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Adaptive spatial smoothing of fMRI images
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It is common practice to spatially smooth fMRI data
prior to statistical analysis and a number of different
smoothing techniques have been proposed (e.g., Gaussian
kernel filters, wavelets, and prolate spheroidal wave func-
tions). A common theme in all these methods is that the
extent of smoothing is chosen independently of the data,
and is assumed to be equal across the image. This can lead
to problems, as the size and shape of activated regions may
vary across the brain, leading to situations where certain re-
gions are under-smoothed, while others are over-smoothed.
This paper introduces a novel approach towards spatially
smoothing fMRI data based on the use of nonstationary
spatial Gaussian Markov random fields (Yue and Speckman,
2009). Our method not only allows the amount of smooth-
ing to vary across the brain depending on the spatial ex-
tent of activation, but also enables researchers to study how
the extent of activation changes over time. The benefit of
the suggested approach is demonstrated by a series of sim-
ulation studies and through an application to experimental
data.

Keywords and phrases: Spatially adaptive smooth-
ing, Temporally adaptive smoothing, fMRI, Brain imaging,
Smoothing.

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a non-
invasive imaging technique that can be used to study mental
activity in the brain. It builds on repeatedly imaging a 3D
brain volume and studying localized changes in oxygenation
patterns. In the past decade fMRI has provided researchers
with unprecedented access to the brain in action and pro-
vided countless new insights into the inner workings of the
human brain. However, in order for fMRI to reach its full
potential there is a need for principled statistical analysis of
the resulting data; an issue which is complicated by complex
spatio-temporal signal properties and the sheer amount of
available data (Lindquist, 2008).

In an fMRI study each brain volume consists of a num-
ber of uniformly spaced volume elements, or voxels, whose
intensity represents the spatial distribution of the nuclear
spin density within that particular voxel. The actual sig-
nal measurements are acquired by the MR scanner in the
∗Corresponding author.

frequency-domain (k-space), which is typically sampled on
a rectangular Cartesian grid, and then Fourier transformed
into the spatial-domain (image-space). Prior to statistical
analysis fMRI data typically undergo a series of preprocess-
ing steps (e.g., registration and normalization) designed to
validate the assumptions of the subsequent analysis. One
such step is spatial smoothing, which is the focus of this pa-
per. Smoothing typically involves convolving the functional
images with a Gaussian kernel, often described by the full
width of the kernel at half its maximum height (FWHM).
Common values for kernel widths vary between 4 and 12 mm
FWHM. Gaussian smoothing is implemented in major soft-
ware packages such as SPM (Statistical Parametric Map-
ping, Wellcome Institute of Cognitive Neurology, Univer-
sity College London), AFNI (Analysis of Functional Imaging
Data), and FSL (FMRIB software library, Oxford).

There are several reasons why it is popular to smooth
fMRI data. First, it may improve inter-subject registration
and overcome limitations in the spatial normalization by
blurring any residual anatomical differences. Second, it en-
sures that the assumptions of random field theory (RFT,
Worsley and Friston, 1995), commonly used to correct for
multiple comparisons, are valid. A rough estimate of the
amount of smoothing required to meet the assumptions of
RFT is a FWHM of 3 times the voxel size (e.g., 9 mm
for 3 mm voxels). Third, if the spatial extent of a region
of interest is larger than the spatial resolution, smooth-
ing may reduce random noise in individual voxels and in-
crease the signal-to-noise ratio (SNR) within the region
(Rosenfeld and Kak, 1982). Finally, spatial smoothing can
be used to reduce the effects of ringing in the image due
to the restriction of sampling to a finite k-space region
(Lindquist and Wager, 2008).

While the use of a fixed Gaussian kernel is by far the most
common approach towards smoothing fMRI data, a number
of other studies have suggested alternative approaches. For
example, Gaussians of varying width (Poline and Mazoyer,
1994; Worsley et al., 1996) and rotations (Shafie et al.,
2003) have been proposed, as well as both wavelets (Van De
Ville, Blu, and Unser, 2006) and prolate spheroidal wave
functions (Lindquist and Wager, 2008; Lindquist et al.,
2006). A common theme in all these methods is that the
amount of smoothing is chosen a priori and independently
of the data. Furthermore, the same amount of smoothing is
applied throughout the whole image. This can potentially
lead to problems, as the size and shape of activated re-
gions are known to vary across the brain depending on the
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task, leading to a situation where certain regions are under-
smoothed while others are over-smoothed. A number of fully
Bayesian spatio-temporal models have been suggested (e.g.,
Penny, Trujillo-Barreto, and Friston, 2005) that use spatial
priors in lieu of smoothing. In contrast to smoothing with a
fixed kernel, these methods allow for the potential of space-
varying averaging of voxels. Finally, Bowman et al. (2008)
suggest not smoothing the data at all during preprocessing
and instead smooth voxel-level estimates by modeling spa-
tial correlations between voxels using a Bayesian hierarchical
model.

In this paper we introduce an alternative method for spa-
tial smoothing of fMRI data using nonstationary spatial
Gaussian Markov random fields. The Gaussian Markov ran-
dom field specifies the extent of the smoothing function fit to
each voxel in the image by applying weights to neighboring
voxels. If these weights are constant throughout the image,
the result will be equivalent to Gaussian kernel smoothing as
described above. In our method, however, we use the data to
obtain voxel-specific weights. Thus the amount of smoothing
is data-driven and allowed to vary spatially across the im-
age. In addition, as the voxel-specific weights may change
as a function of time our method allows the spatial ex-
tent of smoothing to not only vary across space, but also
across time. Hence, the benefit of the suggested approach is
two-fold. First, it allows the amount of smoothing to vary
across the brain depending on the spatial extent of activa-
tion. Second, it allows researchers to study how the extent
of activation varies as a function of time; something that to
the best of our knowledge has not previously been possible
in fMRI studies. Our approach is performed using a fully
Bayesian setup and implemented with an efficient Markov
Chain Monte Carlo algorithm.

We begin by discussing the theoretical aspects of the ap-
proach. We illustrate its utility and compare it to Gaussian
smoothing in a series of simulation studies. Finally, we apply
the method to experimental data collected during stimula-
tion of the visual cortex.

2. SPATIALLY ADAPTIVE SMOOTHING

We will consider the following spatial model:

yjk = f(uj , vk) + εjk, j = 1, . . . , n1, k = 1, . . . , n2,(1)

where yjk are response values observed at locations [uj , vk],
f is an unknown bivariate function on a regular n1 × n2

grid, and εjk are mean zero noise terms. In our context, yjk

represent the raw fMRI data and f the smoothed image.
We will use this model to apply spatially adaptive smooth-
ing to the raw fMRI image at each time point indepen-
dently, using the Bayesian hierarchical spatial model devel-

oped in Yue and Speckman (2009). Details are provided in
Sections 2.1 to 2.3, but briefly, this approach involves con-
trolling the smoothness of f using a prior based on a dis-
cretized thin-plate spline. The prior contains parameters τ
and δjk, and spatially adaptive smoothing is implemented by
allowing δjk to vary spatially across voxels. Specifically, the
parameter δjk controls the smoothness of f at voxel (uj , vk),
with larger δjk corresponding to more smoothing. The vari-
ation of δjk over the voxel locations is therefore related to
the variation in the amount of smoothing applied.

We introduce the spatially adaptive smoothing method in
three steps. First, we define an intrinsic Gaussian Markov
random field (IGMRF) that is a discretization of the solu-
tion of non-adaptive thin-plate splines. Based on this defi-
nition, we set an IGMRF prior on f (Section 2.1). Next, we
extend this prior to a spatially adaptive prior (Section 2.2).
This is the key component that allows for spatially adaptive
smoothing of fMRI images. Finally, we complete the specifi-
cation of the model by defining the hyperpriors used in the
model (Section 2.3).

2.1 Thin-plate spline prior

The spatially adaptive prior on the function space of f
used in this work is based on intrinsic Gaussian Markov
random fields (IGMRF), an important class of models in
Bayesian hierarchical modeling (see e.g., Rue and Held,
2005). The specific IGMRF that we use is motivated by
discretizing the thin-plate spline solution to smoothing
functions.

Given data yjk, a thin-plate spline estimator is the solu-
tion to the minimization problem

(2) f̂ = arg min
f

⎡
⎣ n2∑

k=1

n1∑
j=1

(
yjk − f(uj , vk)

)2 + λJ2(f)

⎤
⎦ ,

where the penalty term J2(f) can be represented by the bi-
harmonic differential operator (under certain boundary con-
ditions),

(3)
∫∫

IR2

[(
∂4

∂u4
+ 2

∂4

∂u2∂v2
+

∂4

∂v4

)
f(u, v)

]
dudv.

If we assume that h is a small distance between any two
spatial locations, the second partial derivative of f at [uj , vk]
can be approximated by

∂2

∂u2
f(uj , vk) ≈ h−2 ∇2

(1,0)f(uj , vk) and

∂2

∂v2
f(uj , vk) ≈ h−2 ∇2

(0,1)f(uj , vk),

where ∇2
(1,0) and ∇2

(0,1) denote the second order backward
difference operators
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∇2
(1,0)f(uj , vk) = f(uj+1, vk) − 2f(uj , vk) + f(uj−1, vk),

∇2
(0,1)f(uj , vk) = f(uj , vk+1) − 2f(uj , vk) + f(uj , vk−1).

Letting zjk = f(uj , vk), the differential operator in J2(f)
can thus be discretized by

h−4
(
∇2

(1,0) + ∇2
(0,1)

)2

f(uj , vk)(4)

= h−4
[
(zj+1,k + zj−1,k + zj,k+1 + zj,k−1) − 4zj,k

]2
at location [uj , vk]. The increment in (4) can be regarded as
an extension of the difference operator defined for univariate
random walks. As a result, one straightforward approxima-
tion of the thin-plate spline penalty J2(f) is

(5)
1
h4

n1−1∑
j=2

n2−1∑
k=2

[
(zj+1,k+zj−1,k+zj,k+1+zj,k−1)−4zjk

]2
.

After including some boundary terms in (5) to fix rank de-
ficiency (see Yue and Speckman, 2009, for details), an im-
proved approximation of the penalty (3) has a quadratic
expression z′Az, where z is a vector of zjk and A is a
semidefinite structure matrix whose entries are the coeffi-
cients of (5) plus those boundary terms. The detailed spec-
ification of A can be found in Yue and Speckman (2009). If
we let λh = λ/h4, it is easy to see that the vector ẑ defined
by

(6) ẑ = arg min
z

[
(y − z)′(y − z) + λhz′Az

]
is a discretized thin-plate spline, similar to f̂ in (2). The op-
timization criterion (6) suggests using a Gaussian likelihood,
i.e., εjk

iid∼ N(0, τ−1), and thus, in a Bayesian formulation,
we can set a prior on z of the form

[z | δ] ∝ δ(n−1)/2 exp
(
−δ

2
z′Az

)
,(7)

where τ and δ are two precision (inverse variance) param-
eters. The posterior distribution of z can be shown to be
MV N(Sλh

y, τ−1Sλh
), where the smoothing parameter is

λh = δ/τ , and the smoother matrix is Sλh
= (In +λhA)−1.

The posterior mean Sλh
y is then a Bayesian estimator of

the discretized thin-plate spline.
Clearly, the random vector z in (7) is an IGMRF because

it follows an improper Gaussian distribution and satisfies the
Markov conditional independence assumption. More specif-
ically, the null space of A is spanned by a constant vector,
and the conditional distribution of each zjk is Gaussian and
only depends on its neighbors. Using graphical notation, the
conditional expectation of an interior zjk can be expressed as

(8)

E(zjk | z−jk) =
1
20

(
8
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 2
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 1
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

)
,

where the locations denoted by a ‘•’ represent those values
of z−jk that the conditional expectation of zjk depends on,
and the number in front of each grid denotes the weight
given to the corresponding ‘•’ locations. Therefore the
conditional mean of zjk is a particular linear combination of
the values of its neighbors, and the conditional variance is
given by Var (zjk | z−jk) = (20δ)−1 for all zjk. Not only is
this proposed IGMRF able to capture a rich class of spatial
correlations, the matrix A is also sparse, allowing the use of
efficient algorithms for computation (Rue and Held, 2005).

A potential weakness of the IGMRF described above,
however, is that the same amount of smoothing (determined
by δ) is applied at every voxel. For efficient signal detec-
tion, we need less smoothing at activated voxels and rel-
atively more smoothing on non-activated areas. Standard
smoothing techniques (e.g., Gaussian kernel filter with fixed
width) involves a trade-off between increased detectabil-
ity and loss of information about the spatial extent and
shape of the activation areas. See Tabelow et al. (2006),
Smith and Fahrmeir (2007) and Brezger et al. (2007). Such
loss of information can be avoided by using a spatially adap-
tive IGMRF extended from (7), as described in the next
section.

2.2 Spatially adaptive IGMRF prior

Following Yue and Speckman (2009), the constant pre-
cision δ is replaced by locally varying precisions δjk to
achieve an adaptive extension of (7). As a result, the full
conditional distribution of an interior zjk remains Gaussian
with the same mean as in (8) but with adaptive variances
Var (zjk | z−jk) = (20δjk)−1. Thus, a small value of δjk

(large variance) corresponds to less smoothing of zjk, ap-
propriate when zjk shows increased local variation. With
such a modification, the resulting IGMRF becomes spatially
adaptive and retains the nice Markov properties.

To complete the construction of the adaptive IGMRF,
we first set δjk = δeγjk , so that δ is a scale parameter and
γjk ∈ IR serves as the adaptive precision for δjk. An addi-
tional prior needs to be defined for γjk. We set the prior
on the vector γ = Vec([γjk]) to be a first order IGMRF on
a regular lattice (Besag and Higdon, 1999; Rue and Held,
2005) subject to a constraint for identifiability,

[γ | η] ∝ η(n−2)/2 exp
(
−η

2
γ′Mγ

)
I(1′γ=0),(9)

where M is a constant matrix with rank n − 2. The prior
on z now has the form

(10) [z | δ, γ] ∝ δ(n−1)/2 exp
(
−δ

2
z′Aγz

)
,

where Aγ = B′ΛγB is an adaptive structure matrix, B is
a full rank matrix, and Λγ = γjk[eγjk ]. Compared to the
non-adaptive version given in (7), the prior in (10) features
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the term exp(γjk), which represents the adaptive variance
of the voxel located at the location [uj , vk]. We refer to (10)
and (9) together as a spatially adaptive IGMRF prior, which
has appealing properties for Bayesian inference and compu-
tation as demonstrated in Yue and Speckman (2009).

2.3 Hyperpriors and computation

The hyperpriors on the precision components τ , δ, and η
are required for a fully Bayesian inference. Defining a new
parametrization with ξ1 = δ/τ and ξ2 = η/δ, the spatially
adaptive IGMRF prior becomes

[z | τ, ξ1,γ] ∝ (τξ1)(n−1)/2 exp
(
−τξ1

2
z′Aγz

)
,

(11)

[γ | τ, ξ1, ξ2] ∝ (τξ1ξ2)(n−2)/2 exp
(
−τξ1ξ2

2
γ′Mγ

)
I(1′γ=0).

It is not hard to see that the adaptive smoothing param-
eters for zjk have expression ξ1 exp(γjk), while ξ2 can be
considered as a smoothing parameter for γ. Therefore, the
new parametrization is more interpretable. To be more spe-
cific, the value of ξ1 controls the degree of global smoothing
taken on the whole z field: a smaller ξ1 would yield a less
smooth field, indicating that there is a region (perhaps an
activated region) where the voxel values vary significantly
at the local level. The value of ξ2 determines the degrees of
smoothing put on the γ: a smaller ξ2 implies more adap-
tive (i.e. more variable) precisions γjk and therefore more
adaptive smoothing applied to the z field.

As for hyperpriors, we use an invariance prior on τ , a
Pareto prior for ξ1, and an inverse gamma prior on ξ2, i.e.,

[τ ] ∝ 1
τ

, [ξ1 | c] =
c

(c + ξ1)2
,

[ξ2 | a, b] ∝ ξ
−(a+1)
2 exp

(
− b

ξ2

)
,

where ξ1 > 0, c > 0, ξ2 > 0, a > 0, b > 0. Following Yue
and Speckman (2009), the values of a, b and c are chosen to
yield flexible priors and proper posterior distributions.

Besides adaptive spatial smoothing, efficient MCMC
computation is another big advantage of using the IGMRF
model described above. Since the priors are sparse, the
Gibbs sampler is fairly efficient using the sampling tech-
niques of Yue and Speckman (2009).

3. SIMULATION

We performed two different simulation studies to inves-
tigate the performance of our method. The first is intended
to illustrate our method’s ability to alter the amount of
smoothing as a function of the spatial extent of activation
across the image. The second is intended to illustrate the
method’s ability to alter the amount of smoothing as a func-
tion of how the spatial extent varies across time.

Simulation I: In the first simulation, we constructed a
40×40 phantom image containing nine regions of activation
– circles with varying radius (see left panel of Figure 1).
To simulate a dynamic image series, this base image was
recreated 200 times. In each circle, activation was simulated

Figure 1. Illustration of Simulation I: A phantom image consisting of nine activation circles (left) and a plot of the activation
profile (right). The amplitude of the response varies between 0.25, 0.5 and 1 depending on the column the circle lies in.
Hence, circles in the left-most column have the smallest SNR, while circles in the right-most column have the highest.
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Figure 2. Time series plots for Simulation I: (a) estimated response z from a particular voxel; (b) adaptive variance for that
voxel; (c) estimated ξ1; (d) estimated ξ2. It appears that values of ξ1 track the periods of activation and non-activation

closely, with smaller ξ1 during activation and vice versa. Thus, less smoothing of z is performed during activation. Values of
ξ2, which controls the smoothness of the γ field, also tracks the activation periods quite well, but in a reverse fashion. The

time series plot for the adaptive variance shows that the voxel considered has larger variance during activation.

according to a boxcar paradigm convolved with a canoni-
cal hemodyanamic response function (Boynton et al., 1996).
The boxcar consisted of five repetitions of a 10 s stimulus
followed by a 30 s rest period. The resulting activation pro-
file is shown in the right panel of Figure 1. The amplitude
of the response was allowed to vary between 0.25, 0.5 and
1 depending on which column of the image the circle lay
in. Hence, in each circle, there are periods of activation and
non-activation with varying signal strength, smallest for the
regions on the left and largest for the regions on the right.
Standard Gaussian noise was added to each image.

We applied our adaptive smoothing method to the sim-
ulated data set. Figure 2 shows time series plots of the
smoothing parameters ξ1 and ξ2, as well as plots of zi and

γi for a particular voxel in one of the activation circles. Re-
call that ξ1 controls the global smoothness of the z field,
with larger ξ1 corresponding to a smoother z field. We find
that the values of ξ1 track the periods of activation and
non-activation rather closely, with smaller ξ1 during activa-
tion and vice versa. Thus, less smoothing of z is performed
during activation, since some voxels will have very differ-
ent z values from the other voxels. We find that ξ2, which
controls the smoothness of the γ field, also tracks the ac-
tivation periods very well, but in a reverse fashion, larger
(thus smoother γ) during periods of activation. The time
series plot for adaptive variance exp(−γi) shows that the
particular voxel considered has larger variance during acti-
vation.
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Figure 3. Results of Simulation I: t-maps obtained using spatially adaptive smoothing and fixed Gaussian kernels with various
widths. The adaptive smoothing achieves the best balance between smoothing the image and retaining details about

boundaries.

Figure 4. Illustration of Simulation II: A phantom image consisting of a circular region of activation with radius r (left), where
the radius varies across time according to a sinusoidal function (right).

Next, we performed statistical analysis on the data pro-
cessed using our method and using fixed Gaussian kernels
with a FWHM of 0, 4, 8 and 12 mm. The analysis on the
5 resulting data sets was performed using the general linear
model (GLM) (Worsley and Friston, 1995). The first col-
umn of the design matrix consisted of a baseline function,
while the second column corresponded to the true response
profile shown in Figure 1. The model was fit voxel-wise and
a t-test was performed to determine the significance of the
component related to the response. The first panel in Fig-
ure 3 shows the t-map obtained using our method. Also
shown are similar images obtained using a Gaussian kernel
with different widths. We find that our adaptive smooth-
ing method achieves a good balance between smoothing the
image and retaining the details, and seems to be better at
detecting regions with lower signal (left side of the image).

Simulation II: In the second simulation, we again con-
structed a series of 200 phantom images of size 40×40. Here
the activation region is a single circle whose radius varies ac-
cording to a sinusoidal function. Thus the activated region
grows and shrinks as a function of time. Figure 4 shows a

plot of the radius of the activated circle versus time. The
activation profile within the circle is assumed to take the
same shape as in Simulation I (see right panel of Figure 1)
and standard Gaussian noise is added to each image.

Figures 5 and 6 show the results obtained using our adap-
tive smoothing method. Figure 5 contains several time series
plots of estimates of z at the center voxel for the various
smoothing techniques. This figure clearly shows the effec-
tiveness of our adaptive smoothing method for recovering
the signal. Figure 6 shows plots of z and exp(−γ) for the
center voxel as well as plots of ξ1 and ξ2. The plot of ξ1 shows
the overall smoothing applied to the z field. The amount of
smoothing varies sinusoidally with time, as expected based
on the setup of the simulated data. Consistent with the first
simulation study, there is less smoothing of z when the spa-
tial extent of the activated region increases. Similarly, we
find that ξ2 varies roughly sinusoidally, with more smooth-
ing of the γ field (indicating less adaptivity) during peri-
ods when a larger region is activated. The plot for exp(−γ)
shows the adaptive variance at the center voxel. We find that
the adaptive variance is high during periods with the great-
est change in the number of activated voxels. On the other
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Figure 5. Results of Simulation II: Time series plots of the
estimated response z for a central voxel obtained by spatially
adaptive smoothing and fixed Gaussian kernels with various

widths. The adaptive smoothing method does the best job in
removing noise while retaining signal.

hand, the variance is small at more stable periods when most
of the voxels are activated or deactivated. This can be seen
by matching the plot for exp(−γ) with that for z.

4. DATA ANALYSIS

Nine students at the University of Michigan were re-
cruited and paid $50 for participation in the study. All hu-
man participant procedures were conducted in accordance
with Institutional Review Board guidelines. The experimen-
tal data consisted of a visual paradigm conducted on the
9 subjects, specifically, of a blocked alternation of 11 s of
full-field contrast-reversing checkerboards (16 Hz) with 30 s
of open-eye fixation baseline. Blocks of unilateral contrast-
reversing checkerboards were presented on an in-scanner
LCD screen (IFIS, Psychology Software Tools). Spiral-out
gradient echo images were collected on a GE 3T fMRI scan-
ner. Seven oblique slices were collected through visual and
motor cortex, 3.12 × 3.12 × 5 mm voxels, TR = 0.5 s, TE
= 25 ms, flip angle = 90, FOV = 20 cm, 410 images. Data
from all images were corrected for slice-acquisition timing

differences using 4-point sinc interpolation and corrected for
head movement using 6-parameter affine registration prior
to analysis.

For each subject Gaussian filters with FWHM of 0, 4,
8 and 12 mm were applied to the slice of the data which
contained the largest signal over the visual cortex (slice #3).
Thereafter, we applied our method to the same data set.
Next a standard GLM analysis was performed on each of
the smoothed data sets, as well as the non-smoothed data,
to create t-maps (see Figure 7). We then thresholded the
data at α = 0.01 using Bonferroni correction to account
for multiple comparisons. The thresholded images are also
shown in Figure 7. Similar to the results of our simulation
study, we find that adaptive smoothing yields a good balance
between smoothing the image and retaining detail in the
activated regions.

Figure 8 shows time series plots of the raw and smoothed
data for a particular voxel, as well as a plot of the adaptive
variance exp(−γ) at that voxel. We find that the smoothed
version shows more clearly the signal in the data. Also, we
find that adaptive variance is high (low) corresponding to
peaks (troughs) in z, suggesting less smoothing of the data
during activated periods. In addition, we found that the
smoothing parameters ξ1 and ξ2 (not shown) for each time
point are pretty similar suggesting that at each time point
the same amount of global smoothing was applied to most
of the voxels.

5. DISCUSSION

This paper introduces a novel approach towards spatially
smoothing fMRI data based on the use of non-stationary
spatial Gaussian Markov random fields. A novel feature of
our approach is that it allows the spatial extent of smooth-
ing to vary not only across space, but also across time.
The benefit of the suggested approach is therefore two-fold.
First, it allows the amount of smoothing to vary across the
brain depending on the spatial extent of activation. This will
help circumvent problems with over/under-smoothing active
brain regions of varying size that may occur if smoothing
is performed using a Gaussian kernel of fixed width. Also,
adaptive smoothing is more in line with the matched filter
theorem (Rosenfeld and Kak, 1982) which states a filter that
is matched to the signal will give optimum signal to noise.
Second, our method allows researchers to study how the ex-
tent of activation varies as a function of time. We are not
aware of any other fMRI study that does this. Functional
MRI is based on studying localized changes in oxygenation
patterns. However, it is well known (Malonek and Grinvald,
1996) that brain vasculature tends to overreact to calls for
oxygenated blood in response to neuronal activity, giving
rise to oxygenation patterns that will eventually exceed the
area of neural activity. Using our approach we can study
how regions of activation vary spatially as a function of time.
This has important implications as it may potentially allow
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Figure 6. Time series plots for Simulation II: (a) The estimated response z at a center voxel; (b) adaptive variance for that
voxel; (c) estimated ξ1; (d) estimated ξ2. The plot of ξ1 shows the overall smoothing applied to the z field varies sinusoidally

with time as expected. Similarly, ξ2 also varies roughly sinusoidally, with more smoothing of the γ field (indicating less
adaptivity) during periods when a larger region is activated. Finally, the adaptive variance is high during periods with the

greatest change in the number of activated voxels and low at more stable periods when most of the voxels are activated or
deactivated.

researchers to discriminate between areas of true activation
and those simply adjacent to activation.

While the proposed method has many advantages over
smoothing with a fixed kernel, there are certain disad-
vantages as well. Smoothing with a fixed Gaussian ker-
nel has gained widespread use because of its speed and
ease of implementation. Our model is significantly more
complex and will therefore lead to increased computation
time; an order of magnitude higher than when smooth-
ing with Gaussian or wavelet filters. Also, it is important
to note that in this work the model setup assumes that
the input data is two-dimensional. In reality fMRI data
are four-dimensional with three spatial dimensions and one
temporal. Therefore, it may ultimately be more appropri-
ate to smooth the three spatial dimensions directly, or al-

ternatively the full 4D data set. However, as is the case
with other similar types of models (e.g., Brezger et al.,
2007), computational constraints currently limit our ap-
proach to 2D. In spite of this shortcoming we still main-
tain that smoothing in 2D serves a useful purpose as fMRI
data are often analyzed either slice-wise or using cortical
surface-based techniques (Dale, Fischl, and Sereno, 1999;
Fischl, Sereno, and Dale, 1999). We are currently working
on alternative approaches that entail less computation, but
constructing a practical 3D or 4D Gaussian Markov random
field is non-trivial. Finally, fMRI data are often analyzed
for multiple subjects and inference performed on the group
(population) level. As we smooth each individual image sep-
arately, there are no guarantees of improved inference on the
group level using our approach. For these reasons it may be

10 Y. Yue, J. M. Loh and M. A. Lindquist



Figure 7. Results of the data analysis: t-maps (top) and thresholded images (bottom) obtained using spatially adaptive
smoothing and fixed Gaussian kernels with various widths. Similar to the results of our simulation studies, we find that
adaptive smoothing yields a good balance between smoothing the image and retaining detail in the activated regions.

Figure 8. Time series plots of the original response y at a particular voxel (top), the estimated response z (middle), and the
estimated adaptive variance (bottom). The smoothed version shows more clearly the signal in the data. Also, the adaptive

variance is high (low) corresponding to peaks (troughs) in z, suggesting less smoothing of the data during activated periods.

Adaptive spatial smoothing of fMRI images 11



optimal to smooth all of the images simultaneously, but for
the reasons outlined above this is currently not considered
feasible.

In this method the extent of activation is used to help de-
termine the degree of smoothing. Since, the smoothed im-
ages are subsequently used to obtain statistical inferences
about localized activations this may create concern that sig-
nificant activations may stem in part from the differences in
the degree of smoothing applied to the image. However, be-
cause the method has no temporal aspect and contains no
information about the design matrix used in the subsequent
statistical analysis, voxel-level p-values (either uncorrected
or corrected at the voxel-level) will be valid, just as they
would be when performing standard smoothing.

Although it is advantageous to smooth data for a variety
of reasons, there are also obvious costs in spatial resolution.
With larger sample sizes, higher field strengths, and other
advances in imaging technology, many groups may wish to
take advantage of the high potential spatial resolution of
fMRI data and minimize the amount of smoothing. The pro-
cess of spatially smoothing an image is equivalent to apply-
ing a low-pass filter to the sampled k-space data prior to re-
construction. This implies that much of the acquired data is
discarded as a byproduct of smoothing and temporal resolu-
tion is sacrificed without gaining any benefits. Additionally,
acquiring an image with high spatial resolution and there-
after smoothing the image does not lead to the same results
as directly acquiring a low resolution image. The signal-to-
noise ratio during acquisition increases as the square of the
voxel volume, so acquiring small voxels means that some
signal is lost that can never be recovered. Hence, it is opti-
mal in terms of sensitivity to acquire images at the desired
resolution and not employ smoothing. Some recent acquisi-
tion schemes have been designed to acquire images at the
final functional resolution desired (Lindquist et al., 2008a,b;
Zhang et al., 2008). This allows for much more rapid image
acquisition, as time is not spent acquiring information that
will be discarded in the subsequent analysis. An interesting
side note is that since adaptive smoothing effectively alters
the extent of the applied low-pass filter there is less ineffi-
ciency in data collection as certain voxels are not smoothed
and thus use all available data.

Acknowledgements

Yu Yue’s research is supported by PSC-CUNY research
award #60147-39 40. Ji Meng Loh’s research is partially
supported by NSF award AST-507687. Martin Lindquist’s
research is partially supported by NSF grant DMS-0806088.
The authors thank Tor Wager for the data.

Received 6 July 2009

REFERENCES

Besag, J. and Higdon, D. (1999). Bayesian analysis of agricultural
field experiments (with discussion). Journal of the Royal Statistical
Society, Series B , 61(4), 691–746. MR1722238

Bowman, F., Caffo, B., Bassett, S., and Kilts, C. (2008). Bayesian
hierarchical framework for spatial modeling of fmri data. NeuroIm-
age, 39, 146–156.

Boynton, G., Engel, S., Glover, G., and Heeger, D. (1996). Linear
systems analysis of functional magnetic resonance imaging in human
v1. J. Neurosci , 16, 4207–4221.

Brezger, A., Fahrmeir, L., and Hennerfeind, A. (2007). Adaptive
Gaussian Markov random fields with applications in human brain
mapping. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 56, 327–345. MR2370993

Dale, A., Fischl, B., and Sereno, M. (1999). Cortical surface-based
analysis i: Segmentation and surface reconstruction. NeuroImage,
9, 179–194.

Fischl, B., Sereno, M., and Dale, A. (1999). Cortical surface-based
analysis ii: Inflation, flattening, and a surface-based coordinate sys-
tem. NeuroImage, 9, 195–207.

Lindquist, M. (2008). The statistical analysis of fmri data. Statistical
Science, 23, 439–464. MR2530545

Lindquist, M. and Wager, T. (2008). Spatial smoothing in fmri
using prolate spheroidal wave functions. Human Brain mapping,
29, 1276–1287.

Lindquist, M., Zhang, C., Glover, G., Shepp, L., and Yang, Q.

(2006). A generalization of the two dimensional prolate spheroidal
wave function method for non-rectilinear mri data acquisition meth-
ods. IEEE Transactions in Image Processing, 15, 2792–2804.
MR2483118

Lindquist, M., Zhang, C., Glover, G., and Shepp, L. (2008a). Ac-
quisition and statistical analysis of rapid 3d fmri data. Statistica
Sinica, 18, 1395–1419. MR2468274

Lindquist, M., Zhang, C., Glover, G., and Shepp, L. (2008b).
Rapid three-dimensional functional magnetic resonance imaging of
the negative bold response. Journal of Magnetic Resonance, 191,
100–111.

Malonek, D. and Grinvald, A. (1996). The imaging spectroscopy
reveals the interaction between electrical activity and cortical mi-
crocirculation: implication for optical, pet and mr functional brain
imaging. Science, 272, 551–554.

Penny, W., Trujillo-Barreto, N., and Friston, K. (2005).
Bayesian fMRI time series analysis with spatial priors. NeuroImage,
24(2), 350–362.

Poline, J. and Mazoyer, B. (1994). Analysis of individual brain acti-
vation maps using hierarchical description and multiscale detection.
IEEE Transactions in Medical Imaging, 4, 702–710.

Rosenfeld, A. and Kak, A. (1982). Digital Picture Processing. New
York: Academic Press, 2 edition.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields:
Theory and Applications, volume 104 of Monographs on Statistics
and Applied Probability. Chapman & Hall, London. MR2130347

Shafie, K., Sigal, B., Siegmund, D., and Worsley, K. (2003). Ro-
tation space random fields with an application to fmri data. Annals
of Statistics, 31, 1732–1771. MR2036389

Smith, M. S. and Fahrmeir, L. (2007). Spatial Bayesian variable
selection with application to functional magnetic resonance imag-
ing. Journal of the American Statistical Association, 102, 417–431.
MR2370843

Tabelow, K., Polzehl, J., Voss, H. U., and Spokoiny, V. (2006).
Analyzing fmri experiments with structural adaptive smoothing pro-
cedures. NeuroImage, 33(1), 55–62.

Van De Ville, D., Blu, T., and Unser, M. (2006). Surfing the
brain: An overview of wavelet-based techniques for fmri data anal-
ysis. IEEE Engineering in Medicine and Biology Magazine, 25,
65–78.

Worsley, K. J. and Friston, K. J. (1995). Analysis of fMRI time-
series revisited-again. NeuroImage, 2, 173–181.

12 Y. Yue, J. M. Loh and M. A. Lindquist

http://www.ams.org/mathscinet-getitem?mr=1722238
http://www.ams.org/mathscinet-getitem?mr=2370993
http://www.ams.org/mathscinet-getitem?mr=2530545
http://www.ams.org/mathscinet-getitem?mr=2483118
http://www.ams.org/mathscinet-getitem?mr=2468274
http://www.ams.org/mathscinet-getitem?mr=2130347
http://www.ams.org/mathscinet-getitem?mr=2036389
http://www.ams.org/mathscinet-getitem?mr=2370843


Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston,

K. J., and Evans, A. C. (1996). A unified statistical approach
for determining significant signals in images of cerebral activation.
Human Brain Mapping, 4, 58–73.

Yue, Y. and Speckman, P. L. (2009). Nonstationary spatial Gaussian
Markov random fields. Journal of Computational and Graphical
Statistics. (to appear).

Zhang, C., Lindquist, M., Cho, Z., Glover, G., and Shepp, L.

(2008). Fast functional magnetic resonance imaging – a new ap-
proach towards neuroimaging. Statistics and Its Interface, 1, 13–22.
MR2425341

Yu (Ryan) Yue
Department of Statistics and CIS
Baruch College
New York, NY, 10010
E-mail address: yu.yue@baruch.cuny.edu

Ji Meng Loh
Department of Statistics
Columbia University
New York, NY, 10027
E-mail address: meng@stat.columbia.edu

Martin A. Lindquist
Department of Statistics
Columbia University
New York, NY, 10027
E-mail address: martin@stat.columbia.edu

Adaptive spatial smoothing of fMRI images 13

http://www.ams.org/mathscinet-getitem?mr=2425341
mailto:yu.yue@baruch.cuny.edu
mailto:meng@stat.columbia.edu
mailto:martin@stat.columbia.edu

	Introduction
	Spatially adaptive smoothing
	Thin-plate spline prior
	Spatially adaptive IGMRF prior
	Hyperpriors and computation

	Simulation
	Data analysis
	Discussion
	References
	Authors' addresses

