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Approximating the Geisser-Greenhouse sphericity
estimator and its applications to diffusion tensor
imaging
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The diffusion tensor imaging (DTI) protocol character-
izes diffusion anisotropy locally in space, thus providing rich
detail about white matter tissue structure. Although use-
ful metrics for diffusion tensors have been defined, statis-
tical properties of the measures have been little studied.
Assuming homogeneity within a region leads to being able
to apply Wishart distribution theory. First, it will be shown
that common DTI metrics are simple functions of known
test statistics. The average diffusion coefficient (ADC) cor-
responds to the trace of a Wishart, and is also described as
the generalized (multivariate) variance, the average variance
of the principal components. Therefore ADC has a known
exact distribution (a positively weighted quadratic form in
Gaussians) as well as a simple and accurate approximation
(Satterthwaite) in terms of a scaled chi square. Of particular
interest is that fractional anisotropy (FA) values for given
regions of interest are functions of the Geisser-Greenhouse
(GG) sphericity estimator. The GG sphericity estimator can
be approximated well by a linear transformation of a squared
beta random variable. Simulated data demonstrates that the
fits work well for simulated diffusion tensors. Applying tradi-
tional density estimation techniques for a beta to histograms
of FA values from a region allow representing the histogram
of hundreds or thousands of values in terms of just two esti-
mates for the beta parameters. Thus using the approximate
distribution eliminates the “curse of dimensionality” for FA
values. A parallel result holds for ADC.

Keywords and phrases: Diffusion tensor imaging,
Geisser-Greenhouse sphericity estimator, Fractional
anisotropy, Average diffusion coefficient.

1. INTRODUCTION

Diffusion tensor imaging (DTI) holds tremendous
promise for improving our understanding of neural path-
ways, especially in the brain. The DTI protocol highlights
the distribution of water molecules (in three dimensions).
In a medium with free water motion, the diffusion of water
∗Corresponding author.

molecules is expected to be isotropic. With water embed-
ded in nonhomogeneous tissue, motion is expected to be
anisotropic and might show preferred directions of mobility.
DTI characterizes diffusion anisotropy locally in space, thus
providing rich detail about white matter tissue microstruc-
ture. DTI allows tracking fibers in the brain, a result which
has many potential applications in neuroscience and psy-
chiatry. Combining fiber tracking with functional MRI may
elucidate structure-function relationships. Due to the fact
that MRI protocols are noninvasive and are deemed to pro-
vide essentially no risk to participants, longitudinal studies
of both diseased and normal participants may be especially
promising. DTI has already been used to show subtle white
matter abnormalities in a variety of diseases; for example,
stroke, multiple sclerosis, dyslexia, and schizophrenia (Le
Bihan et al., 2001).

The current work was stimulated by a longitudinal study
at the University of North Carolina Neurodevelopmental
Disorders Research Center. The study focused on whether a
difference in brain white matter integrity between autistic,
developmentally delayed, and normal children could be de-
tected. DTI images and data from 53 independent patients
were acquired; however, a method for describing each indi-
vidual patient and analyzing differences between the groups
was needed.

Definitions of credible statistical methods for analyzing
DTI data are needed. Le Bihan et al. (2001) considered a dif-
fusion tensor, D, as a 3×3 estimated covariance matrix, Σ̂,
at the location of interest. To obtain an accurate evaluation
of the probability distribution of diffusion in a region, one
must use an orientation invariant measure for each tensor.
A commonly used invariant index is fractional anisotropy.
Fractional anisotropy is a measurement of the fraction of
the “magnitude” that can be ascribed to anisotropic diffu-
sion. It will be shown that one-to-one transformations of the
fractional anisotropy (FA) measures lead to accurate repre-
sentations of their observed distributions in terms of only
two estimated parameters. Using these transformed values
will lead to outcomes in statistical models that avoid the
“curse of dimensionality.” Exact distributional results and a
similar analysis for the average diffusion coefficient (ADC),
volume ratio (VR) and relative anisotropy (RA) are also
derived.
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This paper is organized as follows. Notation of the com-
monly used measures and the statistical results are in Sec-
tion 2. Simulations and real data analysis are in Section 3.
Finally, conclusions are stated in Section 4.

2. DTI MEASURES AND STATISTICAL
PROPERTIES

2.1 DTI commonly used measures

The fact that diffusion can occur in three dimensions
leads to using a diffusion tensor, D, a 3 × 3 covariance ma-
trix. The simplest possible covariance structure is σ2I, re-
ferred to as sphericity due to the shape of the corresponding
scattergram of data (and hence diffusion pattern, which is
isotropic). The three most commonly used DTI summary
measures are volume ratio, relative anisotropy, and frac-
tional anisotropy. If {λ3} are the 3 eigenvalues of D, then
the measures are defined as follows.

Volume ratio, η

(1) η =
∏3

k=1 λk(∑3
j=1 λj/3

)3 =
μ3

g

μ′
1
3 ,

where μ3
g is the product of the 3 eigenvalues and μ′

1 is the
arithmetic mean of the eigenvalues. Here η expresses a rela-
tionship between the geometric and arithmetic mean of the
variance of the diffusion.

Relative anisotropy, ζ
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)2(∑3
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where μ′
2 is the arithmetic mean of the squared eigenvalues.

Hence ζ is a normalized standard deviation that measures
the amount of anisotropy (non-sphericity) for the tensor.

Fractional anisotropy, φ
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Here φ is a measure of the dispersion (variance) of the vari-
ances of the diffusion tensor.

2.2 Statistical properties

A covariance matrix always has a spectral decomposition
with only positive or zero eigenvalues. If Υ is the matrix of
eigenvectors of the covariance matrix, then Σ = ΥDg(λ)Υ′

with Υ′Υ = ΥΥ′ = Ib. Also if Z ∼ Nν,b(0, Iν , Ib) and
Σ = ΦΦ′ where Φ = ΥDg(λ)1/2, then Y = ZΦ′ ∼
Nν,b(0, Iν ,Σ) and

(4) Y ′Y ∼ Wb(ν,Σ),

where Wb denotes a Wishart distribution with ν the num-
ber of independent replicates used to find Σ̂ and b the num-
bers of rows in Σ̂ and Nν,b(0, Iν , Ib) denotes a multivariate

normal density with mean 0, ν representing the number of
independent replicates and b representing the number of ob-
servations for each ν, and both I matrices representing the
within and between subject variations, respectively (Muller
and Stewart, 2006).

Box (1954a, b) defined the parameter ε as a measure of
variance heterogeneity

(5) ε = tr2(Σ)/
[
ptr

(
Σ2

)]
= (μ′

1)
2/μ′

2,

where p is the rank of Σ. It can also be interpreted as
a measure of sphericity of the underlying principal com-
ponents. The locally best invariant (LBI) test for testing
sphericity (H0 : Σ = σ2Ip) for unknown σ2, against all al-
ternatives, is to reject the null hypothesis for large values
of U = tr(Σ̂

2
)/[tr(Σ̂)]2 (John, 1971). Thus the maximum

likelihood estimate (MLE), ε̂, of the parameter ε is a one-
to-one function of the LBI test for sphericity, ε̂ = 1/(pU).
In multivariate analysis of variance settings, ε̂ is defined as
the Geisser-Greenhouse sphericity estimator.

When p = 3, which is the case in diffusion tensors, the
exact density function of U under the null and non-null hy-
potheses are known (Sugiura, 1995). Although analytic ex-
pression are known for both densities, the non-null density
involves zonal polynomials, which makes computations dif-
ficult due to the need to evaluate an infinite series.

The null hypothesis for the likelihood ratio (LR) test for
sphericity is to be rejected for sufficiently small values of

(6) W = pp|Σ̂|
/(∑p

j=1
λ̂j

)p = μ̂p
g

/
μ̂′

1
p

(Khatri and Srivastava, 1971). The exact null and non-
null densities of the LR test exist when p = 3 (Sugiura,
1995). For the remainder of this paper, p = 3 will be as-
sumed. Although the non-null density exists, it involves in-
finite sums of infinite partitions; unless convergence occurs
quickly, computations will be a problem. Power comparisons
confirmed Grieve’s (1984) conjecture that the LBI test is
more powerful than the LR test if the population deviation
from sphericity is large.

2.3 Statistical results

Given the assumption that the flow of water follows a
Gaussian diffusion model arising from Brownian motion the-
ory, Σ can be defined as the population covariance matrix
(tensor) of the diffusion. Consequently νΣ̂ ∼ Wp(ν,Σ). The
eigenvalues of Σ̂, {λ̂i}, are variance estimates for the under-
lying principal components and hence measures of diffusion
in orthogonal dimensions. The most popular measures of dif-
fusion arising from DTI analysis can be expressed solely as
functions of the sample eigenvalues, and thus of estimated
variances.
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First moment properties of eigenvalues (compo-
nent variances)

Trace and ADC. Interpreting the eigenvalues, {λk}, as
variances implies μ′

1 is the average variance, or the arith-
metic mean of the variances. When S = νΣ̂ is a Wishart,
tr(Σ̂) is often called the generalized variance. Wishart prop-
erties imply the trace is a quadratic form in Gaussian vari-
ables (Glueck and Muller, 1998). Hence the average diffu-
sion coefficient, ADC = tr(Σ̂), is distributed exactly as a
weighted sum of central chi-square random variables. Kim,
Gribbin, Muller, and Taylor (2005) provide a convenient re-
view of exact and approximate calculations of probabilities
for such quadratic forms. Both exact probabilities and ex-
cellent approximations are available. The following is the
definition for an approximation for the quadratic form. If
Q =

∑K
k=1 γkXk with γk > 0 and all mutually independent

Xk ∼ χ2(νk, ωk), then an approximation, Q∗ = γ∗X∗, exists
with γ∗ > 0, X∗ > χ2(ν∗, ω∗) and
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Determinant. If the λi are thought of as measures of
principal variation, then μg = (μp

g)
(1/p) is the geometric

mean of the variances. As an alternative to tr(Σ̂), the sam-
ple generalized variance is often defined as |Σ̂|. It seems
somewhat more natural to look at the geometric mean,

μ̂g = p

√
|Σ̂|. Gupta and Nagar (2000, Chapter 3) showed

the following. If S ∼ Wp(ν,Σ), |S|/|Σ| ∼
∏p

i=1 ui, with
independent {μi} and ui ∼ χ2

ν−i+1, where i ∈ {1, . . . , p}.
Also,

(10) E
(
|S|h

)
= 2ph|Σ|h

p∏
i=1

(
Γ[(1/2)(ν − i + 1) + h]

Γ[(1/2)(ν − i + 1)]

)
.

Second moment properties of eigenvalues. In order
to achieve global scale invariance, the measures of dispersion
of diffusion (anisotropy) are standardized; thus the central

information will remain unchanged if a linear transforma-
tion is applied. The main goal is to see if the variances are
relatively the same in all three dimensions. The following
discussion describes the very direct and simple connections
among the DTI measures and Wishart distribution theory.

Volume ratio, η

By Equation 1, η̂ is equivalent to W .

(11) η̂ =
μ̂′

3

μ̂′
1
3

= W.

Both η and η̂ are scale invariant with η̂ being exactly equal
to the likelihood ratio test statistic for sphericity.

Relative anisotropy, ζ

By Equation 2,

ζ̂2 =
μ̂′

1μ̂
′
2
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2
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(12)

= μ̂′
1 ·

(
1
ε̂
− 1

)
.

It is straightforward to see ζ̂2 is not scale invariant. Rela-
tive anisotropy is a product of an invariant parameter, ε,
and a non-invariant parameter, μ̂′

1; thus ζ̂2 is not invariant
to global scale. The lack of scale invariance makes RA an
unappealing choice relative to VR or FA.

Fractional anisotropy, φ

By Equation 3,

(13) φ2 =
3 · 3[μ′

2 − (μ′
1)

2]
2 · 3μ′

2

=
3
2
(1 − ε).

Hence φ̂2 is scale invariant and

(14) ε̂ = 1 − 2
3
φ̂2.

Thus, a linear function of φ̂2 is a one-to-one function of a
LBI test for sphericity. The LBI test for sphericity will be
more powerful with values of ε near one (Sugiura, 1995).
If care is taken to define essentially homogenous regions of
tissue, DTI brain data can lead to values of ε̂ that fit this
case.

ε̂ and its relationship to a squared-beta distribu-
tion. It will be shown that ε̂ can be approximated by a
squared beta distribution. Thus, by equation 14, FA can also
be approximated by a squared beta distribution. Approxi-
mately matching the first two moments of the ε̂ to a squared
beta random variable results in a simple approximate dis-
tribution. The fact that 1/p ≤ ε̂ ≤ 1 allows concluding

(15) 0 ≤
(

ε̂ − 1
p

)(
1 − 1

p

)−1

≤ 1.
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This leads to defining

B2 =
(

ε̂ − 1
p

)(
1 − 1

p

)−1

(16)

= ε̂

(
p

p − 1

)
−

(
1

p − 1

)
.

If we let c1 = (p/(p − 1)) and c0 = (1/(p − 1)), then
EB2 = c1E ε̂−c0 and E ε̂ = (EB2 +c0)/c1. With T1 = tr2(Σ̂)

and T2 = tr(Σ̂
2
), it follows that ε̂ = T1/(pT2). While

it is known that the following assumptions are not pre-
cisely true, they were assumed to derive the approximate
results. First, assume that T1 and T2 are independent. Sec-
ond, assume that E(T−1

2 ) = (E(T2))−1. Muller et al. (2007)
reported that E(T1) = 2νe

∑p
k=1 λ2

k + ν2
e (

∑p
k=1 λk)2 and

E(T2) = νe(νe + 2)
∑p

k1=1 λ2
k1

+ 2νe

∑p
k1=2

∑k1−1
k2=1 λk1λk2 .

Also, from (16), it is known that B2 = (T1/pT2)[c1] − [c0];
thus, B2(p − 1) + 1 = T1/T2.

The special case of sphericity leads to T1 being exactly
the square of a scaled, central chi-square. In general, B′ ∼
β(ν∗1/2, ν∗2/2) is true if and only if B′ = X1/(X1 + X2),
with X1 independent of X2 and both distributed chi-square.
It seems reasonable to find B∗ ∼ β(ν∗1/2, ν∗2/2) so that, in
some sense, B2

∗ ≈ B2. Then,

E(ε̂) = (E(B2) + c0)/c1(17)

≈
(

p − 1
p

)
E(B2

∗) +
(

1
p

)
.

Moments of a Beta are described in Johnson, Kotz, and
Balakrishnan (1995, Chapter 25). Thus, for such a B∗,

B2
∗ =

λ2
∗1X

2
1

(λ∗1X1 + λ∗2X2)2
(18)

=
λ2
∗1X

2
1

λ2
∗1X

2
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∗2X
2
2

with

E(X2
1 + 2X1X2 + X2

2 )(19)

= EX2
1 + 2EX1EX2 + EX2

2

= λ2
∗1ν∗1(ν∗1 + 2) + 2λ∗1λ∗2ν∗1ν∗2

+ λ2
∗2ν∗2(ν∗2 + 2).

As a Beta random variable, E(B2
∗) = ν∗1(ν∗1 + 1)[(ν∗1 +

ν∗2)(ν∗1 + ν∗2 + 1)]−1. Hence, by taking the expectation of
the numerator and denominator separately,

(20) E(ε̂) ≈
(

p − 1
p

)
ν∗1(ν∗1 + 1)

(ν∗1 + ν∗2)(ν∗1 + ν∗2 + 1)
+

(
1
p

)
.

Similarly, as a Beta random variable,

E(B4
∗) = ν∗1(ν∗1 + 1)(ν∗1 + 2)(ν∗1 + 3)/(21)

(ν∗1 + ν∗2)(ν∗1 + ν∗2 + 1)
× (ν∗1 + ν∗2 + 2)(ν∗1 + ν∗2 + 3).

Hence, by treating the numerator and denominator sepa-
rately,

Var(ε̂) ≈
[
((p − 1)/p)22ν∗1ν∗2(ν∗1 + 1)(22)

×
(
2ν2

∗1 + 2ν∗1ν∗2 + 6ν∗1 + 3ν∗2 + 3
)]

/[
(ν∗1 + ν∗2)2(ν∗1 + ν∗2 + 1)2(ν∗1 + ν∗2 + 2)

× (ν∗1 + ν∗2 + 3)
]
.

Without the (p − 1)/p term, this would be what one
would expect for the variance of a squared beta distribu-
tion. In more general cases, the approximation depends on p
such that as p increases, the approximation gets better since
((p − 1)/p) → 1 as p → ∞. The simulations below show
that the approximations work well when p = 3. However,
if larger dimensional tensors were used in imaging analysis
(for example, High Angular Resolution Diffusion Imaging
(HARDI)), then these approximations would only improve.

3. SIMULATIONS AND DATA ANALYSIS

Simulations were conducted to evaluate the accuracy of
the approximations, using one million replications. Using a
known ε, pseudo random Wishart matrices were generated
by first creating a random Gaussian Z matrix. Through-
out Υ = I without loss of generality because the parame-
ters and estimates of interest are invariant to Υ (from trace
and determinant invariance properties). With ε a function of
eigenvalues, Dg(λ) was chosen to achieve the ε of choice and
Y = ZΥDg(λ)1/2 = ZDg(λ)1/2 and Σ = Dg(λ). The follow-
ing entries comprised the matrix, Dg(λ): (0.80, 0.09, 0.10) for
ε = 0.496 and (1.00, 0.55, 0.55) for ε = 0.889. By (4), Y ′Y
was the resulting random Wishart matrix. For each Y ′Y , ε̂
was then computed. The values were then transformed into
B values using the square root of (13). The distribution of
the transformed values as well as the corresponding beta
distribution were plotted.

Figures 1a and 1b show the accuracy of the approxima-
tions when p = 3. The solid line represents the approxi-
mations based on a Beta random variable, while the his-
togram is from the sample values from the simulation de-
scribed above. Since so many replicates were used, a p-
value for a goodness of fit test does not make sense be-
cause if one were used, the fit would need to be perfect in
order to get a non-significant result due to the large sam-
ple size. However, the Kolmogorov-Smirnov test statistic,
KS = max |F̂ (x) − Fobs(x)|, was calculated as a measure of
discrepancy.
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Figure 1. Approximate (line) and simulated (histogram) densities of ε̂ when p = 3. 1a: ε ≈ 0.496 (KS = 0.045); 1b: ε ≈ 0.889
(KS = 0.011); 1c: ε ≈ 0.496 and SNR = 5 (KS = 0.029); 1d: ε ≈ 0.889 and SNR = 5 (KS = 0.018).

Figure 1a summarizes the simulation when ε ≈ 0.496. In
Figure 1a, the fit is good, but not perfect (KS = 0.045).
Given that the LBI test is more powerful for large values of
ε, we would expect better fits as ε → 1. Figure 1b summarizs
the simulation when ε ≈ 0.889. The figure shows that this
distribution works extremely well for larger values of epsilon
(KS = 0.011). This again was expected, as the LBI test is
better test for large ε. For imaging analysis, the definition of
large can be arbitrary to define. The techniques below (see
Data Example section) will allow one to decide whether or
not this approach would be appropriate.

When dealing with DTI data, random noise must be ac-
counted for. Thus, an additional simulation was performed
that created random D̂ by using the WLS algorithm de-
fined in Zhu et al. (2007) with 100, 000 replicates. Simulated
diffusion-weighted images were generated as follows: So, the
signal intensity in the absence of a diffusion-sensitizing field
gradient, was fixed at 1, 500, values of σo were varied to

provide differing signal-to-noise ratios (SNR = So/σo) of
5, 10, 15, 20, 25 and 30. Similar to the simulations in
Zhu et al. (2007) paper, an imaging acquisition scheme
{(bi, ri) : i = 1, . . . , 30} was defined with ri a 1 × 3 vector
that represents the ith direction of the diffusion gradient
such that r′

iri = 1, and bi is the corresponding b factor of
each ith DW MRI. The scheme included a total of m = 5
baseline images with b = 0 s/mm2 and n−m = 25 directions
of diffusion gradient at b = 1000 s/mm2 and ri equivalent
to the matrix provided in the Hardin (1994) web site for
m = 30. For a given diffusion tensor, D, xi, and yi were
generated from a Gaussian random number generator with
mean zero and standard deviation σ0. Similar to the sim-
ulations above, D was defined with the diagonal elements
as follows (units: 10−1mm/s): (0.80, 0.09, 0.1), for ε = 0.496
and (1.00, 0.55, 0.55) for ε = 0.889.

Finally, the resulting ith acquisition of the
diffusion-weighted data was calculated by Si =
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√
[So exp(−bir′iDri) + xi]2 + y2

i . The ε̂ values were then
calculated for each D̂ computed by the WLS algorithm
defined in Zhu et al. (2007) with k = 5. Similar to the first
simulation, the ε̂ values were then transformed into B values
using the square root of (13) and plotted. The distribution
of the transformed values as well as the corresponding beta
distribution were plotted.

Figures 1c and 1d show the accuracy of the approxima-
tions when the simulation accounts for random noise. The
solid line represents the approximations based on a Beta
random variable, while the histogram is from the sample
values from the simulation. Similar to the first simulation,
Figure 1c summarizes the simulation when ε ≈ 0.496. In Fig-
ure 1c, the fit works reasonably well (KS = 0.029). This re-
sult is consistent with the results from the first simulation. A
main reason why the addition of the noise did not hinder the
fits was that the noise added was Gaussian, which helps ho-
mogenize the data. Beta random variables can be expressed
as functions of chi-square variables, which are functions of
Gaussian variables. Figure 1d summarizes the simulation
when ε ≈ 0.889. The figure shows that this distribution
works well for larger values of epsilon (KS = 0.018). The
reason for the fit not being as good as Figure 1b is that
this simulation was with SNR = 5, which means a larger σo

was used to define xi and yi. As SNR increases, the fits also
improve.

Thus, it has been shown that ε̂ can be approximated by
a beta-squared random variable and that the approxima-
tion holds in the DTI setting when random noise is incorpo-
rated into the diffusion matrix. For region of interest anal-
ysis of DTI images this is extremely useful, as there is now
an approximate statistical distribution that can be associ-
ated with the FA values coming from a given region. As
noted earlier, even better approximations or exact results
are available for ADC.

Data example. The UNC Neurodevelopmental Disor-
ders Research Center performed a study to identify if dif-
ferences in the brain exist between autistic, developmen-
tally delayed and typical children. This study was approved
by both the University of North Carolina at Chapel Hill
and Duke Institutional Review Boards and parental as-
sent was obtained for all participants. Data was provided
for the 32 developmentally delayed and typical children.
All scans were acquired on a 1.5T GE Sigma Advantage
MR scanner. DTI images were acquired using 4 repetitions
of 12-direction spin-echo single-shot echo planar imaging
(EPI) sequence with a 128 × 128 × 130 image matrix at
1.875 mm × 1.875 mm × 3.8 mm resolution with a 0.4 mm
gap using a b-value of 1000 s/mm2. Using a custom program
designed to automatically remove slices that fall outside pre-
determined parameters, each DTI slice was screened for mo-
tion and other artifacts. After cleaning, both correction of
eddy-current based image distortions using mutual informa-
tion based unwarping and the calculation of the diffusion

tensor elements were performed using another custom soft-
ware package. The resulting eigenvalues and eigenvectors of
each diffusion tensor were also calculated and FA values were
computed. The FA values from different regions of the brain
were transformed into B values from (13). The distribution
of the transformed values as well as the corresponding ap-
proximating beta distribution were plotted. Diagnostic tests
were used to see how the fits performed. The data were or-
dered from smallest to largest for each subject.

Having the ordered data allowed for simple computation
of the empirical quantile function to be used. QQ-envelope
plots were used on the ordered data to see how the fit relates
to other samples from the same beta distribution. Programs
supplied by Marron (2007) delved into an approach called
QQ-envelope to use a Q-Q plot to test the distributional
form against standard distributions. This method creates a
typical Q-Q plot, but then simulates pseudo sets of data
from the assumed distribution to look at random variabil-
ity. All pseudo data points, as well as the original observa-
tions, are plotted. If the original data points are enveloped
by the pseudo data points and the line with a slope of 1,
then the distributional fit works; if not, then the distribu-
tional assumption was not correct. This approach was used
in Hernández-Campos et al. (2004) to fit distributions to
Internet traffic data.

The right cerebellum is a structure located between the
cerebrum and the brainstem which is the unit of motor con-
trol. There are 453 voxels that make up this region. Figure 2
depicts a sample of fits of the transformed right cerebellum
data, with the y-axis being the percent of data points and
the x-axis, the B value. All of the fits seem to work well;
however, we will still look at the diagnostic tests.

In QQ-envelope, the data are plotted on the y-axis and
the values from the assumed distribution are plotted on the
x-axis. The red bold solid line is the Beta Q-Q plot for the
transformed FA data; the green dashed line is theoretically
what would occur if the data were drawn with no sampling
variation from the beta distribution; and the blue dot-dash
lines are the result of resampling the exact beta distribution.
If the results fit, then the red line will be encompassed by
the blue lines.

Figures 3 and 4 show the worst and best fits from Fig-
ure 2, respectively. The Q-Q plot for the transformed FA
data (red solid line) in the QQ-envelope plots can devi-
ate quite a bit from the theoretical beta distribution (green
dashed line) and is not always encompassed in the 1,000 re-
samplings of the beta distributions (blue dot-dash lines). In
Figure 3, it appears that the data in the lower 5th percentile
deviates from the estimated distribution. In Figure 4, the red
line is encompassed by the blue lines at all points except a
small region around 0.55 on the x-axis. The occurrence of
multimodality was considered, but did not exist.

Thus, the beta distribution approximation works well in
the best case and not as well for other subjects in the right
cerebellum region of interest. The fits for the right cerebel-
lum appear to work well enough to be used in analyses, as

86 M. E. Clement-Spychala et al.



Figure 2. Six histograms of the fits of the transformed right cerebellum data; actual values (histogram) and approximate beta
distribution (line).

the fit did work for all but a small fraction of the data in
the worst case, mainly the left tail.

Hence, the data from a region for each subject can be
represented by a Beta distribution with subject and region
specific parameters. Note that the F -distribution is a one-
to-one function of the Beta. Using the F distribution yields a
non-bounded distribution with scale-free random variables,
with several simple statistical properties. Unlike the Beta,
the F varies in the same direction as FA, which simplifies un-
derstanding of the analysis of a novel outcome variable and
its relationship to the physical property that it represents.
Each subject can be identified with a single summary mea-
sure, δ̂ = mean + standard deviation of the F distribution.

A general linear mixed model assuming Gaussian errors
was fitted with δ̂ as the response, and fixed effects of age,
group, gender, age by group interaction. The analysis was
used to look at differences in the right cerebellum between
developmentally delayed children and typical children across
time. Figure 5 shows the least square means of each group at
given ages. Note that at less than 24 months the difference

between subjects is greater than that at 60 months. Even
with these differences, there was no significant difference
between the two groups of children in the right cerebellum
(p-value = 0.16).

4. CONCLUSIONS AND FUTURE
RESEARCH

A multivariate Gaussian has a sample covariance follow-
ing a Wishart distribution. This corresponds with DTI anal-
ysis in simple ways. In the absence of sphericity, Box (1954)
proposed quantifying the deviation from sphericity with ε a
function of the trace of the covariance matrix and the trace
of the matrix squared. The parameter corresponds to the lo-
cally best invariant (LBI) test statistic. The likelihood ratio
(LR) test statistic for sphericity is a function of the deter-
minant of the covariance matrix over the squared trace of
the covariance matrix.

Common DTI measures can be expressed as functions of
the LBI and LR tests. Both FA and RA essentially only de-
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Figure 3. QQ-envelop plot of the subject (ID = 515000402) with the worst fit from Figure 2 (plot on third row, second
column). Q-Q plot for the data (red solid lines), Q-Q plot for the theoretical distribution (green dashed), and Q-Q plot for the

resampled data (blue dot-dashed) are displayed. Fit works well except for the left tail (< 5th percentile).

Figure 4. QQ-envelop plot of the subject (ID = 514900302) with the best fit from Figure 2 (plot on second row, second
column). Q-Q plot for the data (red solid lines), Q-Q plot for the theoretical distribution (green dashed), and Q-Q plot for the

resampled data (blue dot-dash) are displayed. The fit works well except for a small region around 0.55 on the x-axis.
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Figure 5. Least square means of δ̂ across time by group.

pend on the LBI test statistic for sphericity. However, FA is
scale-free; thus, the use of RA should be dismissed. Choosing
between FA and VR should reflect the performance of the
corresponding tests for sphericity. The LBI test for spheric-
ity (test using FA) will be more powerful with values of ε
near one. Symmetrically, the LR test for sphericity (test us-
ing VR) will be more powerful with small values of ε. Power
comparisons were also made and Grieve’s (1984) conjecture
that the LBI test has more power if the population devia-
tion from sphericity is large was confirmed. Experience with
a limited range of MRI data for brains, as in the Autism
study, shows that ε is typically close to one. Thus, FA is the
more sensible measure.

Two types of simulations were performed to show that
the approximation of FA by a squared Beta distribution is
valid. The first simulation showed that, in a general set-
ting, the distribution of the Geisser-Greenhouse sphericity
statistic can be approximated by a squared beta distribu-
tion. This approximation works best when ε ≈ 1; this is
understandable due to its relationship to the locally best
invariant test for sphericity. In order to show that this ap-
proximation works well in a DTI setting, another simulation
was performed that added random noise to acquire a result-
ing tensor. This simulation also showed that a function of FA
can be approximated by a squared beta distribution. Thus,
ε̂ can be approximated by a squared random variable and
in the DTI setting this results in a way to analyze regions
of interest using distributions with known properties. This
approximation was then shown to work on the UNC Neu-
rodevelopmental data; however, it is necessary to perform
diagnostic tests.
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