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Nonparametric evaluation of heterogeneity of
brain regions in neuroreceptor mapping
applications∗
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†

and Huiping Jiang

In many applications of modeling positron emission
tomography (PET) data for neuroreceptor mapping studies,
it is necessary to define one or more regions of interest
(ROI) and analyze aggregate data from each region, often
assumed to be homogenous. We propose a simple method
for assessing the level of heterogeneity within any given
ROI along with a procedure for testing a null hypothesis of
regional homogeneity that uses a wild bootstrap algorithm.
Estimation of outcome measures is accomplished using
a mixture modeling approach. We provide results of a
simulation study along with analysis of an imaging dataset,
which indicates that most of the ROIs considered are quite
heterogeneous.
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1. INTRODUCTION

In a typical neuroreceptor mapping study, a radioactively
labeled ligand is injected into a subject’s bloodstream and
allowed to move throughout the body. The flow of the ligand
throughout the brain may be observed using imaging modal-
ities such as positron emission tomography (PET), which
measure the concentration of the ligand over time at each
location in the brain. These measures are typically aggre-
gated over time into several pre-specified intervals, termed
frames, and the resulting data for a given location consid-
ered over all frames comprises a time activity curve. Each
frame consists of a three-dimensional grid of concentration
measurements; each element of the grid is termed a voxel.
By modeling this time activity curve it is possible to esti-
mate various measures of the density of the target receptor
throughout the brain. Once these estimates have been com-
puted for each subject at each brain location, and once ap-
propriate registration of images has been done, it is possible
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to compare these estimates among subjects (e.g., between a
patient group and a control group).

The modeling of a ligand’s kinetic behavior over time
is often done using compartmental modeling techniques
(Jacquez [1985]; Gunn et al. [2001]), which necessitates ap-
plying an iterative nonlinear regression algorithm in order to
estimate model parameters. A number of alternative mod-
eling strategies have been proposed with a variety of moti-
vations, including computational feasibility, modeling flexi-
bility, and relaxation of model assumptions.

There are two general complementary approaches to the
analysis of brain imaging data. One is to analyze the data
separately for each voxel. The other requires specifying some
anatomically defined regions of interest (ROIs). This may
be accomplished in practice by identifying a template in-
dicating which voxels correspond to each ROI. When the
sequence of images for a subject are coregistered to each
other and also to the template, the time activity curve for
the ROI may be extracted by calculating some summary
(typically, the mean) of the measured concentration across
voxels for each frame. Then a compartmental model (or any
of the various alternatives) can be fit to the aggregated ROI
data to obtain parameter estimates specific to each ROI.
Subsequently, we can compare estimates of any of several
outcome measures of interest, which may then be compared
among many subjects to determine possible differences due
to diagnosis, treatment, sex, etc.

When neuroreceptor mapping was a newly emerging tech-
nology, ROI-level analysis was the standard for any kind
of quantitative analysis, since the capacity to fit hundreds
of thousands of non-linear models to voxel-level time se-
ries was not widely available. ROI analysis is still routinely
performed decades later, although advances in computing
power and algorithmic development have made fitting of
each voxel time series computationally feasible. One reason
to consider ROI-level analysis is that voxel-level data are
typically very noisy, and model fitting at this level is often
beset with lack of convergence and/or unrealistic parameter
estimates, problems that arise much less frequently when fit-
ting at the ROI level. Other than the stability of modeling
and the lower computational requirements, however, there
are other reasons to consider modeling at the ROI level in
some situations. For one, defining an ROI based on a struc-
tural magnetic resonance image (MRI) that is specific for
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each subject gives some assurance of “apples to apples” com-
parisons among many subjects. Also, in the second stage of
analysis (comparing estimates of density across subjects),
the statistical modeling is generally quite straightforward
(e.g., linear mixed models) because the dimensionality of
each subject’s data is manageable.

On the other hand, determination of anatomically defined
ROIs involves either very painstaking work on the part of a
technician or the implementation of some automated utility.
And while ROI analysis readily enables confirmatory anal-
ysis (e.g., about differences in binding measures at several
ROIs between groups), a voxel-level analysis would be more
appropriate for generating new hypotheses, as interesting
areas of difference may not be contained within any prede-
fined ROI. In many applications it is appropriate to perform
both an ROI-level analysis and a complementary voxel-level
analysis.

Compartmental models that are typically applied to data
in neuroreceptor mapping studies include a “plasma” com-
partment which represents the ligand in the subject’s blood-
stream ([Gunn et al., 2001]). If measurements are made on
this compartment over time, typically by drawing a sequence
of blood samples from a subject’s artery during scanning,
then this can provide an “input function” which will al-
low estimation of all kinetic measures of common interest.
This procedure is rather invasive, however, and the gath-
ering, analysis, and subsequent modeling of the blood date
requires significant effort and can be prone to error. It is
possible to avoid this blood sampling altogether by identi-
fying a “reference region,” such as the cerebellum, that is
assumed to be devoid of the target receptor. In the subse-
quent modeling of the imaging data, aggregate data from
this region are gathered and analyzed, and used to con-
strain the modeling of the data from other regions or vox-
els (see, e.g., [Lammertsma and Hume, 1996]). Even when
blood data are available, it is often useful to identify a ref-
erence region thought to be devoid of receptors, as this may
enable constraints to be placed on the compartmental mod-
eling that can avoid problems of identifiability.

Thus, the need to identify at least one region of inter-
est, aggregate the data within it for each time point, and
model the result can arise in each several analysis strategies
in neuroreceptor mapping studies with PET data. It is gen-
erally understood that an ROI-level analysis is intended to
make inference about aggregate measures across each brain
region, but it is reasonable to question the interpretation of
such an analysis when the regions exhibit a high degree of
internal heterogeneity. Cselényi et al. (2002) also raise this
issue and note further that differences in receptor density in
subsets may be lost in an ROI-level analysis. It is therefore
of interest to examine the level of heterogeneity within ROIs.
Here we propose a simple measure (the sample variance of
the estimated outcome measures across all voxels in an ROI)
of regional heterogeneity along with a bootstrap-based non-
parametric testing procedure to test a null hypothesis of

homogeneity. The methodology is laid out in Section 2 and
results from a simulation study are described in Section 3.
Application to an existing imaging dataset is reported in
Section 4 and some discussion is given in Section 5.

2. METHODOLOGY

In neuroreceptor mapping, either some compartmental
model or one of its alternatives is typically fit in turn to
the data for each voxel or ROI. For the jth voxel (or ROI)
the “true” concentration at time t will be denoted Cj(t)
and independent observations Y1j , . . . , Ynj are taken at time
points t1 < · · · < tn, respectively:

(1) Yij = Cj(ti) +
1
wi

εij ,

where ε1j , . . . , εnj are assumed to be iid N(0, σ2) random
variables and the factors w1, . . . , wn are known.

2.1 Standard compartmental modeling

The most common way to model the concentration curve
in (1) is to use compartmental modeling ([Jacquez, 1985;
Gunn et al., 2001]). With such an approach, a particular
compartmental structure is assumed and then the “true”
concentration curve for voxel j can be expressed generally
as

Cj(t) =
K∑

k=1

βjk

(
e−γjk· ⊗ Cp

)
(t),

where Cp(t) represents the concentration of the ligand in
the plasma and ⊗ represents the convolution operator. The
parameters βj1, . . . , βjK and γj1, . . . , γjK are functions of
the various rate parameters of the assumed compartmen-
tal structure. As mentioned in Section 1, the Cp function
may be estimated from measurements made on blood sam-
ples drawn during the scanning. We will assume henceforth
that such measurements are available and thus that Cp may
be estimated by Ĉp. If such data are not available, some
straightforward modifications to the methodology developed
here would be required. With this estimate of Cp, fitting of
the PET data may be accomplished separately for the jth
voxel or region by minimizing over all choices of parameters
βj1, . . . , βjK and γj1, . . . , γjK :

n∑
i=1

w2
i

(
Yij −

K∑
k=1

βk

(
e−γk· ⊗ Ĉp

)
(ti)

)2

.

One outcome measure of interest is the “total volume of
distribution” defined as the integral of the impulse response
function:

(2) Vj =
∫ ∞

0

K∑
k=1

βjke−γjkt dt =
K∑

k=1

βjk

γk
.
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After modeling the data for any voxel/region, the total vol-
ume of distribution may be estimated simply by replacing
the parameters in (2) by their estimates.

2.2 Evaluating heterogeneity of regions

If a region is homogeneous, then the “true” Vj will be the
same for every voxel in the region. If R represents a set of
indices corresponding to a given region of interest then the
null hypothesis of interest may be written

H0 : Vj = Vj′ for every j, j′ ∈ R.

Thus, a reasonable strategy for testing this hypothesis would
be to compute estimates of Vj for every voxel, then compute
some statistic that measures the variability of the estimates.
One possibility would be simply to calculate the variance of
the estimates across the region. For R representing a set of
voxel indices corresponding to a given region of interest, the
test statistic may be

(3)
1
J

∑
j∈R

(
V̂j − ¯̂

V
)2

,

where J is the number of voxels in R and ¯̂
V is the mean

of the estimated total volume of distribution for the region:
¯̂
V = 1

J

∑
j∈R V̂j .

To use (3) as a test statistic, it would be necessary to de-
termine its null distribution. This could be approached in a
parametric way by utilizing likelihood methods and applying
large-sample results, but the validity of the procedure would
then depend on some rather strong parametric assumptions.
Instead, we propose a nonparametric approach to determin-
ing the null distribution based on a wild bootstrap algo-
rithm. Our approach to this will make use of estimates of
V computed using mixed modeling, a flexible alternative to
kinetic modeling. This is in part to avoid specifying a par-
ticular compartmental structure, in part for computational
tractability, and in part because it readily extends to testing
homogeneity of each of the mixture components separately.
We note, however, that a similar approach to the testing
for homogeneity could be taken for a variety of methods for
estimating V .

2.3 Estimation of V using mixture modeling

When estimating each voxel (or region) separately from
the others, only the models with the simplest compartmen-
tal structure (typically at most K = 2) can be fit identifiably
([Slifstein and Laruelle, 2001]). By placing some constraints
on the functions (namely, that for each k, the γjk values
are the same for all voxels) and fitting the voxels/regions
simultaneously, more complex models may be fit without
greatly increasing the number of parameters to be estimated
([O’Sullivan, 2006; Jiang and Ogden, 2008]). This is an in-
stance of mixture modeling in which the components are the

same for all voxels but the coefficients are allowed to differ
among the voxels/regions.

Constraining the γjk values to be the same across voxels,
i.e., γjk = γk for all j and for k = 1, . . . , K, this mixture
model may be fit simultaneously to all voxels by minimizing

(4)
N∑

j=1

n∑
i=1

w2
i

(
Yij −

K∑
k=1

βjk

(
e−γkt ⊗ Ca

)
(t)

)2

over γ1, . . . , γk, β11, . . . , βNK , with the further constraint
that all βjk’s be nonnegative. Jiang and Ogden (2008) de-
scribe an algorithm for fitting this model to data while ac-
counting for the spatial dependency of the PET noise. Ap-
plying a conditional autoregressive (CAR) model to account
for the spatial correlation structure, model fitting involves,
for a given value of the autoregressive parameter, a nonlin-
ear least squares algorithm with a nonnegative least squares
algorithm ([Lawson and Hanson, 1974]) nested (at each it-
eration). The autoregressive parameter is estimated at the
top level using a grid search algorithm. The number of com-
ponents K may be chosen using standard model-selection
criteria such as AIC ([Akaike, 1973, 1974]).

2.4 General bootstrap algorithm for testing
homogeneity of Vj within a region

For arbitrary values of parameters γ and β define the
function

f(t; γ, β) = β
(
e−γ· ⊗ Cp

)
(t).

According to the mixture model, the “true” concentration
at time t in voxel j is given by

∑K
k=1 f(t; γk, βjk).

In the bootstrap algorithm given here it is understood
that the plasma concentration function Cp is to be replaced
by its estimate Ĉp when doing model fitting. Let R be the
set of indices of the region in question and let J be its car-
dinality.

1. Fit the mixture model to all data, choosing K by AIC
and, computing γ̂1, . . . , γ̂K and β̂j1, . . . , β̂jK for all j.

2. Compute V̂j =
∑K

k=1 β̂jk/γ̂k for each j in R.

3. Compute the test statistic T = 1
J

∑
j∈R

(
V̂j − ¯̂

V
)2

,

where ¯̂
V = 1

J

∑
j∈R V̂j .

4. Compute the residuals eij = Yij −
∑K

k=1 f(ti; γ̂k, β̂jk)
for i = 1, . . . , n and for all j ∈ R.

5. Compute aggregate ROI data: Ȳ R
i = 1

J

∑
j∈R Yij for

i = 1, . . . , n.
6. Fit aggregate ROI data: choose β̃1, . . . , β̃K to minimize

n∑
i=1

w2
i

(
Ȳ R

i −
K∑

k=1

f(ti; γ̂k, βk)

)2

over β1, . . . , βK , subject to the constraint that each
βk ≥ 0, using a nonnegative least squares algorithm.
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7. The bootstrap loop: For b = 1 . . . B:

(a) “Coin tosses”: Generate U1, . . . , Un, indepen-
dently, with P (Ui = 1) = P (Ui = −1) = 1/2.

(b) Compute the bootstrapped data: Y
(b)
ij =∑K

k=1 f(ti; γ̂k, β̃jk) + Uieij for j ∈ R and for each
i = 1, . . . , n.

(c) Fit the bootstrapped data: For each j ∈ R,
compute β̂j1, . . . , β̂jK that minimize∑n

i=1 w2
i

(
Y

(b)
ij −

∑K
k=1 f(ti; γ̂k, βk)

)2

over
β1, . . . , βK , again subject to the constraint
that each βk ≥ 0, using a nonnegative least
squares algorithm.

(d) Compute the estimates of the outcome measure
for the bootstrapped data: V̂

(b)
j =

∑
β̂

(b)
jk /γ̂k for

each j ∈ R.
(e) Compute the bootstrapped value of the test statis-

tic: T (b) = 1
J

∑
j∈R

(
V̂

(b)
j − ¯̂

V (b)
)2

, where ¯̂
V (b) =

1
J

∑
j∈R V̂

(b)
j .

8. The bootstrap p-value is the proportion of times the
actual test statistic T exceeds the bootstrapped test
statistic values: p = 1

B

∑B
b=1 I(T > T (b))

Bootstrap replication of the data is done according to a
wild bootstrap algorithm described by Liu (1988) and stud-
ied by Flachaire (2005) and many others. Such an algorithm
has been applied to brain imaging data by Zhu et al. (2007),
Whitcher et al. (2008), and others. Theoretical aspects of
some applications of such an algorithm to general functional
data, of which voxel-level brain imaging applications are one
instance, were studied by Chang and Ogden (2009). In the
wild bootstrap algorithm, each residual is thus multiplied
either by 1 or −1, keeping this factor the same for all voxels
for each time point, in order to maintain the spatial cor-
relation structure that exists among the voxels within the
region. Another appealing aspect of this type of bootstrap
procedure is that it will allow for different variances at each
time point. In our implementation, each bootstrapped data
set is created so that the voxels in R have the same values
of the parameters as those estimated for the aggregate ROI
data — i.e., so that, for each bootstrap replication, the null
hypothesis of homogeneity will be true.

Note that in the algorithm given above, the γk values are
only estimated once for the entire brain. These estimates are
used to generate the bootstrapped data and when the mix-
ture model is fitted to the bootstrapped data, estimation of
γk is not repeated, but previous estimates are used when es-
timating the β

(b)
j,k values. Our experience with such data has

shown that all voxels/regions are not needed to estimate the
γk values. These estimates are quite stable when selecting
as few as 5,000 voxels at random and thus we are spared the
additional computational expense that would be entailed by
estimating the γk values for each bootstrap sample.

2.5 Bootstrap algorithm for testing for
homogeneity of each component

One of the advantages of taking the mixture modeling
approach in such an analysis is that each of the mixture
components may be examined separately. The test in Sec-
tion 2.4 can test whether the total distribution volume is
uniform across a region, and if it is decided that it is not,
it may be of further interest to determine the level of het-
erogeneity of each of the components separately. This can
be accomplished by a straightforward modification of the
bootstrap algorithm in Section 2.4.

Here, the null hypothesis for component k is

(5) H0 :
βj,k

γk
=

βj′,k

γk
for every j, j′ ∈ R.

We note that the hypothesis in (5) could be stated more
succinctly as specifying that βj,k = βj′,k but we prefer to
keep the γk in the denominator so that this test procedure
will more closely parallel that of Section 2.4. The testing
procedure would be equivalent in either case.

The algorithm for testing (5) is the same as that in Sec-
tion 2.4 except for three differences. First, Step 3 should be
replaced by

3′. Compute the test statistic Tk = 1
Jγ̂2

k

∑
j∈R

(
β̂jk − ¯̂

β·k
)2

,

where ¯̂
β·k = 1

J

∑
j∈R β̂jk.

Also, the bootstrapped data in Step 7b should be gener-
ated according to the sub-hypothesis of homogeneity of the
kth component. Instead of adding the bootstrapped noise to
the entire region-wise fitted concentration curve, the compo-
nents for each component except the one being tested should
be retained for each voxel, but the component being tested
should be replaced by that component for the region-level
data. To make this more clear, Step 7(b) should be replaced
by:

7(b′) Compute Y
(b)
ij =

∑K
k′=1 f(ti; γ̂k′ , β̂jk′) −

f(ti; γ̂k, β̂jk) + f(ti; γ̂k, β̃k) + Uieij for j ∈ R and for
each i.

Thus, the “fitted value” for each voxel will consist of an ROI-
level fit for the component under consideration and voxel-
level fits for the other components. Accordingly, step 7e
should be replaced by

7(e′) Compute T
(b)
k = 1

Jγ̂2
k

∑
j∈R

(
β̂

(b)
jk − ¯̂

β
(b)
·k

)2

, where
¯̂
β

(b)
·k = 1

J

∑
j∈R β̂

(b)
jk .

Then in step 8, the bootstrap p value is determined the
same way, comparing the computed value of Tk with the
distribution of T

(b)
k values.
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Figure 1. Settings for the simulation. The panel on the left displays the two mixture components; that on the right shows the
“true” concentration curve for each voxel in the “region”.

3. SIMULATION STUDY

To investigate the size of the test determined by the boot-
strap procedure as laid out in Section 2.4, a simulation study
was conducted. Parameters for the simulation were set to
estimates obtained by fitting a real data set so as to be as
realistic as possible. Time points were set to 1/6, 1/2, 5/6,
1.5, 2.5, 3.5, 5, 7, 9, 12.5, 17.5, 25, 35, 45, 55, 65, 75, 85, 95,
105 and the wi for the weights were set to the reciprocals
of the frame durations. We set K, the number of compo-
nents to 2 and the “true” values of parameters γ1 = 0.0111
and γ2 = 0.242 with the (common) coefficient values for
the region set as β1 = 0.0260 and β2 = 0.0291. The two
components for the simulated data are displayed in the left-
hand panel of Figure 1. The first component (γ1 = 0.0111)
exhibits a relatively slow decline that would correspond to
having available receptors to which the ligand can bind. The
time course of the other component rises quickly with blood
flow but then drops quickly as well; such a time course would
be expected in a region which has no receptors available for
binding with the ligand. Most areas of the brain will have
some contribution from each of these two components. The
resulting “true” concentration curve for each voxel in the
region is shown in the right-hand panel of Figure 1. The
noise level σ was set to 0.1469 and the number of bootstrap
samples was B = 500.

Time activity curves every voxel within the “region” were
generated using Gaussian noise, scaled by the wi factors as
in (1), independently over time, but correlated across the re-
gion by an autoregressive process, added to the “true” con-
centration curve. The bootstrap algorithm in Section 2.4 was
applied to each dataset in turn and the p-value determined.
This was done for a range of region sizes from 10 to 1,000
voxels, and for three values of the autoregressive parameter
φ (0.5, 0.7, and 0.9). For each region size and autoregressive

Figure 2. Estimated size of the bootstrap test with nominal
Type I error rate α = 0.05, using simulated data for various
region sizes and for varying amounts of spatial correlation.
Each estimated size is based on 10,000 replications with
B = 500 bootstrap samples computed for each generated

dataset.

parameter choice, 10,000 datasets were generated, and the
bootstrap algorithm with B = 500 was applied to each.

This entire simulation procedure was repeated two addi-
tional times with different parameter values chosen to match
those estimated from real data. Conclusions are similar for
the three settings, and thus we present results that are ag-
gregated over all settings. Results for the actual size of the
test are given in Figure 2, for which the nominal size is
α = 0.05. For regions with relatively few voxels the actual
size of the test is somewhat higher than the nominal size for
all values of the autoregressive parameter. As the number
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Figure 3. The two mixture components estimated for the real
dataset.

of voxels in the region increases, the actual size tends to
gradually decrease. For smaller regions there is little differ-
ence in the size of the test for the three values of φ, but for
larger regions this difference is more pronounced. We note
that the effect of region size on the size of the test is greater
for the situations with lower autocorrelation — possibly be-
cause the equivalent number of uncorrelated observations
increases more quickly as region sizes increases when there
is less autocorrelation.

4. APPLICATION TO BRAIN DATA

The procedures outlined in Section 2 were applied to ex-
isting imaging data. The ligand [11C]WAY-100635 binds to
the serotonin 1A receptor, which has been implicated in de-
pression studies ([Drevets et al., 1999; Sargent et al., 2000;
Parsey et al., 2006]). The imaging data was obtained as de-
scribed in Parsey et al. (2006) with full arterial sampling.
Forty regions of interest were traced on an individual struc-
tural MRI scan based on brain atlases and published reports
and subsequently verified by a neuroanatomist. For each re-
gion, p-values were computed using the bootstrap algorithm
from Section 2.4 generating B = 1, 000 replications for each.

Fitting the mixture model to this dataset as described
in Section 2.3 indicates that two components are sufficient.
The two components are plotted in Figure 3 and are similar
to those used in the simulations (cf. Figure 1).

The test statistic values for the regions are plotted against
region size in Figure 4. Evidence for heterogeneity was very
strong for almost all regions, as all but two regions resulted
in p-values less than 0.05. The two exceptions were the left
dorsal caudate and the right dorsal caudate, indicated on
the plot by the two solid circles. The largest region, the
cerebellum (commonly used as a reference region for this
ligand) with 10,773 voxels, resulted in a variance of 1.57
and a p-value less than 0.001 (not plotted).

Figure 4. Region size vs. variance of several regions for a
WAY study. The solid circles indicate regions for which the

p-value for heterogeneity were greater than 0.05.

Figure 5. Region size vs. variance of the second component
only of several regions for a WAY study. The solid circles

indicate regions for which the p-value for heterogeneity were
greater than 0.05.

Further analysis shows that for each of the regions consid-
ered, almost all of the variance of the voxel-level estimates of
V is due to variance in the first component, which roughly
corresponds to specific binding. Measuring the amount of
variability in the first component and testing for its sig-
nificance yields results very similar to that of the overall
variance: only two regions (again, the left and right dorsal
caudate) result in a p-value of greater than 0.05. The vari-
ance of the contribution of the second component is more
varied, however. Figure 5 shows the variance of the regions
plotted against their size. Again, the regions for which the
bootstrap p-value is greater than 0.05 are plotted with solid
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black circles; the open circles correspond to p-values less
than 0.05.

The results of this analysis indicate that assuming re-
gional homogeneity for this dataset would not be appropri-
ate for any of the regions considered (except for the two
noted earlier). It is interesting to note the wide range of
variances across the regions, and that there is no clear re-
lationship between region size and variance of the volume
of distribution. As mentioned earlier, the variances in to-
tal volume of distribution largely consist of variance in the
first component, roughly corresponding to variation in the
amount of specific binding. The other component, primar-
ily representing “free” (and non-specifically bound) tracer,
typically assumed to be constant across the entire brain, is
still quite variable even within regions. Analysis on other
imaging datasets not displayed here, reveal similar patterns
as those shown here.

We acknowledge that one potential contributor to mea-
sures of heterogeneity of a region is the well-known partial
volume effect, in which a truly homogenous region may be
“contaminated” by surrounding areas of the brain, and thus
the estimated variance might tend to overstate the truth.
Relatively small regions are particularly susceptible to this
effect. This can be avoided to some extent when assessing ho-
mogeneity by performing the procedure only on voxels in the
interior section of a region, although this is not a completely
satisfactory solution. Alternatively, testing for homogene-
ity of regions could be performed on data that has under-
gone partial volume “correction” (PVC), for which a num-
ber of algorithms have been proposed (see, e.g., Aston et al.
[2002]).

To investigate the possible effect of such a correction on
the procedures described here, we have repeated the analy-
sis on the same data after applying the PVC procedure of
Meltzer et al. (1990). As would be reasonably expected, the
estimated variances for the regions of the PVC data tend
to be larger than the corresponding variances of the orig-
inal data (Figure 6, upper left-hand panel). PVC appears
to have less of an effect on the estimated significance of the
tests for heterogeneity, however; for the PVC data, only five
regions had calculated p-values greater than 0.

As with the original data, the variance of the regions is
dominated by the first component, and the conclusions made
on the first component for the PVC data are similar to those
made on the first component of the original data. The second
component allows for somewhat more interesting compari-
son, however. Test statistics for the second component are
plotted against each other in the upper right-hand panel of
Figure 6 with an identity line added for reference. Estimated
variance tends to be higher for the PVC data than for the
original data. Corresponding p-values for the second com-
ponent are plotted against each other in the lower left-hand
panel of Figure 6 (both axes on the log scale). A reference
line at 0.05 was included in each direction. (Note that since
many of the bootstrap-based p-values were zero and so in or-
der to make all points appear on the plot, 0.0001 was added

to all p-values.) The variance of each region for the second
component was plotted against region size for the PVC data
(cf. Figure 5), again with solid circles corresponding to re-
gions with p > 0.05, demonstrating a similar pattern.

5. DISCUSSION

A more parametric alternative to the test statistic put
forth in Section 2 would be through standard likelihood ratio
testing. This could entail assuming a Gaussian distribution
for all data with the specified correlation structure and fit-
ting the unconstrained mixture model as in Section 2. Then
a restricted mixture model would be fit to all voxels, con-
straining the βj,k parameters to be the same for all voxels
in the region. Such a procedure would rest strongly on the
parametric assumptions, and the large number of degrees of
freedom may decrease the power, so a less parametric al-
ternative, such as that presented here, may be preferred in
many situations.

The algorithm laid out in Section 2.4 could be applied
with the estimates of Vj computed according to compart-
mental modeling or any of the other various alternative
methods. Taking the mixture modeling approach as we’ve
done here requires considerably less computational expense
than standard compartmental modeling since the γk val-
ues do not have to be estimated for each bootstrap sample
and because the non-negative least squares algorithm is rel-
atively fast. Another reason to prefer estimating Vj using
mixture modeling techniques is because of the easy exten-
sion to component-wise testing in Section 2.5.

That said, while the mixture model is less dependent on
some of the particular parametric assumptions required by
the usual compartmental model, it is still relatively strongly
parametric, requiring that the impulse response function
be expressed as a sum of exponentials. In some situations
it may be preferable to relax this assumption as well, for
instance the nonparametric approach of O’Sullivan et al.
(2009). Though application of the bootstrap testing proce-
dure outlined here to such a nonparametric approach would
likely involve intensive computational demands, it would
serve to provide analysis less affected by potential lack of
model fit.

The other natural bootstrap technique to apply would
be to compute residuals for each voxel and then resample
them ([Davison and Hinkley, 1997]). If the permutation vec-
tors are applied to all voxels and if the resampled residuals
are assigned to the same voxel from which they were de-
rived, then the covariance structure should be maintained.
A separate simulation study following the settings outlined
in Section 3 but resampling from residuals was conducted
but the results indicated that even for relatively small re-
gions the distribution of the variances of the bootstrapped
estimates was always more variable than that for the origi-
nal data and thus p-values in the null hypothesis case were
almost all between 0.2 and 0.8. This may be remedied by as-
suming stationarity of the noise and then using a time-series
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Figure 6. Top left: overall variance, original data vs. PVC data. Top right: Variance of second component, original data vs.
PVC data. Bottom left: p-values of component 2, original data vs. PVC data, plotted on the log scale. The quantity 0.0001
was added to each p-value so that all p-value pairs will appear on the plot, and some jittering was performed for the regions
for which both p-values were zero. Reference lines at 0.05 are given in both directions. Bottom right: Region size vs. variance
of the second component. The solid circles indicate regions for which the p-value for heterogeneity were greater than 0.05.

bootstrap algorithm such as that proposed by Romano and
Thombs (1996). An extension of their method to an irregu-
lar shape in three-dimensional space may be challenging but
we note that with a stationarity assumption residuals may
be drawn from anywhere within the brain.

Received 1 September 2009
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