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Using scientifically and statistically sufficient
statistics in comparing image segmentations
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∗

and Keith E. Muller

Automatic computer segmentation in three dimensions
creates opportunity to reduce the cost of three-dimensional
treatment planning of radiotherapy for cancer treatment.
Comparisons between human and computer accuracy in seg-
menting kidneys in CT scans generate distance values far
larger in number than the number of CT scans. Such high
dimension, low sample size (HDLSS) data present a grand
challenge to statisticians: how do we find good estimates
and make credible inference? We recommend discovering
and using scientifically and statistically sufficient statistics
as an additional strategy for overcoming the curse of di-
mensionality. First, we reduced the three-dimensional array
of distances for each image comparison to a histogram to
be modeled individually. Second, we used non-parametric
kernel density estimation to explore distributional patterns
and assess multi-modality. Third, a systematic exploratory
search for parametric distributions and truncated variations
led to choosing a Gaussian form as approximating the dis-
tribution of a cube root transformation of distance. Fourth,
representing each histogram by an individually estimated
distribution eliminated the HDLSS problem by reducing on
average 26,000 distances per histogram to just 2 parame-
ter estimates. In the fifth and final step we used classical
statistical methods to demonstrate that the two human ob-
servers disagreed significantly less with each other than with
the computer segmentation. Nevertheless, the size of all dis-
agreements was clinically unimportant relative to the size
of a kidney. The hierarchal modeling approach to object-
oriented data created response variables deemed sufficient
by both the scientists and statisticians. We believe the same
strategy provides a useful addition to the imaging toolkit
and will succeed with many other high throughput tech-
nologies in genetics, metabolomics and chemical analysis.

Keywords and phrases: Curse of dimensionality, Ge-
nomics, Metabolomics, Microarray.

1. INTRODUCTION

Segmentation partitions an image into several constituent
components and aims to outline the anatomic structures and
tumor-related objects. It provides an important means for
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clinical diagnosis and radiation therapy treatment planning.
Segmenting one or more volume images, such as comput-
erized tomographic (CT) and magnetic resonance images
(MRI), help localize and display objects of interest, position
the isocenters of the treatment beams, shape the radiation
beams to conform to the outline of the target volume, and
avoid nearby sensitive tissues. The process allows comparing
competing treatment plans. Unfortunately, current segmen-
tation practice is inherently expensive and requires slice-
by-slice contouring tools and well-trained users to achieve
acceptable results.

Automatic computer segmentation in three dimensions
would greatly reduce the cost of three dimensional treatment
planning for radiotherapy for cancer treatment. The kidney
segmentation study, detailed in Section 2, compared the seg-
mentations of two humans and one computer program over
12 CT images. After rigid alignment, surface comparisons
generated distances between any pair of segmentations at
roughly 20,000–30,000 surface points. Random variations
between segmenters disallows determining correspondence
of points and allows only overall comparisons. The statisti-
cal challenge arose from an average of 26,000 surface point
distances for each of 24 kidney images from 12 people. An
additional repeated measures dimension came from
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pairwise differences among one computer and two human
observers.

Such high dimension, low sample size (HDLSS) data dom-
inate medical imaging, genetic, and metabolic research. The
explosive increase in variable dimension has far outstripped
the development of statistical methods designed for the task.
The associated increase in cost has worsened the problem by
pushing down the number of independent sampling units,
and in return, raising the ratio of the number of variables to
sample size. Classic statistical methods may be performed,
but some believe the revolution in data collection has left
us doomed to declare either too many false positives or too
many false negatives.

If the data collection process allowed determining cor-
respondence between surface points, traditional univariate
statistical tests, such as t test, could have been applied in-
dividually to each point. The approach requires strong ad-
justment for the increased type I error (false positive) rate
caused by simultaneous testing. The simplest, though con-
servative, adjustment is the Bonferroni correction of requir-
ing a significance level of α/N , for N the number of points.
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With a large number of points, the resulting type I error
rate for each test becomes so small that rejecting the null
hypothesis of no group difference on one of the variables re-
quires a very large underlying true difference. For instance,
if the overall allowed type I error rate is 0.05, simultane-
ous testing on each of the 26,000 surface point distances
would result in an individual type I error rate as small as
0.00000192 (0.05/26,000). Consequently, an increase in the
frequency of false negative inferences occurs.

While some complex statistical inference problems can
be treated in suitable asymptotic setups, different ratios of
variable dimension to sample size demand different asymp-
totic results. Hall et al. (2005), and Ahn et al. (2007), by
considering asymptotically increasing dimensionality with
a fixed sample size, established geometric representations
of the data under some regularity conditions. They showed
that the geometric structure of HDLSS data becomes deter-
ministic with the only randomness remaining in rotations of
a simplex.

Presumably, principal component analysis (PCA) would
allow dimension reduction. Asymptotic studies on HDLSS
sample covariance matrices by Baik and Silverstein (2006)
indicated that when the ratio of variable dimension to sam-
ple size goes to a constant (greater than 1), the sample eigen-
values behave as if the underlying covariance were an iden-
tity matrix. Furthermore, PCA with HDLSS data typically
proves unreliable (Johnstone and Lu, 2009).

Meinshausen and Bühlmann (2006) found that consis-
tent selection of the mean model with HDLSS Gaussian
data required a sparse covariance matrix among predictors.
Similarly, Bickel and Levina (2008) reviewed and evaluated
strategies for HDLSS covariance estimation, with all de-
pending on some form of sparseness. In practice, the require-
ment amounts to saying the existing methods only work for
easy problems.

With that in mind, we advocate here that dimension re-
duction of HDLSS data should be oriented not only statis-
tically but also scientifically. Rather than applying a rou-
tine procedure blindly, scientific questions and knowledge
integrated with statistical reasoning can lead to a reliable
solution and valid analysis. We will illustrate the point in
the evaluation of medical imaging segmentation. We seek to
provide a template for analyzing other HDLSS data from
a similar scientific perspective. In the situation of interest,
the scientists were clear that they did not care about pixel
location, and only cared about overall performance. The ap-
proach takes advantage of the indifference to pixel location
to simplify the problem.

We proposed an alternate path for analyzing the kidney
segmentation data in two steps. In the first step, consulta-
tion with the scientists led to representing the information
as objects, specifically histograms of distances, one per im-
age and observer pair. For the histogram to avoid losing in-
formation requires the deviation of the computer-generated
surface from the true surface to have no relationship to lo-
cation on the surface. The scientists derived the computer

segmentations from a sophisticated and accurate model of
shape. Furthermore the human observers in the experiment
of interest were very well-trained and conscientious, as re-
quired by appropriate standards of medical care. Hence the
scientists were adamant in saying they only cared about the
sizes of the deviations, and not the locations.

In the second step, parametric fitting of the distribution
of differences between the shape model and human values
for each object led to discovering a statistical characteriza-
tion which requires only two parameters per histogram. The
two parameters were compared and tested against the null
hypothesis of no difference across rater pairs and the side of
the body. The two stages strategically separated the task of
estimation and inference. The framework can also be cast
as a special case of hierarchical modeling.

The hierarchy was imposed to help overcome the curse of
dimensionality. We assumed a common but latent distribu-
tional form for each of the 72 (24×3) histograms of distances.
The distributional parameters were allowed to differ across
histograms in order to allow for the possibility that they
are affected by factors of study design or intrinsic features.
A systematic search for the underlying distributional form
was conducted over each individual object and evaluated by
the overall empirical goodness of fit. The preferred model
was chosen to satisfy both scientific and statistical criteria
of goodness of fit and sufficiency. Each histogram was then
summarized by its corresponding sufficient statistics for the
final model. The primary comparison among histograms of
thousands of distances reduced to the comparison among
the resulting sufficient statistics. The reduction in dimen-
sions allowed using classical statistical methods with known
good properties.

The rest of the paper is organized as the following. In
Section 2, we present the kidney segmentation data. In Sec-
tion 3, we first examine the distributional characteristics
of the distance data, paying special attention to the pos-
sibility of multi-modality. In Sections 4 and 5, we search
for a suitable parametric form to fit the distributions. We
evaluate the goodness of fit, and obtain sufficient statistics
of the model with the best fit. In Section 6, we conduct
a multivariate repeated measures ANOVA analysis on each
sufficient statistic to draw inferences about the differences
between automatic and manual segmentation. We conclude
with a brief discussion in Section 7.

All computations were done with SAS software (SAS In-
stitute, 1999). The KDE procedure was used for exploring
the data with kernel density estimation. The UNIVARI-
ATE procedure provided maximum likelihood fitting of the
gamma and Gaussian parametric density models discussed
in Sections 4 and 5. The DATA procedure was used to com-
pute method of moment estimates and goodness of fit statis-
tics for the truncated Gaussian model discussed in Section 5.

2. KIDNEY SEGMENTATION STUDY

The scientists sought to compare a computer program
based on a medial model, called m-rep (Pizer et al., 2003),
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Figure 1. Frame 1: Medial atom with two equal-length spokes that define object width at the location of the atom. Frame 2:
The medial sheet of a kidney represented as a 5 × 3 grid of medial atoms. Frame 3: Medial grid with spokes displayed.

Frame 4: Wire-frame rendering of the surface implied by the medial sheet. Distance values are computed from the kidney
surface in Frame 4 to the surface selected by human observers.

with experienced humans. In the study, a total of 12
treatment-planning CT images (24 kidneys) were used. Two
trained humans (referred to as segmenter A and B, respec-
tively) defined the target kidneys slice by slice on the origi-
nal image data using interactive region filling together with
pixel-painting editing tools for fine sculpting (Traction et
al., 1994). The method forces the users to make pixel-level
decisions at every location on the boundary. The work was
performed without time constraints over multiple sessions
scheduled at the convenience of the segmenters. The auto-
matic segmentation (referred to as segmenter C) was pro-
vided by m-rep. Rao et al. (2005) detailed the structure
and training of the m-rep model. By considering kidney
parenchyma and pelvis as a single figure, a 5 × 3 grid of
atoms was selected to best capture the full range of shape
variability over the target population (Styner et al., 2003),
as shown in Fig. 1. Frame 4 of Fig. 1 displays an example
of the computer-generated surfaces which were compared to
human-defined surfaces.

Surface comparisons between two human segmenters (A
and B) and automatic m-rep (C) were performed using tools
in Valmet (Gerig et al., 2001). After a rigid alignment, dis-
tances between a pair of segmentations were computed at
roughly 20,000-30,000 surface points. The number and posi-
tions of surface points differed across pairs of segmentations.
For each calculation, the disagreement was defined by the
shortest distance between a point on the target surface to
the nearest point on the reference surface. The measure was
asymmetric due to the lack of point correspondence between
the two compared surfaces. For instance, as illustrated in
Fig. 2, the distance from a point on the target surface to
the nearest point on the reference surface is not the same
when measured in reverse.

In consultation with the image scientists, the size of the
distances was of major interest as opposed to the spatial
structure of the surface points. The three-dimensional ar-
ray of distances for each image comparison was then re-
duced to a histogram for all subsequent analyses. With the
asymmetry of all surface point distances, histograms were
built twice between each pair of surfaces, with the role

Figure 2. Illustration of the lack of symmetry when
computing the minimum distance between two kidney

surfaces in the study. The minimum distance to surface B
from point 1 on surface A is defined by the line connecting

points 1 and 2. However, the minimum distance to surface A
from point 2 is defined by the line connecting points 2 and 3.

Table 1. Summary statistics for the six pairwise distance
measures (in cm)

Pair N Mean Std. Dev. Min Max

AB 3307 0.466 0.362 0.005 1.645
BA 2711 0.351 0.255 0.005 1.235
AC 4424 0.556 0.408 0.005 2.195
CA 3594 0.448 0.339 0.005 1.805
BC 3751 0.518 0.385 0.005 1.685
CB 3164 0.443 0.351 0.005 1.755

of target and reference exchanged. Given a set of 24 kid-
neys, 144 (24 × 6) histograms were generated, each with
about 20-30,000 distances. The results presented in Rao et
al. (2005) were based on pooled histograms by summing
counts in individual distance bins, and on comparisons in
mean and Hausdorff (maximum) distance separation. Using
pooled histograms in quantifying the disagreement between
a pair of segmentations may lose information embedded in
the nature of the distance asymmetry, e.g. local curvature.

Table 1 gives summaries of the six pairwise distance mea-
surements. The three pairs AB, AC and BC differed on av-
erage about 1 mm more than their respective counterparts,
BA, CA and CB. In the following development, we focused
on the comparison for a set of pre-specified pairs, namely
AB, AC and BC. For each pair, the first segmenter cor-
responds to the target surface while the second segmenter
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corresponds to the reference surface in the calculation of dis-
tances. Given the general lack of local curvature of a kidney,
our imaging scientists were comfortable with a focused anal-
ysis on the selected pairs. The small size of the errors and
discrepancies among alternate pairs relative to the size of a
kidney also contributed to the comfort with working with
a subset. The data included an average of 26,000 distances
per image pair with 72 (24×3) pairs. The lack of correspon-
dence in distance measures between image pairs disallows
point-wise comparisons of any type of multiple comparison
adjustments.

The study design of segmentation accuracy has a num-
ber of limitations which could be rectified in subsequent
research. Segmentation of images of phantoms would pro-
vide an objective standard for quantifying the absolute ac-
curacy of human and computer segmenters. Of course previ-
ous studies of human segmentation accuracy could be cited
to defend the design. The inclusion of two or more human
segmenters would increase the credibility of the estimates of
human performance, and in turn, enhance the power of eval-
uating differences between human and computer segmenta-
tions. However, we ask the reader to set aside any concerns
they may have about the design of the empirical study and
focus on the data analysis approach we propose. We recom-
mend the approach and leave the evaluation of the specific
research to other venues.

Rao et al. (2005) compared segmentations in terms of two
summary metrics, mean and Hausdorff distance. In contrast
in the present paper we describe how to model the entire
histogram by applying classical statistical methods of curve
fitting to the family of histograms. Finding a common func-
tional form of a density that allows adequately fitting each
separate histogram by varying the parameter estimates al-
lows representing the information in the entire curve by the
parameter estimates, the sufficient statistics. Using the hier-
archical process allows overcoming the high dimensionality
of the data and providing accurate inference in a small sam-
ple.

The process we propose depends on a number of assump-
tions in order to succeed. Most importantly, the underlying
distribution must be fully characterized by a relatively small
number of parameters. Obviously the analysis process must
include the appropriate distribution as a candidate for the
process to succeed. Furthermore, the data must suffice for
stable parameter estimation and to distinguish the appro-
priate distribution from all other plausible choices.

3. NONPARAMETRIC EXPLORATION OF
HISTOGRAMS

We first explored the data graphically in order to gain in-
sight about the distributions. We examined all 72 histograms
in groups of 6, with the group including left and right kidney
segmentations for each of three segmenter pairs. In an at-
tempt to capture any dominant features embedded in thou-
sands of distances with noise, we used nonparametric kernel

density estimation with a variety of bandwidths to smooth
each histogram. In examining the smoothed histograms of
distances we focused especially on assessing the possibility
of multiple modes.

Kernel density estimation is a nonparametric technique
in which a known density function (the kernel) provides lo-
cal weights for the observed data points to create a smooth
approximation. A thorough review and discussion can be
found in Silverman (1986). For the kidney data, we applied
a Gaussian kernel and systematically varied the bandwidth
in order to examine sets of smoothed histograms. We se-
lected a bandwidth based on Silverman’s rule of thumb and
systematically applied a bandwidth multiplier of size five.
The multiplier was used to strike a balance between under-
and over-smoothing.

Figure 3 displays the 72 histograms and kernel density
fits, with rows corresponding to patients and columns corre-
sponding in sequence to AC/L, BC/L, AB/L, AC/R, BC/R,
and AB/R comparisons. All kernel density estimates show
unimodality and moderate to strong positive skewness of the
histograms. Means ranged roughly from 0.12 cm to 0.21 cm,
with standard deviations from 0.04 cm to 0.07 cm. For com-
parisons between the two human raters A and B, both left
and right kidney histograms revealed prominent peaks near
zero, reflecting the fact that most target points from rater
A were close to the surface points from rater B. In con-
trast, distances between human and m-rep segmentations
on average deviated more from zero, with an average 95th
percentile of 0.55 cm, as opposed to an average of 0.34 cm
between the two human segmentations. Both averages are
considered clinically unimportant differences for radiother-
apy treatment planning.

4. GAMMA DENSITY FITS

The apparent lack of a pattern of multi-modality in the
kernel density estimates led us to consider fitting unimodal
parametric distributions with positive support. The discus-
sion of families of distributions in Johnson, Kotz, and Bal-
akrishnan (1994, Section 12.4) provided a useful conceptual
framework. The goal was to find a model with a reasonable
fit, and then to reduce the data to the sufficient statistics
of the model selected. We first considered a gamma model,
which arises naturally in describing the distribution of a sum
of squared independent random variables. With Gaussian
variation of unit variance in each of three dimensions, the
squared distance between two objects follows a chi-square
distribution, a special case of a gamma distribution. The ac-
tual distance value would follow a chi distribution. A gamma
density for a distance, fX(x) = β−αΓ(α)xα−1e−x/β , de-
pends on the shape (α > 0) and the scale parameter (β > 0).
Changes in α and β allow a wide range of shapes, including
a monotone decreasing and unimodal form. Johnson, Kotz,
and Balakrishnan (1994, chapter 17) provided a detailed dis-
cussion of the gamma distribution.
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Figure 3. Kernel density fit for 12 CT images, 1 per row. Columns are (left to right) AC/Left, BC/Left, AB/Left, AC/Right,
BC/Right, AB/Right. The horizontal axes all span 0–2.4 cm and the vertical axes all span 0–0.4.
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We fitted the gamma and chi model separately for each
of the 72 histograms of distances. We used the Kolmogorov-
Smirnov D statistic to evaluate the goodness of fit of the
gamma model. The statistic ranges from 0 (perfect fit) to
1 (worst possible fit) and equals the largest absolute dis-
crepancy between the empirical and fitted distribution func-
tions, namely D = supx |Fe(x)−Ff (x)|. Figure 4 shows the
fit of the gamma model, which was better than the fit of
the chi model. When distance data piled up against zero
(Left and Right AB pair), the fitted gamma model failed to
closely capture the shape of the distribution. The small cor-
responding p-values for the Kolmogorov-Smirnov D statis-
tic were not surprising given the large number of distances
involved in the evaluation. Furthermore the p-values consid-
ered should be discounted to a certain extent to account for
the multiple-testing issue. Consequently, the magnitudes of
the D statistics themselves, as a scale-free measure of good-
ness of fit, should be the center of attention. The average
Kolmogorov-Smirnov D statistic over 72 comparisons was
0.071 with standard deviation 0.024 for the gamma model
and 0.323 with standard deviation 0.047 for the chi model
(Table 2).

5. GAUSSIAN DENSITY FITS, TRUNCATED
AND NOT TRUNCATED

A Gaussian model was our third choice. The positive na-
ture of the distance data first led to the log-transformed
Gaussian form, which is suitable for modeling unimodal and
positively skewed distributions. We visually inspected the
fit over the 72 histograms and computed the Kolmogorov-
Smirnov statistic to assess the goodness of fit. A Gaussian
model of distance was ruled out due to its lack of fit as
compared to the gamma model.

We proceeded by conducting Box-Cox power transfor-
mations in the search of the form that least violates the
Gaussian assumption. The cube root transformation of the
distances outperformed other choices, a result consistent
with the slight lack of fit from the log-transformed Gaus-
sian model. We computed the cube root of all distances,
and fitted both Gaussian and left truncated Gaussian mod-
els (Johnson, Kotz, and Balakrishnan, 1994, Chapter 13)
to the transformed histograms. The Wilson-Hilferty (1931)
approximation allows a chi-square random variable to be
well-approximated by a function of a cube root Gaussian.
The cumulative distribution function is approximated by

Fχ2(x; ν) ≈ Φ

{√
9ν

2

[(x

ν

)1/3

− 1 +
2
9ν

]}
,

with Φ(t) representing the standard Gaussian cumulative
distribution function.

To conform with the positive support of the transformed
distances, we truncated the Gaussian distribution at zero.
Rather than permitting values from minus infinity to pos-
itive infinity, the left truncated Gaussian model sets up a

left bound to the distribution. With φ (x) representing the
standard Gaussian density function,

{
μ, σ2

}
the mean and

variance of the untruncated Gaussian, and δ = μ/σ, a Gaus-
sian variable left truncated at zero has mean

E (X) = μ +
φ (−δ)

1 − Φ (−δ)
σ,

with corresponding variance

V (X) =

{
1 +

−δφ (−δ)
1 − Φ (−δ)

−
[

φ (−δ)
1 − Φ (−δ)

]2
}

σ2.

Parameter estimation can be conducted by the method of
moments or by maximum likelihood.

As for the evaluation of the gamma model, the
Kolmogorov-Smirnov D statistic was computed for each his-
togram to assess the goodness of fit. Figure 5 displays the
Gaussian fits for the cube root transformed distances. The
vertical axis for each graph ranges from 0 to 0.3, and each
graph was based on roughly 26,000 distances. Most Gaus-
sian curves fitted very well, with the remaining showing
only a modest lack of fit. The Gaussian quantile plots in
Fig. 6 further support the claim of adequency of fit with
a consistent pattern of the poorest fit at the highest quan-
tiles. The average of the Kolmogorov-Smirnov D statistics
over all 72 comparisons was 0.065 with a standard devia-
tion of 0.022 (Gamma gave a mean of 0.071 with standard
deviation 0.024). In addition to examining discrepancies be-
tween fitted and observed curves via Kolmogorov-Smirnov
D statistics, corresponding Gamma and Gaussian fits were
compared visually by all members of the research group. A
consensus favored the Gaussian fit as far better than good
enough. Please note that the vertical axes differ in scale be-
tween Figs 4 and 5 (but not within each) in order to maxi-
mize resolution in each separately.

From Table 2, the goodness of fit for a left truncated
Gaussian model, fitted by maximum likelihood, was very
similar to the fit for a Gaussian model (average D of 0.064
and a standard deviation of 0.021 for truncated versus 0.065
and a standard deviation of 0.022 for not truncated). Given
the similar fits and greater complexity of a truncated model,
we selected the Gaussian as our final model. We proceeded

Table 2. Summary of the Kolmogorov-Smirnov D statistics of
different parametric models

Model N Mean D Std. Dev. Min Max

Gamma 72 0.071 0.024 0.028 0.183
Chi 72 0.323 0.047 0.203 0.399
Gaussian 72 0.065 0.022 0.025 0.161
Truncated Gaussian
(Method of Moments) 72 0.072 0.029 0.027 0.176
Truncated Gaussian
(MLE) 72 0.064 0.021 0.025 0.150
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Figure 4. Gamma density fit for 12 CT images, 1 per row. Columns are (left to right) AC/Left, BC/Left, AB/Left, AC/Right,
BC/Right, AB/Right. The horizontal axes all span 0–2.4 cm and the vertical axes span 0–0.8.
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Figure 5. Gaussian fit on 3
√

distance for 12 images (rows). Columns are (left to right) AC/Left, BC/Left, AB/Left, AC/Right,
BC/Right, AB/Right. The horizontal axes all span 0– 3

√
3.375 (cm), and the vertical axes all span 0–0.3.
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Figure 6. Quantile plots of Gaussian fit on 3
√

distance for 12 images (rows). Columns are (left to right) AC/Left, BC/Left,
AB/Left, AC/Right, BC/Right, AB/Right. The horizontal axes are Gaussian quantiles spanning from -3 to 3 and the vertical

axes span 0– 3
√

3.375 (cm).
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Table 3. Mean ± standard error of the three summary
statistics of 3

√
distance (cm)

μ μ + σ log (σ)

AB 0.44 ± 0.01 0.59 ± 0.02 −1.93 ± 0.03
AC 0.51 ± 0.02 0.68 ± 0.02 −1.78 ± 0.02
BC 0.54 ± 0.02 0.69 ± 0.02 −1.88 ± 0.02

to further analyses by summarizing each histogram by its
mean and standard deviation (the sufficient statistics for a
Gaussian distribution) of cube root distance.

6. REPEATED MEASURES ANOVA

Obtaining a well-fitted parametric form allowed us to use
classic statistical methods on the corresponding sufficient
statistics. By choosing the Gaussian model for the cube root
transformed distances, we effectively reduced the data di-
mension to its mean and standard deviation. In turn, three
summary statistics were considered: mean, logarithm of the
standard deviation, and the sum of mean and standard de-
viation. The logarithm transform of the standard deviation
was motivated by the Gaussian assumption required in a re-
peated measures ANOVA analysis. Table 3 summarizes the
three statistics for each segmenter pair.

The value of the mean plus one standard deviation (μ+σ)
has an elegant interpretation. It indicates the transition
point at which the slope of a Gaussian cumulative distribu-
tion function stops rising and starts to decrease. The statis-
tic has been used with success in studies of image processing
in breast cancer detection (Pisano et al., 1997) because it
possesses a simple interpretation as a threshold of certainty,
from the perspective of psychophysics.

We conducted repeated measures ANOVA analyses on
the three summary statistics to test the difference between
human and automatic segmentation while accounting for the
association between left and right kidneys and rater pairs.
The resulting tests were equivalent to Wald tests from a
mixed model, with a Kenward-Roger adjustment on degrees
of freedom and all factors considered random. Muller and
Stewart (2006; Ch. 3–5, 12, 17) gave general background
while Edwards et al. (2008) discussed the specific equiva-
lence. Appropriate residual analyses (Chapters 7, 10, and 11,
Muller and Fetterman, 2002) were performed to verify the
Gaussian assumption for repeated measures ANOVA. Given
the validity of the data transformation, the three summary
statistics would be expected to follow a Gaussian distribu-
tion based on being close to maximum likelihood estimates
(MLEs) from thousands of values in each histogram.

Table 4 lists the result for repeated measures ANOVA
using a nominal 0.01 type I error level to account for simul-
taneous tests on the three statistics. We considered the full
model with the main effects of rater Pair and Side (Left,
Right) of the comparison, and their interaction (the same
saturated model was used implicitly for the random effects).

Table 4. Multivariate approach to repeated measures ANOVA
test results (Hotelling-Lawley F test p-values)

Effect Effect df p-value
μ μ + σ log (σ)

1. Side×Pair interaction 2 0.4647 0.3121 0.2541
2. Side main effect 1 0.2830 0.4716 0.9029
3. Pair main effect 2 0.0033 0.0062 0.0009

AC vs. AB 1 0.0202 0.0030 0.0002
BC vs. AB 1 0.0014 0.0011 0.0799
BC vs. AC 1 0.0570 0.4530 0.0033

Neither the Side×Pair interaction nor the Side main effect
was deemed significant. The Pair main effect was significant
for all three summary statistics. Stepdown comparisons were
conducted to help evaluate Rater pair differences. Although
significant differences in mean were found between pair BC
and AB and between pair AC and AB, the mean difference
in 3

√
distance (cm) was at most 0.1 cm1/3. Given the size of

a kidney and the nature of the radiation planning task, a
disagreement of 0.001 cm was considered clinically negligi-
ble. As can be seen from results in Tables 3 and 4 similar
patterns of results were found in comparing μ + σ between
human and m-rep segmentations.

7. DISCUSSION

HDLSS data are becoming ever increasingly prevalent in
many fields. Our successful experience in evaluating image
segmentations highlights a strategy that can be used in other
arenas to overcome the curse of dimensionality. The forma-
tion of distance histograms by ignoring the spatial structure
was led by scientific objectives and repeated discussions with
the scientists. Models that incorporated structured covari-
ance between surface points might effectively improve the
goodness of fit. In addition, accounting for the association
between left and right organs of the same image might im-
prove the fit.

Exhaustive model selection is not feasible given the infi-
nite combinations of possible mean and covariance models.
We achieved our results by considering a group of the most
reasonable models for geometric distances, most belong-
ing to an exponential family. Searching for a good enough
model, let alone the “best” model requires a good under-
standing of the data in order to identify logical modeling
options. As discussed at the end of Section 2, validity of
the general process depends on a number of assumptions in
order to succeed.

We emphasize that the transformation process employed
in Section 5 was handled exactly like a Box-Cox residual
analysis in the context of regression analysis. Hence two key
features were maintained at all times. First, validity of the
approach required that we control for possibly important
predictors since the model assumed applies to deviations
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conditional on image and rater pair. Second, no hypothesis
tests or associated location estimate was computed until the
transformation was chosen, and then an a priori analysis
plan was followed. Although we were obviously aware of the
previously published results for the same experiment, the
radical changes in data reduction and analysis methods gave
no promise of similar results.

Uncertainty about the validity and sensitivity of statisti-
cal analysis with HDLSS data, coupled with a lack of well-
defined correspondence, drove our work. Point-wise com-
parisons of the human and computer-defined kidney sur-
faces create a substantial multiple-testing problem. Taking
advantage of the statistical principle of sufficiency allowed
successfully addressing the scientific questions with standard
and powerful statistical tools. Although the approach taken
here required traveling a longer road, the imaging scientists
plan to continue using and promoting the method to others.
Hence the work will continue to pay dividends in the future.

The approach described does not provide a universal so-
lution, it simply gives a useful additional tool for the imag-
ing toolbox. The method relies on an indifference to pixel
location, an assumption that does not hold in other med-
ical imaging settings, such as fMRI analysis. Such settings
require different approaches that do account for pixel loca-
tion.
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