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Adaptive statistical parametric mapping for fMRI

PING Ball, HAIPENG SHEN', JIANHUA Z. HUANG? AND

Young K. TrRuoNnGg*

Brain activity is accompanied by changes in cerebral
blood flow (CBF) and the differential blood oxygenation
that are detectable using functional magnetic resonance
imaging (fMRI). The process of identifying brain activation
regions can be facilitated by estimating the hemodynamic
response function (HRF). There have been some remarkable
new developments in statistics to handle this problem.
In this paper, we introduce a novel procedure which is
capable of adapting itself to any of the existing methods
by improving its performance through the application
of a penalized smoothing technique. Using a computer
experiment and a real fMRI data set, the proposed
procedure is assessed by comparing its performance very
favorably to the popular SPM based method.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62H35,
62G08; secondary 62H12.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a non-
invasive medical method for detecting the temporal hemody-
namic response to a given stimulus. This is possible because
of the differential magnetic susceptibility of oxygenated and
deoxygenated hemoglobins. Thus the response is also re-
ferred to as the blood oxygenation level dependent (BOLD)
effect. The data is described in terms of 3 dimensional grids
of M volume elements (voxels), which is scanned repeat-
edly over a period of time so that each voxel will possess
(say) N time point BOLD effects. In practice, we denote
the BOLD effect of the jth voxel recorded at time i by v;;,
where 1 <i < N and 1 < j < M. Here M is a scanner res-
olution specific constant. Typically, M ~ 10° and N ~ 102.
Based on this vast amount of data, one of the objectives of
fMRI is to identify which voxel has responded to the exper-
imental stimulus.

Model-driven strategies have been playing a dominant
role in relating the stimulus to the hemodynamic response.
Among them, the most widely used approach is based on
the general linear model (GLM) given by

(1.1) Y =XB+e,
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where Y = (y;;)nxm is the BOLD effect data, X =
(Tir) N x (k1) 18 related to the stimuli, 8 = (Brj)(x4+1)x M 18
a matrix of parameters, and € = (¢;;) nxam whose columns
consist of noise series with mean zero and covariance o2X.
Suppose there are K different conditions involved in the
experiment. For example, these conditions correspond to
four different hand movements included in one of our ex-
periments of the fMRI study [15]. Then X is an N x (K +1)
design matrix, where the first column is usually constant
representing the condition when the subject is at rest with
no experimental activities performed, and each of the re-
maining columns contains the time component for an ex-
periment condition. The (K + 1) x M matrix 3 contains
the related parameters, and due to the special formulation
of the design matrix, the second to the last rows naturally
give the contrast between each experiment condition and
the benchmark when the subject is at rest. The inferences
on each row of 3 will generate a spatial map related to one
experiment condition.

The construction of the spatial map is carried out in two
steps. In step one, a time series regression method is carried
out at each voxel in order to obtain the estimate of the
effect of the stimulus on the BOLD signals. That is, we
regress each voxel time series Y; (a column vector of Y) on
X via

(1.2)

Y; =XB; +¢€;, € ~(0,0°%), j=1,2,..., M.
Here 3; is the jth column of 8. Once this model has been
fitted at each voxel, inferences of the model parameters are
then made according to the experiment hypothesis. The re-
sulting statistics from all the voxels are assembled spatially
into an image, which is the so-called statistical parametric
map. The second step then focuses on the analysis of the
statistical map in order to identify those areas of the brain
that are activated by the stimuli [4]. For more detailed dis-
cussions, see statistical parametric mapping (SPM [3]), FM-
RIB Software Library (FSL [16]) and AFNI [2].

The nature of the BOLD response implies that in areas
of activation there is a delayed and blurred version of the
stimulus sequence (Figure 1). Hence each column of the de-
sign matrix X, which represents the temporal characteristic

of the expected response, is commonly modeled through the
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Figure 1. Left Panel: The recorded BOLD signal (solid line) triggered by a single event (dashed line). Right Panel: The
recorded BOLD signal (solid line) triggered by a typical block-design sequence (dashed line).
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Figure 2. A block design stimulus s(-) (left). A model of the hemodynamic response function h(-) for motor response [6]
(middle), and the BOLD response y(t) = s @ h(t) = _, h(t —u)s(u) (right).

convolution of the stimulus design s(-) with a hemodynamic
response function (HRF), h(-). That is,

X (t) = Z h(t — u)sg(u),

where X}, is the kth column of the design matrix. s (-) is the
stimulus sequence of the kth experiment condition, which
usually consists of zeros and ones, where one stands for ac-
tivation and zero stands for rest.

The modeled X, then indicates the temporal characteris-
tic of the brain regions that are activated by the kth exper-
iment condition. In the literature, commonly used forms of
HRF include discretized Poisson, Gamma, Gaussian density
functions and more realistically the two-gamma model [6]
(middle of Figure 2). However, these HRFs assume prede-
fined parametric forms, which are rather restrictive. Some
work has been proposed to model the HRF using a small set
of temporal basis functions to improve the flexibility of its
form [4; 10]. One drawback of the basis approach is that it
introduces less sensitivity of the estimation and the results
are more difficult to interpret [11].

There have been many new developments in the estima-
tion of HRF over the last few years. There is spatio-temporal
regularization method [17], nonparametric methods such as
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those based on orthonormal causal Laguerre polynomials
[14], wavelet approach [12], spline methods [5; 19; 18], and
the frequency domain coherence based method [1]. There are
also data-driven and model-driven methods [9; 13]. Instead
of assuming a certain form for the HRF, the authors model
the HRF or the temporal component directly making use
of the information extracted by some data-driven methods,
such as independent component analysis (ICA) or principal
component analysis (PCA).

In this work, we propose a new nonparametric method
to model the time component adaptively in the context of
SPM. The idea is to start from an initial design matrix X
computed from a procedure capable of modeling the HRF
such as SPM. Then invoke a penalized smoothing technique
to update the estimate of the hemodynamic response iter-
atively. This is called an adaptive procedure because it uses
the timing information of various experimental stimuli of-
fered by the experiment design, and adjusts the shape of
the temporal response of the activated voxels so that it is
closer to the reality. Because of the improved accuracy of the
estimated temporal characteristic, the corresponding detec-
tion power of the activated regions is increased as well. The
performance of the proposed method is illustrated through

a simulation study, as well as a comparative study on a real
fMRI data.



The rest of this paper is organized as follows. The descrip-
tion of our proposed method is given in Section 2. Section 3
reports a simulation study to illustrate its performance. A
comparative study on a real fMRI data set is presented in
Section 4. Some discussion is given in the final section.

2. ADAPTIVE SPM
The GLM model (1.1) can also be expressed as

Yij = Tiofoj + TPy + - + TixBr; + €5,
i=1,...,N,j=1,... M.

Hence, for the image recorded at time i = 1,..., N, we have

Y = (its - yim) "
=2i0(Bot, - Bom)" + i (Bun, ..., Bu) T+ 4
+ 2ix (Br1s - Brm) " + €
= z08() T Ta1By + - + TikBk) T+ €y
where €y = (€i1 €i2, - €inr)™, By = (Bras - - -, Brear)” for

k =0,1,..., K. Concatenating all the images recorded at
different time points, we have

(2.1)
Y Bo 0 0
. = ( : ) Xo+--+
Y 0 0 Bo)
By O 0 €(1)
0 ,6 K 0 6(2)
0 0 B k) €(N)

where Xy, = (z1x,...,2x%)7, for k=0,1,..., K and 0 is an
M x 1 vector of zeros.

SPM fits the above GLM by assuming X, =
(1,1,...,1)T, and obtaining X;,..., X by convoluting a
predefined HRF with the experimental stimulus sequence
for each condition, respectively. For example, the canonical
HRF used in SPM5 is a typical BOLD impulse response
characterized by two gamma functions, one modeling the
peak and the other modeling the undershoot. The canonical
HRF is plotted in the middle of Figure 2.

By convoluting the canonical HRF with the stimulus se-
quence of each condition in the experiment, we obtain an
initial design matrix X. To make Model (2.1) identifiable,
we assume || Xo|| = || X1 = -+ = || Xk|| = 1. In the GLM
analysis of fMRI, the stimulus sequence is usually repre-
sented by a sequence of zeros and ones, where zero means
rest and one means activation by a certain condition. Hence,
after convoluting with the selected HRF, the modeled time
component for a certain condition consists of nonzero values

only during the activation period. Figure 2 illustrates this
process. The plot on the leftmost shows a binary stimulus
sequence (l=activation, O=rest). The plot in the middle is
the canonical HRF [6] and the temporal component modeled
through the convolution is plotted in the rightmost graph.
We can obtain the starting and ending points of cerebral
blood flow for each experiment stimulus from the initial de-
sign matrix (since the stimulus and the canonical HRF are
both known). Our goal is then to estimate the shape of the
nonzero part of the blood flow nonparametrically.

We propose to estimate the temporal and spatial com-
ponents (X and 3) in an iterative way as described in the
algorithm below. Each step is then elaborated on in sections
that follow.

| Adaptive SPM Algorithm |

(1) Obtain the initial design matrix X from SPMS5.
(2) Alternate until the convergence of X and 3.

(a) Based on the given X, solve a GLM equation Y =
X3 + € to obtain 3;

(b) Once 3 is obtained, use a penalization procedure
to derive X1, ..., Xk smoothly.

2.1 Obtain the initial design matrix

At the beginning of the algorithm, the initial design ma-
trix X is obtained from, for example, SPM5. The first col-
umn of X is a vector of ones. Each of the remaining columns
is obtained by convoluting the stimulus sequence of a certain
condition with a canonical HRF [6]. Each stimulus sequence
consists of ones and zeros, where one means activation and
zero means rest. Due to the multiplicative structure between
X and 8 in Model (2.1), a scale factor can be transferred be-
tween them, which leads to scale ambiguity. To avoid that,
we standardize each column of X to have norm 1.

2.2 Obtain the spatial map

Based on the obtained design matrix X, we can solve
(2.1) in the form of Y = X3 + €, € ~ (0,0°%), where
X = (X0, Xy,...,Xg) and 8 = (B(y), B(1), - - B(k))T . For
example, assuming the constant variance and independent
noise structure, the ordinary least squares estimate of 3 is
given by 8 = (XTX)'XTY.

2.3 Obtain the smooth time components

After ﬁ is obtained, we can then use the following penal-
ization procedure to derive X1, ..., X g smoothly. Note that
Xy remains fixed because it stands for the background rest
activity.

SPM assumes the same HRF for all the experimental con-
ditions, hence it is reasonable to assume that their time com-
ponents share the same nonzero part. (This works well for
our current fMRI studies where the durations of the stimuli
are all equal [15]. It is important to assess the performance
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of our method in experiments implemented with different

durations.) However the positions of the nonzero part vary

among different time components. Denote the nonzero part

of Xj, k=1,...,K, as X and its length as N. Suppose the

nonzero part of Xk starts at index s; and ends at index ey.
Then Model (2.1) can be simplified to

Y Boy 0 - 0
Yoo | | 0 Bo - 0 Xo +
Y () 0 0 Bo)
O Ok
K | Bw 0
+oe > | L[ X e
Lo By
Ock Ock

where 0, is a column vector of zeros with length (s, —1)x M
and 0., is a column vector of zeros with length (N —ep)x M.

Note that in the above model, only X is unknown and
needs to be estimated. Hence it makes sense to re-express
the model in the following way,

Y B
) Y 3, | .
(2.2) v=| @ =] 77 |X+e

where Yv(i) =Y @) — B(0)Xo and BL is a matrix with dimen-
sion M x N that can be obtained from the known Biy's,
i=1,...,N,k=1,...,K.

To obtain a smooth X, we consider the following penal-
ized least square (PLS) criterion:

1Y — BX||2 + \XTQX

N ~ ~ ~ ~ ~

=3 IY; - BX|? + AXTax
i=1
N L o

=> (Y'Y, - 2Y]3,X + X"B; B,X) + A\X"QX,
i=1

where 3 = (8,,3,,...,8x5)T. The above criterion involves

two terms. The first term measures the goodness of fit of the
GLM, while the second term penalizes the roughness of X.
A is the smoothing parameter that optimally balances the
two terms and Q is the N x N matrix that generates the
smoothing penalty.

The minimizer of the above PLS criterion is

= N ~T ~ 1 N~T~
=388+ O BY
i=1 i=1
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Once we obtain f(, we can normalize it and plug it back
to the right positions of each temporal component to form
an updated X.

2.4 Selection of the smoothing parameter

One thing that we need to consider in obtaining the
smooth temporal components is the selection of the smooth-
ing parameter \. We propose to select A using generalized
cross validation (GCV) as follows.

After obtaining )~(, we have

~ ~ = ~ N ~T ~
(23) Y =BX=8(>_ B8+
i=1

N ~ ~
Zﬁ Yi)
— BB B+ 1B Y =SV,

where S := B(3" B+ \2)~'3" . Define the GCV [8] by
GCVY

|Y — Y|2/(MN)
~ (1—t(S)/(MN))?

N8

~ -1

BB ) (EX, B )P [(MN)
(1—tr(S)/(MN))?

We choose the A that minimizes the GCV from a set of
candidates. We can either choose X inside the iteration loop
or outside the iteration loop.

2.5 Remarks and implementation details
2.5.1 Initial selection of HRF

Our algorithm appears to be insensitive to the shape of
the initial X. All the information we need from the initial
design matrix used in SPM is the starting and ending time
points of the cerebral blood flow for each component. Once
we have that, instead of using the design matrix assumed
in SPM, we can replace the nonzero entries with vectors of
ones; our algorithm converges to the same results, needing
only a few more iterations.

2.5.2 Calculation of tr(S)

The matrix S defined in Equation (2.3) has dimension
MN x N. Considering the huge size of typical fMRI data
set, the calculation of S and tr(S) is rather time and mem-
ory consuming. However, in the implementation of our algo-
rithm, we can use the simple fact that, for any m x n matrix
A and n x m matrix B, tr(AB) = tr(BA). Hence,

~ ~T ~ 1T ~T~ ~T ~ _

tr(S) =tr(B(B8 B+ '8 ) =tx(B BB B+AN ).
The last term will be used to obtain the trace of S directly
since both BT,Zi' and (BTB—H\Q)_l) have been calculated and
stored previously. This will help to improve the performance

of our numerical procedures in analyzing the vast amount
of fMRI datasets.



2.5.3 Calculation of GCV

Note that in Model (2.2), only the nonzero 3,’s, that is,
the i’s (i = 1,2,...,N) that belong to at least one exper-
iment task period, contribute to the model. Hence we can
ignore those times where there are no activities and rein-
dex the nonzero Bi’s as Bl,[‘32, e ,BN*, where N* is the
number of time points that belong to at least one activation
period. Model (2.2) then becomes

Yo B
X Y 3, | _
Y = S I B

The remaining computations can be carried out based on
this reduced model then. This is another way to make the
algorithm more efficient in the implementation.

3. A SIMULATION STUDY

3.1 Data description

According to the GLM model (1.1), we simulated an N x
M fMRI data matrix Y by first simulating the N x (K +1)
design matrix X and the (K 4 1) X M parameter matrix 3
separately. The data matrix Y was then obtained as Y =
X3+ €, where € is a randomly generated noise matrix from
a normal distribution with mean 0 and variance 0.4788. The
variance is estimated from the real fMRI study in Section 4.

In this study, we set K = 4, M = 30 x 30 x 10 and
N = 120. The simulated data can be explained as follows:
there are 4 different tasks involved in the experiment and
we want to detect which brain regions are related to the
four tasks respectively. Each column of the design matrix X
represents the cerebral blood changes triggered by a partic-
ular task. Each row of B consists of the parameters related
to one experiment task, which form a spatial map that in-
dicates the brain areas activated by the certain task. The
brain image recorded at one time point consists of 10 slices
and there are 30 x 30 voxels on each slice. The brain image
is recorded 120 times, and hence each column of X is a time
series of length 120. We “simulated” the time components
using a recorded cerebral blood flow from a real fMRI study
(Section 4). The length of the blood flow triggered by the
task spans 30 time points (N = 30). All the four experimen-
tal components share the same shape of the hemodynamic
response. However, the nonzero response for each compo-
nent starts at different times since, in our experiment, the
subject performs the four tasks sequentially with some rest
period in between.

All the voxels in 8 are given a numerical value of either
0 or 1. In each spatial component, the voxels with value 1
correspond to the regions that are activated by the corre-
sponding experiment task, and they are plotted as dark red
areas in Figure 3 on page 38. The last time component is

not fully observed in this experiment because the fMRI scan
stopped right after the subject finished the last task. Due to
the delay of the cerebral blood flow caused by hemodynamic
response, we can only observe part of the blood flow in this
case.

3.2 Analysis and results

We then applied our algorithm and SPM5 [3] to ana-
lyze the simulated data. As mentioned in the last section,
there are four different conditions involved in the experiment
(K =4). Hence there are five columns in the design matrix
X, where the first column is a vector of 1. The length of
X, that is, the length of the hemodynamic triggered by the
tasks, is set to be 30 (N = 30). The initial design matrix was
obtained from SPM5. Namely, each column of X, except for
the first one, was obtained by convoluting the correspond-
ing stimulus sequence with the canonical HRF (Figure 2 on
page 34). Starting from this initial design matrix, our it-
erative algorithm converged after 10 iterations. The GCV
criterion selected X to be 103 from a set of candidate points
of {0,10%,102,...,101°}. We also applied the algorithm us-
ing a different initial design matrix, where X is replaced by
a vector of 1. The algorithm converged to the same results
after 15 iterations. The results are shown in the first column
of Figure 4.

All the four components were recovered reasonably well,
although some noise does exist due to the random noise
added to the GLM model. Similar to Figure 3, dark red
areas indicate the activated voxels. The time course plot in
each panel shows the corresponding time component (solid
lines). The estimated time components are very close to the
real ones as in Figure 3.

The second column of Figure 4 shows the results using the
design matrix obtained from SPM5. That is, we obtained the
spatial maps by 8 = (XTX)"1XTY, where X is the design
matrix used by SPM5. The time component modeled by the
canonical HRF is shown in the last plot (solid line) in each
panel. The shape of the time component is far away from the
real ones. It’s also obvious that the activation areas shown
by the spatial maps are much more noisy than the activation
indicated by our proposed method.

4. A REAL DATA ANALYSIS

4.1 Experiment paradigm and data
description

To study brain regions that are related to different fin-
ger tapping movements, an fMRI data set was obtained
from one human subject performing five different tasks al-
ternately: rest, externally-guided (EG) right-hand move-
ment, externally-guided left-hand movement, internally-
guided (IG) right-hand movement and internally-guided
left-hand movement. Each rest and activation period lasted
30 and 60 seconds, respectively. Here EG movement means
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Figure 3. The four components used in the simulation. In each panel, the first 10 images are the spatial maps (one row of 3),
and the dark red areas stand for activated voxels. The solid line in the subsequent plot shows the temporal characteristic of
the activated voxels (one column of X). The dotted line stands for the experiment stimulus, 0 meaning “rest” and 1 meaning
“active”.

the subject did the sequential finger-tapping movements at
0.5 tap/sec following video instructions, while IG movement
means the subject needed to finish the task according to
their memory. The experimental paradigm is shown in Fig-
ure 5. When acquiring the data, the subject repeated this
paradigm sequence twice.

During the experiment, 240 magnetic resonance (MR)
scans were acquired on a modified 3T Siemens MAGNE-
TOM Vision system. Fach acquisition consisted of 46 con-
tiguous slices. Each slice contained 53 x 63 voxels. Hence
there were 53 x 63 x 46 voxels from each scan. The size of
each voxel is 3mm x 3mm x 3mm. Each acquisition took
2.9388 seconds, with the scan to scan repetition time (TR)
set to be 3 seconds.

4.2 Analysis and results

The goal of this fMRI study is to detect which brain
regions are responsible for the four different finger tapping
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movements, EG right-hand (RE), IG right-hand (RI), EG
left-hand (LE) and IG left-hand (LI).

The data set was preprocessed using SPM5, which in-
cluded realignment, coregistration, segmentation, spatial
normalization and smoothing. We then analyzed the prepro-
cessed data set using both SPM5 with the canonical HRF
and our proposed method with the initial design matrix ob-
tained from SPMS5.

The results from the two methods are displayed in the
corresponding panels of Figure 6. As mentioned earlier, the
goal of this study is to identify the brain regions activated
by the four different finger movements. We only showed the
four related brain slices for each movement according to the
classic pattern mentioned in Section 4.1.

The upper panel of Figure 6 shows the four components
detected by adaptive SPM. The lower panel presents the
four components recovered by SPM. Within each row, the
four image slices represent the activated spatial maps. The
red areas illustrate activated brain regions. Brighter color
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Figure 4. Comparison of the results from the proposed adaptive SPM approach (the left column) and SPM (the right column).
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Figure 5. The experimental design used in acquiring the fMRI data. RE: EG Right-hand; RI: IG Right-hand; LE: EG Left-hand;
LI: IG Left-hand. Each rest block took 30 seconds (10 scans when TR = 3 seconds). Each activation block took 60 seconds
(20 scans).

indicates higher intensity. Both methods demonstrate the
classic brain activation patterns during hand movement as
mentioned in Section 4.1. But our method shows dominantly
higher intensity and less noise for each component. In ad-
dition, the subject is supposed to use more supplementary
motor area (SMA, the third column) and less cerebellum
(the first column) during the IG movement trial. This can
be illustrated by the right-hand internally guided (RI) and
left-hand internally guided (LI) rows, where the SMA with
bright red color shown in the third slice is more profound
than the cerebellum in the first slice (small red area).

Figure 7 presents the time component estimated by both
methods. The solid line in each plot is the estimated time
component and the dotted line is the stimulus sequence,
where zero means “rest” and one means “activation”. Be-
cause all the four components are assumed to share the same
shape of the cerebral hemodynamic response, we only plot
one time component here for each method. The time com-
ponent estimated by our method has a hemodynamic shape
that is much closer to reality.

5. DISCUSSION

In this paper, we introduced an adaptive SPM method
to estimate the time components related to the fMRI ex-
periment stimulus nonparametrically, which led to better
detection of brain areas activated by the stimuli. The mo-
tivation was based on the fact that the detection power of
SPM is constrained by usually predefined HRF. The idea of
our method was to start from a design matrix X modeled
by the canonical HRF followed with a penalized smooth-
ing technique to refine the time component (X) and spatial
component in an iterative way. We used the timing informa-
tion of the cerebral blood flow offered by the initial design
matrix and adjusted the shape of the BOLD hemodynamic
response of the activated voxels to be closer to the reality.
We have illustrated the performance of our method through
a comparative study on both simulated data and a real {MRI
data set. Our method yielded better results in both cases.
In addition, the procedure was easy to implement and the
computation was fast.

There are, however, several unsettled issues which will
now be described.

1. A crucial assumption employed in our development is
the notion of the linear time-invariant system, or the
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convolution of the stimulus and the HRF. The depar-
ture of this assumption can have a moderate impact on
our method, as well as many of the currently available
methods. It has been reported that certain areas of the
brain will exhibit some form of non-linearity, and it is
certainly a very interesting problem on how to revise
our approach to address this issue.

. In addition to SPM5, we have also examined SPMS8

carefully for the currently available options in select-
ing the HRF (an option of SPM), there is virtually no
difference between the two versions. One useful option
offered by SPM is to employ the finite impulse response
model (FIR) approach in estimating the HRF. This is
a less restricted approach as the parameters are not
confined to a parametric function such as the canonical
HRF based on the two-gamma model. The estimation is
still carried out in two steps: estimate the HRF which is
in turn being used to make an inference (by estimating
the error covariance structure) about the fMRI activa-
tion. FSL [16] and AFNI [2] offer the same option. Both
SPM and FSL are based on signal processing techniques
[7], while AFNT is based on the regression method. Our
procedure should be able to adapt itself to the FIR ap-
proach, and we will report this in the near future.

. It will be interesting to compare our procedure when

it is adapted to the spatio-temporal regularization
method [17], the nonparametric method based on
orthonormal causal Laguerre polynomials [14], the
wavelet approach [12], the spline method [19], and the
coherence based method [1].

. This paper provides a method that estimates the design

matrix used in SPM. The subsequent statistical infer-
ence problem is largely open. Presumably, one can do
statistical inference of the parameters conditional on
the estimated design matrix using available inference
procedures for the general linear models [4]. However,
the conditional inference may underestimate the uncer-
tainty due to ignorance of the variability for estimating
the design matrix. The magnitude of the underestima-
tion is subject to future investigation. Another inference
approach that deserves further study is the bootstrap
method that randomly re-samples the residuals from
our adaptive general linear model.

. The above inference is related to the asymptotic prop-

erties of our convoluted estimator. It is conceivable that
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Figure 6. Brain regions activated by the four finger movements detected by two methods. Panel (1): Adaptive SPM, EG
right-hand (first row), IG right-hand (second row), EG left-hand (third row) and IG left-hand (fourth row); Panel (11): SPM,
EG right-hand (first row), IG right-hand (second row), EG left-hand (third row) and IG left-hand (fourth row). Within each

row, the first slice shows cerebellum, the second slice shows basal ganglia, the third slice contains both primary motor cortex
(PMC) and supplementary motor area (SMA), and the fourth slice shows the PMC. Red areas illustrate the activated voxels.
Brighter color indicates higher intensity.
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Figure 7. The time components (solid lines) estimated by two methods with the stimulus sequence (dotted lines) overlayed.
Left: Adaptive SPM; Right: SPM with canonical HRF.

under some regularity conditions on the covariance of
the noise series and the smoothness of HRF, optimal
rates of convergence of the estimator can be established.
This will not be too formidable for random noise mod-
els, but it may be challenging for temporally correlated
noise.
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