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Data-driven statistical approaches, such as cluster anal-
ysis or independent component analysis, applied to in vivo
functional neuroimaging data help to identify neural pro-
cessing networks that exhibit similar task-related or resting-
state patterns of activity. Ideally, the measured brain activ-
ity for voxels within such networks should exhibit high auto-
correlation. An important limitation is that the algorithms
do not typically quantify or statistically test the strength
or nature of the within-network relatedness between vox-
els. To extend the results given by such data-driven anal-
yses, we propose the use of Moran’s I statistic to mea-
sure the degree of functional autocorrelation within iden-
tified neural processing networks and to evaluate the sta-
tistical significance of the observed associations. We adapt
the conventional definition of Moran’s I, for applicability
to neuroimaging analyses, by defining the global autocorre-
lation index using network-based neighborhoods. Also, we
compute network-specific contributions to the overall auto-
correlation. We present results from a bootstrap analysis
that provide empirical support for the use of our hypoth-
esis testing framework. We illustrate our methodology us-
ing positron emission tomography (PET) data from a study
that examines the neural representation of working mem-
ory among individuals with schizophrenia and functional
magnetic resonance imaging (fMRI) data from a study of
depression.

Keywords and phrases: Spatial autocorrelation, Moran’s
I, Neuroimaging, fMRI, ICA, Cluster analysis.

1. INTRODUCTION

Much of the recent work regarding the analysis of brain
imaging data has focused on examining functional connec-
tivity of the human brain. For example, independent compo-
nent analysis (ICA) and cluster analysis attempt to divide
the brain into different networks involved in performing cer-
tain tasks or characterizing a “default mode” of the resting-
state brain.
∗This research was supported by NIH grants R01-MH079251 (Bow-
man) and NIH predoctoral training grant T32 GM074909-01 (Derado).
†Corresponding author.

Clustering. Cluster analysis uses positron emission tomog-
raphy (PET) or functional magnetic resonance imaging
(fMRI) data to help identify dissociable networks or clus-
ters, each consisting of voxels that show relatively homo-
geneous patterns of measured brain function. These clus-
tering solutions do not define the underlying neuroanatomi-
cal connections, but instead focus on functional associations
between voxels. Ideally, within-cluster voxels should exhibit
high functional (or spatial) autocorrelation, validating that
the neural responses within clusters are functionally related.

Numerous investigators have proposed the use of cluster-
ing methods for neuroimaging data including Balslev et al.
(2002); Baumgartner et al. (2000); Bowman and Patel
(2004); Cordes et al. (2002); Fadili et al. (2000, 2001);
Filzmoser et al. (1999); Goutte et al. (1999, 2001); Poline
(1994); Simon et al. (2004); Sommer and Wichert (2003);
Stanberry et al. (2003). Clustering algorithms generally fall
into one of two categories, namely hierarchical clustering al-
gorithms or partitioning algorithms. Hierarchical clustering
performs a series of nested merges or divisions, ranging from
a solution with one large cluster containing all voxels to a
solution in which every voxel represents a separate cluster.
Among the available hierarchical clustering procedures are
Ward’s, beta-flexible, centroid linkage, variable linkage, me-
dian linkage, single linkage, and complete linkage algorithms
(Bowman and Patel, 2004). Partitioning algorithms, such as
K-means and fuzzy K-means, specify the number of clus-
ters at the outset and sequentially reallocate voxels to clus-
ters until obtaining a final clustering solution (Fadili et al.,
2001).

Independent component analysis (ICA). Among the data-
driven techniques, ICA has become a very popular method,
successfully employed to decompose fMRI time-series into
sets of spatial maps and associated time-courses. ICA
is an application of blind source separation, which at-
tempts to decompose the data set into components
that are as statistically independent from each other
as possible (Common, 1994; Herault and Jutten, 1986;
Jutten and Herault, 1991). One can pursue either temporal
(Biswal and Ulmer, 1999) or spatial (McKeown et al., 1998)
independence of the target components. One method of per-
forming ICA minimizes the mutual information between
components (Bell and Sejnowski, 1995; McKeown et al.,
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1997, 1998; Calhoun and Pekar, 2000). The fixed-point al-
gorithm (Hyvärinen, 1999) pursues the same goal of mini-
mizing the mutual information, but uses the concept of nor-
malized differential entropy or negentropy (Common, 1994).
One interpretation of negentropy is as a measure of non-
normality, so maximizing the negentropy finds directions of
maximal non-normality in the data. Beckmann and Smith
(2004) propose a probabilistic ICA (PICA) model aimed at
solving the problem of overfitting in classical ICA applied to
fMRI data, by including a Gaussian noise term in the clas-
sical ICA decomposition. Several methods for extending the
single-session probabilistic ICA model to higher dimensions
and making group inferences from fMRI data have been pro-
posed (Calhoun et al., 2001; Beckmann and Smith, 2005).
In our analysis, we consider the group ICA approach pro-
posed by Beckmann and Smith (2005) to our experimental
fMRI data.

The two methods described above help provide important
insights into functional integration (association between dif-
ferent brain regions). The major drawback is that there has
been limited research in terms of formally validating the re-
sults of these methods through statistical hypothesis testing.

Despite the successful application of clustering methods
to neuroimaging data, statistical procedures for testing the
validity of the resulting cluster structure are still lacking.
Although a clustering solution suggests the existence of net-
works of functionally related voxels, the clusters exhibit un-
known levels of autocorrelation, which is a desirable char-
acteristic of behaviorally relevant neural circuits. Typical
cluster analyses neither quantify the strength or nature of
the relatedness between within-cluster voxels using an easily
interpretable measure nor apply formal tests of hypotheses
to evaluate the statistical significance of the level of auto-
correlation. These limitations are particularly noteworthy
since clustering procedures always produce a solution, even
in the absence of true functional connections in the data.
Therefore, a valuable addition to cluster analyses applied in
functional neuroimaging studies is to measure the degree of
functional autocorrelation within a clustering solution and
to evaluate the statistical significance of the observed asso-
ciations.

Similarly, even though ICA has proved promising, there
is a need to study the properties of ICA as applied to
fMRI data. One major issue in application of ICA is that
the reliability of the estimated independent components
(ICs) is unknown. The results from ICA may vary con-
siderably with different algorithm starting points, sam-
pling of subjects, preprocessing steps or type of decom-
position algorithm (Calhoun et al., 2003). Therefore, val-
idation of estimated ICs has become important for cor-
rect interpretation of ICA results. There has been previ-
ous work related to evaluating the results of ICA by test-
ing mutual independence between the extracted source sig-
nals (Murata, 2001; Shimizu and Kano, 2001; Chiu et al.,
2003; Stogbauer et al., 2004; Wu et al., 2009). There have

also been several measures proposed to evaluate the fit
of the estimated ICs to the data (McKeown et al., 1998;
Esposito et al., 2002; Himberg et al., 2004) and some at-
tempts to investigate the reliability of the ICA estimates
(Himberg and Hyvärinen, 2003; Himberg et al., 2004). Still,
it may remain unclear how much autocorrelation is present
in the identified components.

In this paper, we introduce a global index to evaluate the
validity of neural processing networks identified by func-
tional clustering or by ICA. Specifically, we propose the use
of Moran’s I statistic (Cliff and Ord, 1973) to quantify and
test the autocorrelation present within computed functional
networks. We tailor our definition of the global index to
neuroimaging applications through the use of network-based
neighborhoods, and we compute network-specific contribu-
tions to the overall autocorrelation. Consequently, our meth-
ods target autocorrelation exhibited by voxels within defined
neural processing networks, rather than between voxels glob-
ally throughout the entire brain. Thus, we make no assump-
tions (or statements) about statistical dependence between
voxels on a global level. Hypothesis testing results from our
framework augment the descriptive findings of data-driven
analysis by determining the presence, direction, and statis-
tical significance of functional autocorrelation within neural
processing networks. For applications of the proposed meth-
ods to resting-state fMRI data, we present an explicit tem-
poral component. We illustrate the use of our methodology
with data from two studies: a PET study of regional cerebral
blood flow (rCBF) correlates of parametrically manipulated
working memory among individuals with schizophrenia and
an fMRI resting-state study of depression. Moreover, we pro-
vide empirical support for the use of the proposed methods
using a bootstrap analysis and a simulation study.

2. EXPERIMENTAL DATA

PET data on working memory in schizophrenia patients.
We illustrate cluster analysis using PET data from a study
of schizophrenia, but the cluster analysis is also applica-
ble to fMRI data. Our data are from a parametric study
of working memory in an executive function task in indi-
viduals with schizophrenia. We use data from N = 16 sub-
jects, each having a total of 8 PET scans obtained using
the blood flow tracer [15O]H2. After aligning and re-slicing
the PET images for each subject (Woods et al., 1998a), we
spatially normalize each subject’s scans to a population-
representative PET atlas (Woods et al., 1998b) centered in
Talairach stereotaxic coordinates (Talairach and Tournoux,
1988). We refrain from spatial smoothing of the PET data
during preprocessing to avoid artificially inducing correla-
tions between nearby voxels. We analyze data from 9,919
voxels, consisting primarily of gray-matter voxels that ex-
hibit at least a 1.6% change throughout the study. The study
design encompasses 2 replicate sessions of 4 scans, where the
scans in each session represent four experimental conditions
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that parametrically vary working memory load – the ability
to manipulate information in short-term memory. Specifi-
cally, the conditions are defined as digit shadowing (minimal
working memory load) and low, moderate, and high work-
ing memory loads in the form of serial addition tasks. In
the digit shadowing condition, the subjects simply repeat
a number that they receive by an auditory presentation,
which imposes a negligible load on working memory. In the
other three experimental conditions, the subjects receive au-
ditory presentations of a series of positive integers and are
instructed to provide the sum of the current number and the
preceding number, which requires that they store the pre-
vious number in short-term memory and mentally suppress
the previous sum. The range of the integers in the work-
ing memory load presentations distinguishes the conditions.
Both numbers in the low load condition fall between 1 and
3, both numbers in the moderate load condition are between
1 and 5, and the high load condition includes integers be-
tween 1 and 9. On average, the sums for the three active
load conditions during our experiment are 4.23 (low), 7.22
(moderate), and 10.09 (high).

FMRI data from a study on depression. We use data from
a second study intended to characterize the impact of child-
hood abuse/early trauma, and its developmental course, on
brain structure and connectivity. For our purpose, we an-
alyze fMRI resting-state scans of seven women with a his-
tory of major depression. While in the scanner, subjects
had their eyes open and were looking at a visual fixation
cross. Functional data were acquired on a Siemens 3T whole
body scanner (Trio). During a 7.5 min acquisition, a series
of 210 scans were acquired with TR=2 sec, 20 axial slices,
3.4× 3.4× 4 mm3 resolution. The functional runs were col-
lected with a Z-saga sequence to avoid orbitofrontal sig-
nal ablation. A group ICA was applied to investigate the
resting-state functional connectivity of the depressed pa-
tients. There is substantial interest in determining associ-
ations between the brain activity characteristics of different
regions while subjects are in a resting state. For example, a
set of regions has been consistently identified in these inves-
tigations and has been labeled as the default mode network
(DMN).

The first step in the analysis (preprocessing and the group
ICA) of the fMRI data was done in FSL (FMRIB’s Software
Library, www.fmrib.ox.ac.uk/fsl) software package. The
preprocessing and the first level, individual subject analysis
of the PET data was done in SPM (Statistical Paramet-
ric Mapping, Welcome Department of Cognitive Neurology,
London, UK, www.fil.ion.ucl.ac.uk/spm/). The rest of
the analyses were carried out in Matlab.

3. METHODS

Notation and terminology. The framework we present al-
lows estimation (and testing) for the presence of autocor-
relation separately for each experimental condition p (p =

1, . . . , P ) or scan s (s = 1, . . . , S). Data from a single scan
are represented as a 3-D rectangular lattice, comprised of a
large number of voxels, indexed by a mapping of coordinates
(x, y, z) to v = 1, . . . , V . Each voxel contains intensity infor-
mation corresponding to measures of localized brain activity
for fMRI data, or rCBF in case of PET data.

3.1 Clustering

Summary statistics, such as means or regression coeffi-
cients, are often inputs for clustering procedures applied to
task-related fMRI or PET data (Simon et al., 2004). We de-
velop notation for this case, but the methodology extends to
settings that cluster the original response data directly, e.g.
in resting-state fMRI studies. We denote rCBF, as a proxy
for brain activity, by Yk(v) =

(
Yk1(v), . . . , YkS(v)

)′, repre-
senting localized blood flow measurements from all S scans
for subject k, k = 1, . . . , K (at voxel v). For clustering, we
typically consider statistics T(v) =

(
T1(v), . . . , TP (v)

)′ =
f
(
Y1(v), . . . ,YK(v)

)
, P ≤ S, that summarize data from all

individuals, e.g. where Tp(v) is the mean or estimated effect
associated with experimental condition p. By selecting the
pth element of the summary vector from every voxel, we also
define the vector Tp =

(
Tp(1), . . . , Tp(V )

)′, which will facil-
itate our upcoming discussion of functional autocorrelation.

Clustering procedures classify the V voxels in an image
into G groups, with each cluster consisting of Vg voxels,
where g = 1, . . . , G and V =

∑G
g=1 Vg. Most methods clas-

sify voxels by measuring the distance (dissimilarity) between
the activity time courses for every pair of voxels and com-
bining voxels with small distances. For example, one popular
measure of distance between the activity in voxels i and j
is the Euclidean distance given by

(1) d
(
T(vi),T(vj)

)
=

[(
T(vi)−T(vj)

)′(
T(vi)−T(vj)

)]1/2
.

Descriptions of particular clustering algorithms are avail-
able in Rencher (2002), and Bowman et al. (2004) highlight
several of these algorithms for neuroimaging applications.

Some clustering criteria and stopping rules for hierarchi-
cal clustering methods quantify measures based on within-
cluster similarity, e.g. proportional to the change in within-
cluster variation, relative to between-cluster variation. How-
ever, these quantities are limited because they are relative
measures, e.g comparing two consecutive levels of a clus-
tering hierarchy. Also, these measures often lack easy inter-
pretability and are not amenable to formal hypothesis test-
ing. The probability distributions of clustering criteria are
difficult to derive theoretically (Hartigan, 1977, 1978) and
thus do not provide a basis for formal hypothesis testing
using a conventional Neyman-Pearson framework. Further-
more, even if one successfully derives the distribution of a
particular clustering criterion, the result may be somewhat
limited in practice in cases where an alternative clustering
algorithm provides better performance. We evaluate statis-
tical significance of the functional autocorrelation present
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in the final clustering solution, regardless of the clustering
algorithm employed to obtain the solution.

3.2 ICA

Classical ICA. Let Y denote an S × V matrix of the ob-
served voxel time courses, where S is the total number of
scans, and V is the number of voxels included in the analy-
sis; C is an N × V random matrix whose rows Ci are to be
filled with the unknown realizations of the N spatial compo-
nents (images, reshaped in 1-D vectors), and A is an S ×N
mixing matrix, whose columns contain the associated time-
courses of the N components. The spatial ICA problem for
fMRI time series can be formulated as an estimation of the
following model:

(2) Y = AC .

There are no assumptions about the mixing matrix A,
while the constraint on the spatial processes Ci is that they
are (ideally) mutually statistically independent. The amount
of statistical dependence within a fixed number of spatial
components can be quantified by means of their mutual
information, an important function in information theory
(Common, 1994). Thus, the ICA decomposition of Y can be
defined (up to a multiplicative constant and to the sign) as
an invertible transformation: C = UY, where the matrix U
(so-called unmixing matrix) is determined such that the mu-
tual information of the target components Ci is minimized
(i.e., such that Ci’s are “as independent as possible”). The
matrix A is the (pseudo)inverse of U. In McKeown et al.
(1998), the sources are estimated by iteratively optimizing
the unmixing matrix U so that C = UY contains mutually
independent rows, using the ‘infomax’ algorithm.

Probabilistic ICA (PICA). The model of equation (2) does
not include random noise. The PICA model, which extends
model (2), is formulated as a generative linear latent vari-
ables model. The model “is characterized by assuming that
the S-variate vector of observations is generated from a set
of q statistically independent non-Gaussian sources via a
linear instantaneous mixing process corrupted by additive
noise η(t)” (Beckmann and Smith, 2004):

yv = Acv + μ + ηv, ∀v ∈ {1, . . . , V } .

where yv denotes the S-dimensional column vector of in-
dividual measurements at voxel location v, cv denotes the
q-dimensional column vector of non-Gaussian source sig-
nals contained in the data and ηv denotes Gaussian noise
ηv ∼ N(0, σ2Σv). The number of source processes is as-
sumed to be smaller than the number of observations in time
(q < S). The model is closely related to factor analysis. The
individual component maps are obtained using a modified
fixed-point iteration scheme to optimize for non-Gaussian
source estimates via maximizing the negentropy. The maps
are then separately transformed to spatial Z-scores. These

Z-score maps depend on the amount of variability explained
by the entire decomposition at each voxel location relative
to the residual noise. Next, Gaussian/Gamma mixture mod-
els are fitted to the individual Z-maps in order to infer voxel
locations that are significantly modulated by the associated
time-course. For more details on PICA, we refer the reader
to Beckmann and Smith (2004).

Group ICA. In Beckmann and Smith (2005), the single-
session PICA has been extended to higher dimensions allow-
ing for a model-free analysis of multi-subject or multi-session
fMRI data. For group ICA, either tensorial ICA (where the
data is decomposed into spatial maps, time courses and sub-
ject/session modes), or a simpler temporal concatenation
approach (a single 2D ICA is run on the concatenated data
matrix obtained by stacking all 2D data matrices of every
single data set on top of each other) are possible. The lat-
ter approach is recommended to use when the interest is in
finding a common spatial pattern, but we cannot assume
that the associated temporal response is consistent between
subjects, such as in the analysis of data acquired without
stimulation (e.g. resting-state data). We hence apply this
approach for IC analysis of our fMRI data set. The tech-
nique is derived from parallel factor analysis (Harshman,
1970; Harshman and Lundy, 1994).1

We define Y(v) =
(
Y1(v)′, . . . ,YK(v)′

)′, representing
concatenated measures of localized brain activity at voxel v,
across all subjects. In our upcoming fMRI example, Y(v) is
a (210∗7)×1 vector. We also define the mean vector of brain
activity, across all voxels in all ICs as T = 1

V

∑V
v=1 Y(v).

3.3 Functional autocorrelation statistic

Functional autocorrelation measures the extent to which
voxels within neural processing networks exhibit similar pat-
terns of brain activity. For any selected element of the sum-
mary vector (indexed by p), we measure the functional au-
tocorrelation of a clustering, or ICA solution using Moran’s
I (Moran, 1950), defined as

(3) Ip =
V

S0

Z′
pWZp

Z′
pZp

.

In the case of clustering, Zp = [Tp−(T p1V )], with 1V denot-
ing a (V ×1) vector of ones and T p denoting the mean sum-
mary element across all voxels (i.e., T p = 1

V

∑V
v=1 Tp(v));

S0 =
∑G

g=1(Vg − 1)Vg and W is the symmetric spatial con-
nectivity matrix representing the clustering solution. The
matrix W defines all pairs of voxels that are in the same
cluster, i.e. that exhibit functional connectivity, by includ-
ing a nonzero value in the appropriate off-diagonal element.

1The research by Beckmann and Smith described above has been im-
plemented as MELODIC (Multivariate Exploratory Linear Optimized
Decomposition into Independent Components - a stand alone C++
program). It is freely available as part of FSL (FMRIB’s Software Li-
brary).
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Specifically, we define W such that the diagonal elements
are Wvv = 0, and the (u, v)th off-diagonal element is ei-
ther Wvu = 1, if voxels u and v are in the same cluster, or
Wvu = 0, otherwise.

When applied to group ICA results, we define Z =
[
(
Y(1)′, . . . ,Y(V )′

)′− (1V ⊗T)], where ⊗ denotes the Kro-
necker product, or the direct product operator. Here we drop
the index p for convenience, since in our fMRI data example
there is only one experimental condition. W is now a block
matrix: W = W1 ⊗ I(K∗S)×(K∗S), where W1 is a V × V
connectivity matrix (i.e. W 1

vv = 0 and W 1
vu = 1, if voxels u

and v are in the same IC and 0 otherwise). V and S0 are the
same as defined above. Connectivity matrices in other areas
of statistical application, e.g. geostatistics, typically specify
connections between locations that are physically adjacent,
e.g. neighboring cities. We adapt Moran’s I by tailoring our
definition of adjacency to reflect the distributed neural pro-
cessing networks, which typically contain voxels that are
not all spatially contiguous. Since our application defines
the proximity of voxels based on measures of brain func-
tion, rather than physical or spatial distance, we refer to
Moran’s I as a functional autocorrelation index. However,
the phrase spatial autocorrelation is also appropriate since
we view functional networks as spatially dissociable regions
on a brain map.

The massive amount of data collected in functional neu-
roimaging studies yields high dimensional spatial connectiv-
ity matrices, which may lead to computational difficulties.
In the case of clustering (and similarly for ICA), we can
re-express Ip, using the following, perhaps more computa-
tionally convenient, expression

(4) Ip =
V

S0

V∑

v=1

V∑

u=1
Wvu[Tp(v) − T p][Tp(u) − T p]

V∑

v=1
[Tp(v) − T p]2

.

A similar formula can be obtained when (3) is applied to
an ICA solution from fMRI data. In (4), the numerator
of Moran’s I calculates the products of the mean-centered
summary statistics for within-cluster voxel pairs and com-
putes the sum of all such products. The denominator gives
a measure of variation about the overall mean. These in-
terpretations reveal the conceptual similarity of Moran’s I
to the Pearson correlation coefficient, with Moran’s I rep-
resenting a spatially weighted version of Pearson’s measure.
Moran’s I generally ranges between -1 and 1. A large posi-
tive value of Ip indicates the presence of functional clusters
in which there is high within-cluster similarity and a nega-
tive value indicates clusters exhibiting dissimilarity between
voxels. Randomly assigning voxels to clusters typically re-
sults in uncorrelated rCBF between the voxels within each
group.

3.4 Hypothesis testing

The randomization scheme, characterized by the random
allocation of voxels to neural processing networks, serves as
the basis for establishing the null hypothesis and related
distributional properties for evaluating the statistical signif-
icance of any observed value of Moran’s I. To conduct a test
to determine if statistically significant functional autocorre-
lation is present in a clustering solution, compute the test
statistic

(5) Zp =
Ip − E(Ip)√

V (Ip)

where E(Ip) and V (Ip) represent the theoretical mean and
variance of Moran’s I under randomization, respectively (we
provide expressions below). Next, calculate Pr(|Zp| > zα/2),
the probability that the magnitude of the observed statistic
Zp exceeds the critical value from a standard normal dis-
tribution corresponding to type-I error at level α. The test
rejects the null hypothesis of uncorrelated networks, e.g. no
true cluster structure, when the absolute value of Zp is suffi-
ciently large. Therefore, a statistically significant test result
indicates that the observed functional autocorrelation exhib-
ited by a clustering or ICA solution is large relative to the
expected value of the autocorrelation under randomization
(Goodchild, 1986).

Calculating the test statistic Zp requires expressions for
the expected value and the variance of Moran’s I under
the random assignment of voxels to functional networks.
The mean and the variance of Moran’s I under random-
ization are given by following formulas (Moran, 1948, 1950;
Cliff and Ord, 1973, 1981):

(6) E(Ip) = − 1
V − 1

,

V(Ip) =
V

[
(V 2 − 3V + 3)S1 − V S2 + 3S2

0

]

(V − 1)(V − 2)(V − 3)S2
0

−
mp

[
(V (V − 1)S1 − 2V S2 + 6S2

0

]

(V − 1)(V − 2)(V − 3)S2
0

− E2(Ip)

(7)

where S1 = 2S0, S2 =
∑G

g=1 4Vg(Vg − 1)2, and

(8) mp =
V −1

∑V
v=1

[
Tp(v) − T p

]4
{
V −1

∑V
v=1

[
Tp(v) − T p

]2}2 .

Using Monte Carlo simulations based on our PET data,
we empirically validate the theoretical properties of Moran’s
I under randomization to protect against potential bias, e.g.
caused by intrinsic spatial autocorrelation in PET data (see
the Results section, Bootstrap analysis). Substituting the
computed quantities (6)–(8) into equation (5) gives the ob-
served value of the test statistic upon which to base hypoth-
esis testing and statistical inferences regarding functional
autocorrelation.
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4. RESULTS

Working memory data. We begin by fitting the working
memory data using a general linear model with expected
value parameters representing the four experimental condi-
tions (digit shadowing and low, moderate, and high working
memory loads) and a covariate adjustment for global cere-
bral blood flow (gCBF). We obtain ordinary least-squares
estimates of the regression parameters and perform cluster-
ing using the vector of summary statistics T(v) = β̂(v) for
each voxel. We perform hierarchical clustering using Ward’s
method (Rencher, 2002) and determine the number of clus-
ters using the cubic clustering criterion (CCC) (Sarle, 1983).
Generally, CCC compares the square of the observed corre-
lation coefficient (R2) and an approximation of its expected
value under specified regularity conditions. A plot of CCC
ranging from 1 to 40 clusters (not shown here) clearly iden-
tified G = 29 as the number of clusters present in the data.
Therefore, the final clustering solution contains 29 clusters,
and we depict the cluster map in Figure 1.

The cluster sizes range widely with the smallest cluster
(1) containing only 8 voxels and the largest cluster (17)
containing 773 voxels. The average number of voxels in a
cluster is 342 with a standard deviation of 165 voxels. We
calculated the mean normalized rCBF values for all voxels
within a cluster (averaged across levels of working memory
load), and arranged them in increasing order. Cluster 1 con-
tains voxels with outlying observations and has a mean of
only 14.0. The most active cluster (29) has a mean value
of 69.8. Ten of the clusters identified by Ward’s method ex-
hibit brain activity that is lower than the global average of
50, while the other clusters show increased activity relative
to the global average value.

Typical cluster analyses cease after establishing a clus-
ter solution and perhaps quantifying associated descriptive
statistics. While the descriptive cluster map provides some
insights on functional associations in the brain, it does not
quantify the similarity of voxels within the 29 clusters. Our
methodology allows us to compute a global measure of the
functional autocorrelation using Moran’s I statistic and to
evaluate the validity of the clustering solution by examining
the statistical significance of the autocorrelation. Overall,
the clusters exhibit very strong positive functional autocor-
relation for the digit shadowing condition (0.80), the low
working memory load condition (0.81), the moderate load
condition (0.81), and the high load condition (0.81). The
large positive values of the functional autocorrelation index
suggest that there is generally strong coherence between the
voxel profiles within the defined neural processing clusters.
Furthermore, these functional autocorrelations are highly
statistically significant with p-values all less than 0.0001,
confirming the validity of the clustering solution relative to
the expected associations under spatial randomness.

Our analysis identifies clusters containing voxels that, on
average, reveal activity profiles resembling particular poly-
nomial curves as a function of varying working memory load

levels. The representative mean profiles for three clusters ap-
pear in Figure 2; we display the associated standard errors
using vertical bars. The plots reveal potentially important
functional characteristics of the relationship of cluster-level
activity to working memory. The nonlinear trends apparent
in the plots provide insights on the nature of the stimulus-
response relationship in the cluster and may assist in guid-
ing subsequent statistical modeling, particularly in studies
of parametrically varying experimental conditions.

Cluster 29 is the most active cluster, i.e. has the high-
est normalized rCBF, associated with the neural processing
underlying working memory. The voxels within this clus-
ter reveal a roughly quadratic trend in rCBF, exhibiting
an increase in measured brain activity from digit shadow-
ing through the moderate working memory load, followed
by slight attenuation in the activity at the high load (see
Figure 2(c)). Axial slices of the cluster map in Figure 1(b)
show that this neural processing cluster consists of voxels
localized bilaterally in the inferior frontal gyrus (Brodmann
area (BA) 47) (Brodmann, 1909), extending into the left su-
perior temporal gyrus (BA 22); thalamus; anterior (BA 32)
and posterior (BA 30 and 31) cingulate cortex; and the lin-
gual gyrus (BA 17 and 18). The quadratic trend that these
voxels display suggests that, in individuals with schizophre-
nia, the activity in this cluster increases to accommodate
more substantial memory loads, but then diminishes when
the working memory load exceeds capacity. There was not
a precipitous fall in the performance of the serial addition
task imposing a high working memory load, rather a near
linear decrease in accuracy from the digit shadowing to high
load conditions. Performance at high load levels may be sub-
sumed by other clusters (e.g. cluster 20).

Cluster 20 defines a network of functionally related vox-
els spanning portions of the prefrontal cortex including the
right middle frontal gyrus (BA 10), left ventromedial frontal
gyrus (BA 11), and the subcallosal cortex (BA 25), all vis-
ible in axial slices z = −12 mm through −4 mm of Fig-
ure 1(d). As indicated by Figure 2(a), these voxels exhibit
an approximate quadratic pattern of task-related activity
with declining activity from digit shadowing to moderate
working memory load and a slight increase at the high load
level.

The full set of individual cluster maps identify func-
tional associations related to the neural activity involved in
performing parametrically varying working memory tasks.
Here, our detailed inspection of two clusters reveals dis-
tinct profiles of task-related brain activity and reveals as-
sociations between brain regions that have been previously
linked to working memory tasks. Numerous studies have
detected the involvement of both dorsal lateral and ven-
tral lateral regions of the prefrontal cortex in working mem-
ory functions (D’Esposito, 2001). In addition, several stud-
ies have implicated distributed activations in the poste-
rior parietal cortex (BA 40/7), anterior cingulate cortex
(BA 32), and the thalamus, as well as premotor areas
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Figure 1. Cluster maps from Ward’s method displayed on axial brain slices ranging from -36mm to +52mm relative to the
anterior/posterior commissure plane (z). (a) View of the 29 clusters, with each cluster containing voxels that exhibit similar

responses across varying loads on working memory. (b) Cluster 29 includes voxels in the inferior frontal gyrus (BA 47),
thalamus, anterior and posterior cingulate (BA 30;32), and the lingual gyrus (BA 17;18). (c) Cluster 23 consists of voxels in

the precentral and middle frontal gyri (BA 9), in the middle, medial, and superior frontal gyri (BA 6), and along the
supramarginal gyrus (BA 40). (d) Cluster 20 spans portions of the right middle frontal gyrus (BA 10), the left medial frontal

gyrus (BA 11), and the anterior cingulate (BA 25).
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Figure 2. Mean rCBF profiles, along with standard errors, for 3 representative clusters across levels of working memory load
ranging from digit shadowing (DS) to the high load. Many clusters (not all shown here) exhibit nonlinear trends over the

parametrically varied memory loads.

Figure 3. The cluster-specific contributions to the overall
autocorrelation index.

(BA 6 and 8) (D’Esposito et al., 1998; Perlstein et al., 2003;
Picard and Strick, 1996).

The global autocorrelation measures augment the de-
scriptive findings of classification procedures by evaluating
the strength and direction of the associations within the
defined neural processing clusters. Local measures of auto-
correlation do not extend readily to neuroimaging classifica-
tion applications because they would require definitions of
within-cluster adjacency or functional connections. To pro-
vide a crude measure of the contribution that each cluster
has on the overall Moran’s I autocorrelation statistic, we
compute the percent contribution of each cluster.

Figure 3 displays the results of this local measure. The
plot reveals that several clusters with large or small mean
rCBF values contribute more heavily to the global auto-
correlation measure. Generally, a cluster’s contribution to
the overall level of global autocorrelation gives an indica-
tion of the degree of similarity of rCBF profiles from voxels

within the cluster and of the spatial extent of the cluster.
Both a high degree of within-cluster homogeneity in working
memory-related rCBF values and a large cluster size lead to
greater influence on the overall level of functional autocor-
relation. Clusters 3, 4, 5, 23, and 29 have the largest impact
on the overall functional coherence, attesting to the high
degree of functional autocorrelation in these clusters.

Depression data. We first perform a group ICA analy-
sis of the fMRI data using PICA (Beckmann and Smith,
2004) as implemented in the FSL tool MELODIC (Mul-
tivariate Exploratory Linear Decomposition into Indepen-
dent Components) Version 3.09. The following data pre-
processing was applied to the input data: masking of non-
brain voxels; voxel-wise de-meaning of the data; normali-
sation of the voxel-wise variance. Pre-processed data were
whitened and projected into a 33-dimensional subspace us-
ing Principal Component Analysis. The whitened obser-
vations were decomposed into sets of vectors which de-
scribe signal variation across the temporal domain (time-
courses), the session/subject domain and across the spa-
tial domain (maps) by optimizing for non-Gaussian spatial
source distributions using a fixed-point iteration technique
(Hyvärinen, 1999). Estimated component maps were divided
by the standard deviation of the residual noise and thresh-
olded by fitting a mixture model to the histogram of in-
tensity values (Beckmann and Smith, 2004). The optimal
number of components determined by the PICA algorithm
(Beckmann and Smith, 2004) is 33. Many brain voxels were
allocated to more than one IC, and some voxels were not
assigned to any of the ICs. Out of a total of 19,257 intracra-
nial voxels, 17,197 were assigned to at least one of the ICs.
We assign each of the latter voxels to a single IC, based on
the largest (in magnitude) Z-score.

For this data set, the functional autocorrelation index is
0.17. Even though it is modest compared to the one for PET
data, it is statistically significant with a p-value less than
0.0001. There are only 4 ICs for which the crude estimates of
local autocorrelation are > 0.01, and Figure 4 shows two of
them. IC 4 represents the DMN, and IC 6 contains voxels in
several brain areas (e.g. dorsolateral prefrontal cortex (BA
9), anterior prefrontal cortex (BA 10), and left thalamus)
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Figure 4. ICA results with optimal number of components
(33); (a) IC 4 (with the corresponding time course): the

DMN; (b) IC 6.

Table 1. Network-specific contributions to the overall
autocorrelation index of selected ICs (as identified by ICA) of
the fMRI data from the study on depression. (l and r denote

the ‘left’ and ‘right’ hemisphere)

IC
% of global

# voxels BA’s
autocorrelation

4 12.41 843 7, 9, 10, 11, 23, 30, 39, 40
5 6.88 1032 putamen, 3, 4, 6, 48
6 7.24 968 thalamus(l), 6, 9, 10, 46

17 10.65 1464 6, 9, 24, 32, 46
27 0 45 21(r), 22(r), thalamus (r)
29 4.24 827 40(r), 44(r), 45(r), 47

relevant in depression (Mayberg, 1997; Goldapple et al.,
2004). Table 1 lists the IC-specific contribution to the global
autocorrelation index, number of voxels and Brodmann re-
gions in which the IC’s voxels lie for several ICs.

Since for this data set, we calculate the global Moran’s I
statistic based on the voxels’ time courses (not the summary
statistic vectors), the statistic I is small, mainly due to the
fact that the denominator in (3) increases very fast since
the number of time points is large (210). For this reason,
we apply another approach to evaluate the global autocor-
relation. We calculate the global Moran’s I separately for
each time point, this way obtaining a (210 ∗ 7 × 1) vector
of global indices of autocorrelation, for our ICA solution.
The obtained values are of a larger scale. They range from
0.03 to 0.53, with the peak values within subjects reaching
at least 0.3. The corresponding IC-specific contributions to
the overall autocorrelation index agree with the previous re-
sults reported in Table 1. Namely, the ICs with the largest
range of ‘local’ Moran’s I statistics are still IC 4 (range of
I’s [0, 0.19]), IC 5 (range of I’s [0, 0.14]), IC 6 (range of
I’s: [0, 0.15]), and IC 17 (range of I’s [0, 0.26]). Therefore,
both approaches bring us to similar conclusions about which
of the 33 ICs are most functionally and spatially coherent
neural networks. There are several possible reasons why, for
this data set, the estimated global autocorrelation index is
relatively small. First, the sample size is small for a group
analysis (only 7 subjects). This is resting-state data, so the
signal to noise ratio is likely to be lower than for task data
(such as our PET data set). Also, even though the ICA anal-
ysis should ideally result in functionally correlated ICs, the
approach is based on conceptually different criteria which re-
sults in ICs that are as statistically independent as possible.

Bootstrap analysis. We do not perform spatial smoothing
of the PET data prior to conducting the cluster analysis to
avoid artificially inflating the correlations between the rCBF
measurements in nearby voxels. A related issue is whether
the intrinsic spatial correlations in PET data, e.g. stemming
from the acquisition and reconstruction processes, may bias
Moran’s I toward higher values. If true, then the upward
bias of Moran’s I would call for modifications to the hy-
pothesis testing framework outlined previously. We conduct
a Monte Carlo simulation study to evaluate the expected
value and the variability of Moran’s I under the null hy-
pothesis of random cluster assignments.

We conduct a bootstrap analysis that includes 500 sam-
ples drawn, with replacement, from the working memory
data. For each sample, we compute summary statistics rep-
resenting the four working memory load conditions, adjusted
for gCBF. To establish the null distribution of Moran’s I, we
randomly allocate voxels to clusters in each bootstrap sam-
ple, with the cluster sizes matching those obtained in our
original analysis, and then we calculate Moran’s I for the re-
sulting randomized clustering solutions. The 500 computed
statistics represent the empirical distribution of Moran’s I
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Table 2. Summary of the Bootstrap analysis designed to evaluate a potential bias of Moran’s I (e.g. caused by intrinsic
spatial autocorrelation) in PET data

Mean Working memory load
Moran’s I digit shadowing (DS) low moderate high

Theoretical −0.000101 −0.000101 −0.000101 −0.000101
Bootstrap −0.00033 −0.00025 −0.00029 −0.00030

Bias −2.29 × 10−4 −1.49 × 10−4 −1.89 × 10−4 −1.99 × 10−4

Variability 0.62 × 10−3 0.62 × 10−3 0.63 × 10−3 0.63 × 10−3

under the null hypothesis. The bootstrap distribution al-
lows a comparison of empirical and theortical properties of
Moran’s I including both its mean and variance.

Table 2 summarizes the results of the bootstrap analysis.
Theoretically, the mean of Moran’s I is equal to -0.000101.
The similarity of the theoretical and empirical mean values
provides strong evidence of negligible bias in Moran’s I for
our PET application. We find the empirical distributions
of the bootstrap biases, reflecting estimates of Moran’s I
obtained from the boostrap samples (under randomization)
minus the theoretical value of the mean. Averaging over all
the bootstrap samples gives the bootstrap estimate of bias,
for each condition. Although slightly negative, the biases are
all extremely small. Similarly, the bootstrap variance esti-
mates exhibit close correspondence to the theoretical val-
ues. The magnitudes of all differences between the empir-
ical and theoretical variances are less than 0.4224 × 10−6.
The accuracy of the theoretical mean and variance expres-
sions relative to their empirical counterparts obtained from
the bootstrap estimates supports the use of the hypothesis
testing procedure outlined in the Methods section.

Simulated data example. We analyze simulated data based
on the working memory PET study to illustrate further the
utility of Moran’s I for detecting the presence of functional
autocorrelation in clustering solutions. We simulate data us-
ing a mixture model that takes a weighted average of the
global mean and the mean of the voxel-specific summary val-
ues within the same neural processing cluster, with weights
defined by a spatial dependence (correlation) parameter ρ.
Specifically, we generate data for a particular voxel within
cluster g using

(9) T̂v = (1 − ρ)μ + ρTNv + εv,

where εv ∼ N(0, σ2
v), μ is the overall mean, e.g. 50; and

TNv is the mean of the summary statistics from the Vg − 1
voxels in the same cluster as voxel v, i.e. from the func-
tional neighborhood of v, denoted by Nv. We consider six
simulated data sets with the correlation parameter varying
across the set of values ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. We use
the 29 clusters computed from the working memory data
to define the cluster structure and the corresponding clus-
ter sizes Vg. We utilize estimates of the variance parameters
and the summary statistic vector from the working memory
data.

Figure 5. Plot of Moran’s I versus the correlation parameter ρ
for the simulated data. Data with increased functional

autocorrelation yield larger values of Moran’s I.

The error terms from different voxels in model (9) are
independent. However, the model yields simulated values
that depend on the activity levels from other voxels within
the same neural processing cluster, when ρ > 0. The activity
in a given voxel is uncorrelated with the activity of the other
voxels within the same cluster when ρ = 0.

We compute Moran’s I for the clustering solution cor-
responding to each simulated data set, and Figure 5 dis-
plays the relationship between Moran’s I and the correla-
tion parameter for the simulated data. The plot illustrates
that Moran’s I is effective for detecting and quantifying
functional autocorrelation in clustered data. The value of
Moran’s I is zero in the absence of functional autocorrela-
tion. In practice, the importance of revealing the absence
of functional autocorrelations lies in the fact that a simple
cluster analysis would yield misleading results by providing
a clustering solution when no true underlying structure is
present in the data. Moran’s I increases as a function of
ρ, reinforcing that the global index captures the functional
autocorrelation inherent within the computed clusters. The
simulated data do not achieve perfect correlation, even when
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ρ = 1, primarily due to the addition of random noise spec-
ified by our simulation model. Consequently, Moran’s I is
approximately equal to 0.8 when the correlation parameter
for the simulated data equals 1.

5. DISCUSSION

Data-driven approaches, such as cluster analysis and
ICA, are extremely useful tools for describing the func-
tional structure and patterns present in neuroimaging data.
Cluster analyses help dissociate groups of voxels that ex-
hibit similar patterns of brain activity over time or across
experimental conditions. ICA is very useful for detecting
resting-state neural networks. In this paper, we extend the
interpretations given by those two methods by introducing
Moran’s I for statistical estimation and hypothesis testing of
the functional autocorrelation present in neural processing
networks as identified by clustering or ICA. Applying these
procedures helps to evaluate the validity of the typological
descriptions given by a clustering or an ICA solution. Com-
puting Moran’s I is fast and easy to program using standard
statistical software such as R or SAS. We use MATLAB to
calculate the functional autocorrelation of neural processing
networks (functional clusters or ICA components) from PET
working memory data, fMRI depression data, and simulated
data.

We propose a definition of Moran’s I that estimates the
functional autocorrelation separately for each element of the
summary statistic vector, e.g. pertaining to a specified ex-
perimental condition such as high working memory load.
For studies that cluster time courses measured under nu-
merous experimental stimuli, it is perhaps more beneficial
to aggregate the spatial index across the components of the
summary statistic vector. One can easily modify Moran’s I
to define a more crude measure that “averages” across all
elements of the summary vector. When computing the func-
tional network-specific contributions to the global autocor-
relation index, the network sizes impact the corresponding
contributions. The data must provide extremely strong ev-
idence that a small neural processing network (e.g. a small
cluster) contributes substantially to the global autocorrela-
tion for the network to weigh heavily in the global calcula-
tion. The number of networks may also affect estimates of
the functional autocorrelation. Assigning voxels into a large
number of groups will allow the solution to reflect strong
resemblances among within-cluster voxels, whereas desig-
nating fewer groups will often lead to less coherence within
clusters.

We demonstrate the use of Moran’s I using PET neu-
roimaging data analyzed using cluster analysis and fMRI
resting-state data analyzed using ICA. In addition, Moran’s
I may combine with results from related descriptive proce-
dures such as principal component analysis (Friston et al.,
1993). Structural equation modeling is a useful approach to
examine the direct and indirect effects that one brain region

has on another (McIntosh and Gonzalez-Lima, 1994), but it
requires the specification of anatomical models and substan-
tially simplifies spatial representations from a large number
of voxels to a small number of regions. Both cluster analyses
and ICA generally serve as exploratory tools, but often the
ultimate objectives of neuroimaging studies require the use
of inferential or confirmatory statistical procedures. In this
light, conducting such analyses, followed by an assessment of
the functional autocorrelation, helps provide insights about
characteristics of neuroimaging data that may prove valu-
able for subsequent modeling, estimation, and hypothesis
testing.
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