Consequently,
the principal features extracted within clusters have a bet-
ter representation of the activity patterns in various regions
than the principal features extracted based on all voxels.
Secondly, extracting cluster-specific features also provides
the possibility to consider between-cluster associations in
the prediction model. It has been shown that functional con-
nectivity between different brain regions holds potentials in
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predicting neurological and clinical outcomes (Derado et al.,
2009). Thirdly, extracting features within clusters also helps
with computation by only considering a subset of voxels at a
time, whereas the standard all-voxel approach requires han-
dling the complete data matrix and hence has much higher
memory demand.

To extract features within a cluster, we propose to use
kernel PCA (Schélkopf et al., 1998). Kernel PCA is an ex-
tension of traditional PCA for nonlinear distributions using
kernel methods. Instead of performing PCA directly on the
original imaging space, the images are mapped into a higher-
dimensional feature space in which principal components are
extracted. Since PCA can be formulated in terms of the dot
products of input data, kernel PCA can be performed based
on the kernel matrix without the need of really performing
the mapping into the feature space. The main advantages
of the kernel PCA are that: 1) it reduces the computational
complexity since the dimension of the kernel matrix is de-
termined by the number of observed images rather than the
number of voxels and the former is often much smaller than
the latter for brain imaging data; 2) it can take into account
nonlinear patterns in images which has more potential to
improve the predictive power.

Prediction models are usually developed based on multi-
subject imaging data. It has been found that there may be
wide variability across subject’s in terms of the signal-to-
noise level and neural response patterns. Most existing ap-
proaches ignore between-subject differences and each sub-
jects’ data contribute equally in estimating the parameters
of the predictive model. However, in the presence of outliers
when certain subject’s images have much higher noise level,
the prediction model may be stretched to provide a better
fit for the outlying subjects. We propose to include subject-
specific weights in building a prediction model to make the
model more robust to extreme observations from subjects
whose imaging quality is questionable. Since our predictors
are extracted principal features, we propose to define the
subject weight parameter based on the percent of variance
explained by the principal features. This approach will give
more weight to subjects whose images are better represented
by the extracted principal features and downweight subjects
who have large amount of residual variability in their images
that are not captured by the principal features.

2. METHOD

The proposed method is applicable to various types of
brain imaging data including functional magnetic resonance
imaging (fMRI) and positron emission tomography (PET).
In this paper, we present our method for fMRI data since
they are most commonly seen in imaging studies. Let x;; =
[it1, - .-, 2iv] be an MRI image scanned for subject i at
time t where ¢ = 1,...,N, t =1,...,T and V is the total
number of voxels in the image. Let X; = [x};,..., 2}/
be the T' x V' data matrix of subject i. Let y; be T x 1
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vector of outcome of interest associated with the brain scans
from subject ¢. For example, y; can be the cognitive states
the subject is experiencing during the imaging session. Our
objective is to predict y,; based on the observed images X;.

2.1 Clustering of voxels in brain images

In vivo functional neuroimaging studies have shown that
different parts of the cerebral cortex are involved in dif-
ferent cognitive and behavioral functions. Previous work
has proposed ways for parceling the brain into distinct
neuroanatomic regions such as Brodmann area maps, the
Freesurfer software (Fischl et al., 2004, 2002) and the
macroscopic anatomical parcellation (Tzourio-Mazoyer et
al., 2002). As an alternative to the approaches based on neu-
roanatomy, one may also use data-driven procedures such
as functional clustering (Bowman and Patel, 2004a; Bow-
man et al., 2004b; Cordes et al., 2002) and spatial indepen-
dent component analysis (Calhoun et al., 2001; Beckmann
and Smith, 2005; Guo and Pagnoni, 2008). In specific, func-
tional clustering approaches group voxels into clusters that
exhibit similar patterns of observed brain activity. They de-
fine a dissimilarity metric for a pair of voxels based on the
distance between voxel-specific vectors of summary statis-
tics of brain activity. A cluster algorithm such as K-Means,
fuzzy clustering or hierarchical clustering is then applied to
divide voxels into clusters where within-cluster voxels share
a similar pattern of activity while between-cluster voxels
tend to have different patterns. Spatial independent com-
ponent analysis is another data-driven procedure that de-
composes the observed imaging data into a linear combi-
nation of spatio-temporal processes of functional networks
with independently distributed spatial patterns. Voxels can
be distributed into the identified functional networks based
on their loadings on the independent components and vox-
els within the same functional network share similar tem-
poral responses. Data-driven procedures define functional
regions that include both adjacent and disjoint anatomical
locations that share similar patterns of brain activity. Clus-
ters based on data-driven approaches generally demonstrate
more consistent within-cluster patterns than those based
on neuroanatomy. The disadvantage of the data-driven ap-
proaches is that clusters were derived from a specific data
set and hence are more variable across studies than clusters
based on neuroanatomical parcellations.

2.2 Kernel principal component analysis
(KPCA)

A well-known characteristic of neuroimaging data is its
high dimensionality and enormous size. For example, a
twenty-minute fMRI session with a single human subject
can produce 300 to 400 three dimensional brain images each
containing approximately hundreds of thousands of voxels,
yielding tens of millions of data observations. Therefore, to
develop predictive models based on imaging data, dimension



reduction and feature selection is often needed. In this pa-
per, we propose to use kernel principal component analysis
(KPCA) (Scholkopf et al., 1998) to extract principal pat-
terns of brain activity in observed images. In this section,
we first give a brief introduction of the KPCA.

Suppose x; (I = 1,...,L) are the observed data vectors,
e.g. £; € RY is the Ith observed brain image. Principal
Component Analysis (PCA) is a basis transformation to di-
agonalize an estimate of the covariance matrix of the original
images, defined as

1 X
(1) = I Z wlwg’
=1
here, we assume the observed data vectors are centered.
Eigenvectors of the covariance matrix define the basis in the
transformed space and the coordinates in the eigenvectors
are known as principal components.
KPCA is an extension of PCA using kernel methods. In
KPCA, we first map the images nonlinearly into a high di-
mensional feature space F' by

(2)

For example, a second-order nonlinear mapping function ¢
maps an original image x into a feature space F' which is
spanned by all pairwise products between voxels of . The
estimate of the covariance matrix in feature space F' is then,

1 L
(3) =ZZ

Schélkopf et al. (1998) have shown that even if F' has arbi-
trarily large dimensionality, for certain choices of ¢, we can
still perform PCA in feature space F' by the use of kernel
functions (Boser et al., 1992). In specific, they define L x L
kernel matrix K by

(4)

where k(z;,,x1,) = (¢(xr,), p(x1,)) is the kernel function
representing the dot product between two images in feature
space F'. Scholkopf et al. (1998) have shown that to per-
form PCA on the covariance matrix (3) in the feature space
F is equivalent to diagonalize the kernel matrix (4). Here,
we assume ¢(x) is centered because Taylor and Cristianini
(2004) have shown that the kernel matrix of the centered
feature data can be obtained through some simple algebra
operation on the original kernel matrix.

The kernel function & in (4) essentially measures the sim-
ilarity between two images in the feature space. The choice
of the kernel k corresponds to a specific mapping func-
tion ¢. The most simple kernel function is the linear ker-
nel k(x1,x2) = (1, x2) which is the dot product between
two images and measures the similarity between images in

¢: RV > F, x — p(x).

Klllzzk($l1,wl2)7 lj=1,...,L,j=1,2

its original space. When a linear kernel is used, KPCA is
equivalent to PCA. Nonlinear kernel functions measure the
similarity between images after they are nonlinearly mapped
into a higher-dimensional feature space. For example, poly-
nomial kernel functions of degree d correspond to a map ¢
into a feature space which is spanned by all products of d en-
tries of an input vector . One commonly chosen nonlinear
kernel function is Gaussian kernel function,

(5)

where ¢? is known as the bandwidth in Gaussian kernel
and is usually chosen through cross-validation (Taylor and
Cristianini, 2004). An advantage of Gaussian kernel is that
it can be directly calculated from the linear kernel and thus
is computationally efficient. A key advantage of the kernel
methods is that evaluation of the kernel function requires
much less computation than that of the explicit evaluation
of the corresponding feature mapping ¢.

k(w1,@2) = exp(—||lz1 — ®2]|*/207),

2.3 Cluster KPCA on multi-subject imaging
data

In this section, we propose a cluster KPCA approach to
extract features in multi-subject imaging studies. These fea-
tures will then be used for predicting our outcome of inter-
est. Suppose we have grouped voxels in brain images into
R clusters based on either neuroanatomical parcellation or
a data-driven approach. The collection of voxels in clus-
ter r (r = 1,...,R) is denoted as " with |Q"| = V" and
Zil V" = V. Let «, be the V" x 1 subimage of the rth
cluster for subject ¢ at time ¢. For multi-subject fMRI data,
we first define a kernel matrix K;; for cluster r for each sub-
ject pair (4, j) with 4, j € [1,..., N]. Here, K}, isaT'x T ker-
nel matrix where the (t1,t2)th element (¢1,t2 € [1,...,T])
is defined as

(6) ©j,t1t2

where k(z}, ,x%,,) = (d(z},), d(x];,)). Therefore, Kj;
the kernel matrix measuring similarity between images ac—
quired from subject ¢ and subject j. Then we define a
multi-subject kernel matrix K" for cluster r. Here, K" is
a NT x NT matrix composed of N? submatrices with the
(4,7)th submatrix being K7;.

By diagonalizing the multi-subject kernel matrix K", we
can retrieve the eigenvectors of the sample covariance matrix
of the feature data,

N T
7) 0" = o S (ol

i=1 t=1

K;; = k(wftlvﬂf;m),

To show this result, let X" be the feature data matrix where
the rows contain the features ¢(xl,) and let £ = rank( ).

We can show C = X 'X /TN and K" = X X '’. Denote
singular value decomposition of X = U"D"Q"’, where U"
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and Q" are orthogonal matrices whose columns contain the
left and right singular vectors, respectively and D" is a di-
agonal matrix with diagonal elements df > dj > ---d; >0
known as singular values. One can show that Q" and U"
are the eigenvector matrices for NTC" and K", respec-
tively with the vectors g and uj known as the jth prin-
cipal component direction and principal component in the
feature space. Following Taylor and Cristianini (2004), we
show that eigenvectors of NT'C" can be calculated from the
eigenvectors of K" as follows,

N T
—1 ~.7r 1 .
(8) qj=dj X 'uj= ZZagt’r (z,), j=1,....0,
i=1 t=1
where a is the element in the vector a/" = dT'71u§

that corresponds to the tth time point of subject i. There-
fore, PCA of multi-subjects’ subimages that are mapped
to the feature space F' can be performed by diagonaliz-
ing the proposed multi-subject kernel matrix K. Equa-
tion (8) also shows that the principal component direction
q; lies in the space spanned by the sample feature data
o(xl),(i=1,...,N, t=1,...,T).

There are several advantages for performing PCA on the
kernel matrix: 1) the dimension of the kernel matrix is the
number of observed images while the dimension of the co-
variance matrix is equal to the number of voxels. The former
is often much smaller than the latter in brain imaging stud-
ies. Therefore, KPCA can help reduce the computational
complexity; 2) by using nonlinear kernels, KPCA can ac-
commodate nonlinear features in images and hence has the
potential of capturing more complicated patterns.

We propose the following regression model for predict-
ing outcome y based on the first principal features uf (r =
1,..., R) extracted through the cluster KPCA approach,

R
(9) y=>00+>_ Bul.
r=1

To predict the outcome y for a new image x*, we first
group the voxels into clusters ™ and then calculate the
cluster-specific principal features u* by projecting =™ onto
the first principal component direction defined by (8), i.e.,

(10)  wy" =g’ ZZQ ;o))
i=1 t=1
N T
:ZZa“k (x],, ™).
i=1 t=1

The predicted outcome y* is then obtained through the re-
gression model (9) by plugging in «}*. An important ob-
servation from (10) is that the projection of a new image
onto the principal component directions of the feature space
can be performed by evaluating the dot products between
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the new image and the sample images in the feature space.
Note that the KPCA and subsequent projections can be per-
formed based on the kernel matrix without actually mapping
images onto the high-dimensional feature space through ¢.

2.4 Estimation of the prediction model using
subject-specific weights

Brain imaging data has often shown wide between-
subject differences in terms of the signal-to-noise levels and
activity patterns. Certain subjects’ images may include non-
task related variations. To obtain more robust estimates of
the parameters in our prediction model, we propose to use
the following weighted estimation,

(11) B=

where Y = [y],...,y’y] is the TN x 1 response vector;
Z =12Z),...,Zy]) where Z; = [Lug, ... uf;], with uf;
being T x 1 vectors, includes the first principal features
for subject i; W = diag(wrIr,...,wnIr) where w; is the
subject-specific weight. We propose the following weight
function,

(ZWZ)'ZWY

R T
1 il

R A
R r=1 Zj:l )‘ij

where A} is the jth eigenvalue from the KPCA of the rth
region of the ith subject. The proposed weight parameter
reflects the average percent of variance explained by the
first principal features across clusters in subject i. Therefore,
higher weight parameter indicates the subject’s observed im-
ages are better captured by the extracted first principal fea-
tures with less unexplained residual variability.

3. SIMULATION STUDIES

We performed simulation studies to evaluate the perfor-
mance of the proposed method. For comparison, we con-
sidered the standard PCA regression prediction model. The
simulation setup such as the noise levels were selected based
on observed data from a multi-subject fMRI study of Zen
Meditation. We conducted two sets of simulation studies.
In each study, we generated a training data set of 10 sub-
jects and a test data set of 5 subjects. For each subject, we
generated fMRI BOLD signals obtained at 200 time points
for 15,000 voxels. Among the 15,000 voxels, 12,000 voxels
belong to four equal-size clusters each with cluster-specific
temporal dynamics. In the first set of simulation study, the
time series of the voxels in the clusters was generated as
follows for each subject,

(13) g:v :g:+€iva r= 1a273747

where gj, is the ith subject’s observed temporal dynamics
at voxel v in region r and gj is the ith subject’s tempo-
ral dynamics associated with the jth cluster. We generated



Table 1. Results of simulation studies based on 200 simulation runs. Values presented are PMSE and its standard deviation in
the parenthesis

Cluster KPCA regression

PCA regression

weighted

unweighted

weighted unweighted

without outliers
with outliers

0.875(0.293)
1.071(0.376)

0.875(0.293)
1.926(0.486)

0.874(0.292)  0.874(0.292)
1.072(0.375)  1.922(0.481)

g: by linearly combining population cluster time courses
with subject-specific variability that was simulated through
a zero-mean Gaussian distribution with a standard devia-
tion of 0.1. The population cluster time courses were se-
lected from temporal responses of estimated independent
components based on a group independent component anal-
ysis (ICA) of the fMRI study of Zen meditation (Guo and
Pagnoni, 2008). In (13), €, is voxel-specific fluctuations
around the cluster temporal dynamics and was generated
from a Gaussian distribution with mean zero and a standard
deviation of 0.23. In addition to the 12,000 voxels within the
clusters, we also generated time series for 3,000 voxels that
don’t have consistent temporal dynamics. The temporal dy-
namics of these voxels were randomly selected from observed
voxel time courses in the Zen Meditation study.

The outcome to predict was generated as
(14) Y; = Bugl + Biog? + Biagl + e,
where G, (r = 1,2,3) are subject-specific parameters for
region r and were simulated from ;. ~ N(6,,0.25), where
0 = [01,0,,03] = [1,0.5,2] is the population parameter;
e; were zero-mean Gaussian random errors with a standard
deviation of 0.25.

In the second simulation study, the 10 training subjects
include 7 normal subjects and 3 outliers. The data for the
normal subjects were generated in the same way as that
of the first simulation study. For the outliers, the subject-
specific regional temporal dynamics were contaminated with
additional structured variabilities. More specifically, for each
region, each subject’s temporal response was generated from
a new population cluster time course which is a combination
of the original population cluster time course and an addi-
tional time series selected from the Zen Meditation fMRI
study. We then added subject-specific variability simulated
in the same way as that of the first simulation to generate g}
for the outliers. Each outlier’s voxel-specific time series was
generated according to (13) with €;, simulated from a Gaus-
sian distribution with a standard deviation of 1. Therefore,
the images of the outliers are noisier than those of the nor-
mal subjects. The outcomes to predict for the outliers were
generated in the same way as the normal subjects according
to (14).

We applied various methods to predict the outcome vari-
able y, based on the 200 x 15,000 fMRI data matrix X,.
We fit the predictive model using data from the 10 train-
ing subjects and then evaluated the performance by apply-
ing the model to the 5 test subjects. The prediction mean

square error (PMSE) was averaged over 200 simulation runs.
We compared four approaches: the proposed weighted clus-
ter KPCA regression model, the cluster KPCA model fit-
ted without using the subject-specific weights, the standard
PCA regression where temporal principal components were
extracted from the whole image for predicting the outcome,
and a modified PCA regression approach which incorpo-
rates subject-specific weights. For the two cluster KPCA
approaches, the cluster structures in the images were deter-
mined through K-means clustering method where the num-
ber of clusters was determined by pseudo-T"? criterion (Bow-
man et al., 2004b). The first principal features extracted in
each cluster were used as predictors in the regression model.
Linear kernel was used in the two cluster KPCA approaches
so that we can compare them to the two corresponding PCA
approaches for evaluating the effects of clustering and ap-
plying subject-specific weights in prediction. For the two
PCA regressions, the number of principal components were
matched with the number of clusters so that the PCA re-
gression models had the same number of predictors as the
cluster KPCA regression models. We present the results of
the three methods in Table 1.

From Table 1, we can see that the two weighted ap-
proaches gave the same results as their unweighted counter-
parts when there were no outliers. In the presence of outliers,
the weighted approaches had a smaller prediction error than
the unweighted methods since the outliers in the training set
were weighted lower than the normal subjects when estimat-
ing the prediction model. The cluster KPCA approaches had
a similar prediction error with the PCA regression model.
However, when we compare the extracted principal features
from both models to the true temporal dynamics in the
brain regions (Figure 1), one can see that the features ex-
tracted by the cluster KPCA accurately captures the time
courses of the various brain functional regions where the cor-
relations between the true and estimated time courses were
0.938, 0.942, and 0.940 for the three relevant clusters. In
comparison, the principal components of the standard PCA
represented mixed signals from various regions where the
correlations between the true cluster time courses and the
best matched principal components were 0.687, 0.778, and
0.685 for the three relevant clusters. Consequently, it is hard
to associate the extracted principal components from the
standard PCA approach with specific brain regions. There-
fore, though the PCA regression model may have compara-
ble prediction accuracy as the proposed approach, it does
not allow us to estimate the relative predictive power of
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Figure 1. Comparison of the true cluster time series with

the extracted principal features based on cluster KPCA and

standard PCA.

various brain regions for the outcome. The proposed cluster
KPCA approach also offers computational advantages over
PCA regression models. Since cluster KPCA extracts fea-
tures within each cluster separately, it only needs to deal
with a subset of voxels rather than the whole brain. Ad-
ditionally, diagonalizing the kernel matrix is computation-
ally more efficient than diagonalizing the covariance matrix.
Therefore, the cluster KPCA approach has lower memory
demands and is faster than the standard PCA regression.

4. AN FMRI DATA EXAMPLE

We illustrate the proposed method using data from an
fMRI study of Zen meditation. In this study, twelve sub-
jects who have practiced Zen meditation for years were re-
cruited. During the fMRI scanning session, word and phono-
logically and orthographically matched nonword items were
presented visually on a screen in a pseudo-random temporal
order. And subjects were asked to respond whether each dis-
played item was “a real English word” via pressing a button-
box using left hand fingers. During the intervals between the
stimuli, subjects were instructed to stay in a resting state
by using the awareness of their breathing throughout the
session as a reference point. A series of 520 functional MRI
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images were acquired during the experiment with a 3.0 Tesla
Siemens Magnetom Trio scanner. Each of these fMRI images
contains 53 x 63 x 46 voxels. The images were corrected for
slice acquisition timing differences and subject movement,
registered and spatially normalized to the MNI standard
brain space.

We applied the proposed method to predict the visual
semantic and nonsemantic stimuli level that a subject was
exposed to by using the observed fMRI images during the
session. The stimuli level was calculated as the task time se-
ries convolved with the HRF function. In previous analysis
(Guo and Pagnoni, 2008), we identified 14 functional net-
works in the Zen meditation data based on the group ICA.
Based on the ICA results, we defined 14 clusters by assigning
voxels to the independent component on which they had the
highest loading. We then applied the cluster KPCA to the
14 clusters. In each cluster, we extracted the first principal
feature for predicting the stimuli level. Single subject KPCA
was performed and the proportion of variance explained by
the first principal components in each of the 14 regions was
obtained to determine subject weights. We then constructed
a prediction model for the stimuli level using the extracted
first principal features from the 14 regions.
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Figure 2. Choosing bandwidth for the Gaussian kernel using
cross-validation in meditation data.

Table 2. Comparison of results based on various prediction
models for the meditation study

Method PMSE
Cluster KPCA (linear kernel) without subject weight 0.145
Cluster KPCA (linear kernel) with subject weight 0.143
Cluster KPCA (Gaussian kernel) without subject weight 0.131
Cluster KPCA (Gaussian kernel) with subject weight 0.130
PCA regression (with the first PC) 0.164
PCA regression (with 14 PCs) 0.142

For the meditation data, we considered the linear ker-
nel and Gaussian kernel. The bandwidth parameter in the
Gaussian kernel function was chosen based on 4-fold cross-
validation in the training data set (Figure 2). We consid-
ered both weighted and unweighted estimation of the clus-
ter KPCA prediction model. The standard PCA regres-
sion model was also fitted in comparison to the proposed
method. We evaluated the prediction performance of var-
ious approaches via Leave-One-Out cross validation. The
comparison of results is presented in Table 2.

From Table 2, we can see Gaussian kernel outperformed
the linear kernel in prediction which indicates that there is
an advantage in considering nonlinear patterns in the data.
The prediction error of weighted cluster KPCA regression
was pretty close to that of the unweighted cluster KPCA
regression. This is because the subject weight was fairly
comparable across the subjects without obvious outliers (see
Figure 3). To understand the roles of various brain regions
in the predictive model, we compared the regression coeffi-
cients across different clusters (Figure 4) and identified two
clusters that showed much higher predictive power. Figure 5
shows the spatial locations of the two clusters. The first clus-
ter included the supplementary motor area (SMA), the hand
region of the right sensorimotor cortex contralateral to the
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Figure 3. Subject weights for cluster KPCA regression model
in meditation data.

0.25

Absolute value of the regression coefficient

1 2 3 4 5 6

7 8 9 10 11 12 13 14
Cluster

Figure 4. Estimated regression parameters from the cluster
KPCA model for the 14 clusters in meditation data.

(left) hand that was pressing the button box, and the vi-
sual cortex. The first cluster is clearly functionally related
to the performance of the button-press task in response to
the visual stimuli. The second cluster represented a fronto-
parietal system including the bilateral intraparietal sulcus
and the supplementary eye fields, which is consistent with
the general architecture of attentional function (Corbetta
and Shulman, 2002).

When compared to the standard PCA regression model
(Table 2), the cluster KPCA regression is significantly better
than the PCA regression model based on the first principal
component extracted across all voxels. When we increased
the number of principal components to the number of clus-
ters, the performance of the PCA became similar to that
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Figure 5. Spatial locations of Cluster 6 (a) and 8 (b) in meditation data.

of the cluster KPCA with the linear kernel. However, the
principal components predictors in PCA model are hard to
interpret since they were not associated with specific brain
regions.

5. DISCUSSION

In this paper, we present a weighted cluster KPCA ap-
proach for predicting outcomes such as cognitive states
based on multi-subject brain imaging data. Development
of prediction models based on imaging data is a challenging
topic due to the enormous number of voxels and complex
correlation structures in the high dimensional data. Com-
mon approaches are to perform PCA on the whole brain
image for dimension reduction and then build the predic-
tive model on PCA basis without taking into account of the
spatial structure of the brain (O’Toole et al. 2005; Mourao-
Miranda et al., 2005; Kjems et al., 2002; Carlson et al., 2003;
Strother et al., 2004). A few approaches considered regions
of interests in the brain but summarized the ROI activity
only through simple statistics. For example, Mitchell et al.
(2004) used the mean activity of the selected ROI voxels
to create a “supervoxel” for each ROI and built predictive
models based on these supervoxels. In our method, we pro-
pose to first group voxels into functional or neuroanatomical
regions and then use kernel PCA to extract features from
these regions as predictors. In comparison to the existing
approaches, the advantages of our method are that we re-
tain the spatial structure of the brain in our data reduction
step which allows us to evaluate the relative importance of
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various brain regions in the prediction; furthermore, kernel
PCA is a computationally efficient feature extraction tool
that provides better reflection of the principle pattern of ac-
tivity within the brain regions and also allows us to consider
higher dimensional patterns. Another important distinction
of our method from previous works is that we propose to use
subject-specific weights in the development of a predictive
model. Our simulation studies have shown that it can sig-
nificantly improve the prediction accuracy in the presence
of outliers.

Our proposed method uses the kernel PCA method for
feature extraction. In recent years, kernel based techniques
have shown promising results in fMRI analysis (Hardoon
and Manevitz, 2005; Ni et al. 2008). The advantages of ker-
nel methods include reduction of computational complexity
and consideration of high dimensional features in the brain
images. For example, if one uses the second-order polyno-
mial kernel, the feature space contains all pairwise products
between voxels and thereby takes into account the second or-
der association between voxels in PCA. The disadvantages of
kernel methods are that: it is difficult to interpret and visual-
ize the extracted features in the input space when nonlinear
kernels are used; secondly, the choice of the kernel function
is still an open question in the kernel methods literature.

We have compared the proposed cluster KPCA regres-
sion model with the standard PCA regression. Though the
two may have similar predictive power when we increase the
number of principal components used in the standard PCA
regression, it is hard to identify the spatial sources of the



principal components of PCA since it doesn’t take into ac-
count the cluster structure in the brain in the extraction of
components. Furthermore, certain outcomes of interest may
be related to the interconnection between different brain re-
gions. Our proposed approach allows us to consider connec-
tivity between various brain regions and hence can improve
the performance of the predictive model. For more com-
prehensive evaluation of the performance of the proposed
method in comparison to the standard PCA regression, one
can conduct simulation studies where the outcome to predict
is generated from more sophisticated models, e.g. predictive
models that not only involve within-region brain activity
but also depend on between-region correlations.

In this paper, we present our method for predicting a
scan-specific continuous variable. The proposed procedure
can be readily extended to predicting other types of out-
comes by associating with the appropriate outcome model.
For example, to predict categorical outcomes such as a sub-
ject’s disease status, we can apply a similar procedure where
the outcome is predicted by the extracted principal fea-
tures through the logistic regression model and the subjects’
weights can be incorporated in the iteratively weighted least
square estimation of the logistic model.
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