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Hedging options in the incomplete market with
stochastic volatility∗
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We show that it is possible to avoid the discrepancies
of continuous path models for stock prices and still be
able to hedge options if one models the stock price process
as a birth and death process. One needs the stock and
another market traded derivative to hedge an option in this
setting. However, unlike in continuous models, the number
of extra traded derivatives required for hedging does not
increase when the intensity process is stochastic. We obtain
parameter estimates using Generalized Method of Moments
and describe the Monte Carlo algorithm to obtain option
prices. We show that one needs to use filtering equations for
inference in the stochastic intensity setting. We present real
data applications to study the performance of our modeling
and estimation techniques.
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1. INTRODUCTION

A major difficulty on the interface between statistics and
finance is that diffusion models are not really valid descrip-
tions of data when it comes to microstructure. Diffusion
models, specially variants of the geometric Brownian motion
of Black and Scholes (1973), are the most common models
used in finance for stock price processes. The difference be-
tween the natural discreteness of the movement of the stock
prices determined by the tick size and the assumed continu-
ity in the diffusion model setting can lead to, not only serious
mispricing of options, but other conceptual inconsistencies.

The main feature of this inconsistency is that the mi-
crostructure predicted by diffusion models includes observ-
able quadratic variation (and hence volatilities), whereas
this is nowhere nearly true in practice. According to con-
tinuous path models, the integrated volatility equals the
∗The research was supported by NSF grants DMS 99-71738 and DMS
02-04639.
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quadratic variation. Hence, if data are observed continu-
ously, the volatility should be observable. In practice we only
observe a sample of the continuous time path. As shown
in, for example, Jacod and Shiryaev (2003), the difference
between the quadratic variation at discrete and continu-
ous time scales converges to zero as the sampling interval
goes to zero. Hence, the best possible estimates of integrated
volatility should be the observed quadratic variation com-
puted from the highest frequency data obtainable. However,
it has been found empirically that there is a bigger bias in
the estimate when the sampling interval is quite small. For
references in this area see Andersen et al. (2001).

On the other hand there is a reason why continuous
models are used. These are more or less the only mod-
els where one can hedge options. Practitioners are inter-
ested not only in pricing options but also in hedging, that
is to remove the risks associated with options by trading
other instruments. Technically, to hedge means to create
self financing replicating portfolios for derivative securities.
There has been some interesting work on asymptotic or
optimal hedging in the discontinuous price setting as in
Hayashi (2005), Hubalek et al. (2006), Mykland (2000) and
Schweizer (1992), but not on perfect hedging.

Hence, whereas from a data description point of view, it
would make sense to use models with jumps, from a hedging
standpoint, these models cannot be used. One of the con-
sequences of this conflict is that statistical information is
not used as much as it should be when it comes to valuing
derivative securities. Instead there is a substantial reliance
on implied quantities, as in Engle and Mustafa (1992), Cont
(2002). It is shown in Mykland (1996) that this disregard
for historical data can lead to mispricing. It would be desir-
able to bring as much statistical information as possible to
bear on financial modeling and at the same time be able to
hedge.

This is where birth and death processes become useful.
Birth and death processes have the virtue that one can
quite successfully set up derivative securities hedging in this
model. It is not quite as straight forward as the continu-
ous model. However, this is still a much nicer situation than
what is the case in general models with jumps where it is
impossible to hedge. In a sense birth and death processes are
almost continuous, as one needs to traverse all intermediate
states to go from one point to the other. On the other hand,
these processes have a microstructure which conflicts much
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less with the data. In particular, the predictable quadratic
variation is not observable.

Another conceptual inconsistency of the continuous mod-
els is that the Black-Scholes formula is based on a deriva-
tion where all risk is removable from an option position by a
continuously rebalanced delta hedge. However, in practice,
delta hedging needs to be augmented with gamma hedging
and sometimes even vega hedging, which is adhoc and in-
consistent with the underlying theory. The need for delta
hedging, however, is consistent with the birth and death
model as demonstrated in Dengler and Jarrow (1997).

In the current paper we take up the idea of using
birth-and-death processes as stock price models as done
in Korn et al. (1998), but generalize the existing literature
in various ways: First, we use a jump intensity which is
proportional to the square of the stock price, a fact that
leads to a geometric Brownian motion limit as the jump
size goes to zero. Second, the case of a stochastic jump in-
tensity is also considered. Third, the models are applied to
real data to demonstrate their pros and cons in application.
The main contribution of the paper is to show that the pro-
posed incomplete model allows for both pricing and hedging
of options. More on modeling and estimation in this class of
models can be found in Russell and Engle (2005) and Large
(2005).

The paper is organized as follows. In Section 2 we present
the basic model with linear and quadratic jump intensity
and the set-up for stochastic intensity rate. Section 3 de-
scribes the pricing of options and presents an Edgeworth
expansion for option prices. Section 3 describes hedging of
options in the constant intensity case. We then go on to
derive the hedging strategy in the stochastic intensity case
by first conditioning on the unobserved intensity process
and then taking the expectation. In Section 5 we study the
problem of estimation of model parameters. In the stochastic
intensity case, we present a Bayesian solution to the prob-
lem and possible generalizations. The prior on the intensity
rate process that we study in detail is a two state Poisson
jump process. In Section 6 we study the performance of the
model in some real data applications and in Section 7 we
present the conclusions.

2. THE MODEL

2.1 The linear jump intensity model

The problem of pricing and hedging options in birth and
death models where the intensity of jumps is proportional
to the present stock price (linear jump intensity) is solved
in Korn et al. (1998). We shall call the constant of pro-
portionality rate. This is the discrete state-space version of
the popular affine jump diffusion models, for example see
Duffie et al. (2000). More precisely, suppose the stock price
St is a pure jump process with jumps of size ±c. This im-
plies that the process moves on a grid of resolution c and
Nt = St/c is a birth and death process. The jumps of the

Nt process have random size Yt which is a binary variable
taking values ±1 and the probability that Yt = 1 is denoted
by pt,Nt . Suppose that there is a risk-free interest rate rt

and the intensity of jumps is Ntλt where the rate λt is a
non-negative stochastic process. In order to keep the price
process away from zero, introduce the condition:

When Nt = 1, Yt takes values 0 and 1(2.1)
with probabilities pt,1 and 1 − pt,1

It is shown in Sen (2006) that when the tick size goes to
zero, the price process converges almost surely to a deter-
ministic processs. Hence this is not a very interesting model.
However if the intensity of jumps is allowed to be propor-
tional to the square of the stock price, then such a process
can be considered as a discretized version of the geometric
Brownian motion model for stock prices that corresponds to
the popular Black-Scholes theory of asset pricing. This will
be called the quadratic jump intensity model. In the fol-
lowing Section this model and the asymptotic result stated
above will be formalized. A similar model has been studied
in Dengler and Jarrow (1997) where the authors consider
a birth and death process on the log of stock prices. This
makes the problem technically much easier, but contradicts
the fact that stock prices, and not log stock prices, move in
multiples of the tick size.

2.2 The quadratic jump intensity model

In the same setting as above, we now take the intensity
of jumps to be N2

t λt where λt is constant or a time-varying
deterministic process. Quadratic models have been used suc-
cessfully in asset pricing as in Lieppold (2002). Piazzesi
(2001) includes jumps with quadratic arrival intensity for
pricing bonds in the quadratic class.

We have the following result, the proof of which is given
in Appendix A.

Theorem 2.1. Let N
(n)
t be an integer valued jump pro-

cess. The jump time ξ
(n)
t follow a counting process with rate

N
(n)2
t σ2

t . The random jump size Y
(n)
t is a binary variable

taking values ±1 and probability that Yt = 1 is pt,Nt . Assume
that condition (2.1) and assumptions (2.2) and (2.3) are sat-
isfied. Then X

(n)
t = ln(N (n)

t /n) converges in distribution to
Xt, a continuous Gaussian Martingale with characteristics
(
∫ t

0
(ru −σ2

u/2)du,
∫ t

0
σ2

udu, 0) if pt,Nt = (rt/Ntσ
2
t +1)/2 and

pt,1 = (rt − σ2
t /2)/(σ2

t log(2)).

The assumptions are:

E
∑
τi≤t

(
1

N
(n)
τi

)k

goes to zero as(2.2)

n goes to infinity for all k ≥ 4

(2.3)
∫ t

0

N2
uσ2

udu is finite a.s.

470 R. Sen



Figure 1. (a) Histogram. (b) Empirical cumulative distribution function superimposed with normal distribution.

Suppose for each n, the stock price S
(n)
t = N

(n)
t /n where

the process N
(n)
t is described in Theorem 2.1. So the grid

size c is 1/n. Assume initial stock price S
(n)
0 is the same

for all n. As n → ∞, by Theorem 2.1, the sequence of ran-
dom processes X

(n)
t = ln(S(n)

t ) converge in distribution to
Xt, a continuous Gaussian Martingale with characteristics
(
∫ t

0
(ru−σ2

u/2)du,
∫ t

0
σ2

udu, 0). Since exp is a continuous func-
tion, S

(n)
t = exp(X(n)

t ) converge in law to St = exp(Xt). The
stochastic differential equation of X is:

d(Xt) = (rt −
1
2
σ2

t )dt +
√

σ2
t dWt

where Wt is standard Wiener process. By Ito’s formula,

d(St) = d(exp(Xt))

= St[(rt −
1
2
σ2

t )dt +
√

σ2
t dWt] +

1
2
Stσ

2
t dt

= Strtdt + St

√
σ2

t dWt

Thus the limiting distribution is geometric Brownian mo-
tion.

Although the process converges to geometric Brownian
motion in the limit, the exact process, depending on the
values of the parameters, can be far from the limiting pro-
cess. For e.g., if the stock price is $100, tick size is 1 cent,
λ = 10−6 and interest rate is 5%, then the distribution of
log returns after an hour, obtained by simulating data from
the process for 106 observations has skewness −0.04 and
kurtosis of 4.63. We present the histogram and empirical
cumulative distribution function of this simulated dataset
in Fig. 1. The Jarque-Bera test statistics for goodness-of-fit
to a normal distribution is 112910 while the critical value
at 1% level is 9.21. Thus the log returns are not normal,
as predicted from Black-Scholes model, for finite tick-size
and finite time horizon. The skewness is not very large, but
there is a large excess kurtosis which supports the heavy-
tailedness observed in real data.

We now show that under this model the market is in-
complete. Let Pλ denote the probability distribution asso-
ciated with a birth and death process Nt with rate N2

t λ
and probability of birth pt,Nt = (rt/Ntλ + 1)/2. In Theo-
rem 2.2 we show that for any λ̃, the measure Pλ and Pλ̃ are
equivalent and the discounted stock price is a Pλ̃ martin-
gale. Thus there are infinitely many equivalent martingale
measures and hence the market is incomplete.

Theorem 2.2. For any λ̃, the probability measures Pλ̃ and
Pλ are mutually absolutely continuous and the discounted
security price is a Pλ̃ martingale.

Proof. Note that all birth-death processes are supported on
the class of step functions that are right continuous and have
left limits (r.c.l.l.) with jumps of size ±1 on the non-negative
integers. Uniqueness of the associated measures correspond-
ing to a jump intensity rate and probability of birth is a
consequence of e.g. Theorem 18.4/5 in Lipster and Shiryaev
(1978). Hence the measures associated with all birth death
processes are mutually absolutely continuous. As a conse-
quence of Theorem 19.7 of Lipster and Shiryaev (1978) we
can even give the explicit form of Pλ̃ via its Radon-Nikodym
derivative with respect to P as:

log
dPλ̃

dP =
∫ T

0

ln(
λ̃tp̃t,Nt

λtpt,Nt

)dN1t

+
∫ T

0

ln(
λ̃t(1 − p̃t,Nt)
λt(1 − pt,Nt)

)dN2t

−
∫ T

0

(λ̃t − λt)N2
t dt

where dN1t = IYt=+1dNt and dN2t = −IYt=−1dNt with
Ni0 = 0. N1t, N2t are point processes with intensity
λtpt,NtN

2
t and λt(1 − pt,Nt)N

2
t respectively and dNt =

dN1t−dN2t. Let λ̃1t = λ̃p̃t,NtN
2
t and λ̃2t = λ̃(1− p̃t,Nt)N

2
t .

Then Qit = Nit −
∫ t

0
λ̃isN

2
s ds is the compensated point pro-
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cess associated with Ni under Pλ̃.

dNt = dN1t − dN2t

= dQ1t − dQ2t + (λ̃1t − λ̃2t)N2
t dt

= dQ1t − dQ2t + (2p̃t,Nt − 1)λ̃tN
2
t dt

= dQ1t − dQ2t + rtNtdt

So exp{−
∫ t

0
rsds}N(t) is a martingale with respect to

Pλ̃.

2.3 Stochastic intensity rate

The intensity rate of jump processes is analogous to
volatility in continuous models. Both theoretical and empiri-
cal considerations support the need for stochastic volatility.
Asset returns have been modeled as continuous processes
with stochastic volatility as in Hull and White (1987), Naik
(1993) or as jump processes with stochastic volatility as in
Bates (1996), Duffie et al. (2000).

So, next we consider the case that the unobserved inten-
sity rate λt being a stochastic process and Nt is a birth and
death process conditional on the λt process. This can be for-
mally carried out by letting Nt be the integral of the Yt pro-
cess with respect to the random measure that has intensity
λtN

2
t (see, e.g., Ch. II.1.d(p. 71–74) of Jacod and Shiryaev

(2003)).
We first put a two state Markov model on λt. This as-

sumes that stock price movements fluctuate between low
and high intensity rate regimes. This is the approach in Naik
(1993). In Section 4.3 we study the hedging strategy for op-
tions in this setting. In Section 5.3 we generalize this to any
given model on the intensity rate process. For example, al-
ternatively we can consider cases where the intensity rate
follows a diffusion as in Hull and White (1987).

3. PRICING OF OPTIONS

For any λ, let Pλ be the measure associated with a birth-
death process with event rate λN2

t and probability of birth
pt,Nt = (1 + rt/λNt)/2. Let us denote the class of these
measures by P. We have seen in Theorem 2.1 that as the
tick size goes to zero, this process converges to geometric
Brownian motion. We now restrict our attention to the case
of fixed tick-size.

We have seen in Theorem 2.2 that the Pλ’s are equivalent
and the discounted stock price is a martingale under each
such measure. From the fundamental theorem of asset pric-
ing, there exists a measure, called the risk-neutral measure,
that is equivalent to the physical measure and under which
prices of all traded assets are martingales. Let us assume
that the risk neutral measure belongs to P. From this point
on we shall work with the risk-neutral measure. The price,
at time t, associated with any integrable contingent claim
with terminal payoff P at time T is E(exp{−

∫ T

t
rsds}P|Ft).

3.1 Edgeworth expansion for option prices

Option prices are expectations, under the model, of dis-
counted terminal payoffs. It is of interest to see how much
these expectations differ from expectation under the Brow-
nian motion model. Let us define

X
(n)
t = ln

(
N

(n)
t

n

)

X
∗(n)
t = X

(n)
t − X

(n)
0

−
∫ t

0

[
pu,Nu ln

(
1 +

1
Nu

)]
N2

uσ2
udu

+
∫ t

0

[
(1 − pu,Nu) ln

(
1 − 1

Nu

)]
N2

uσ2
udu

where pt,Nt =
1
2

(
1 +

rt

Ntσ2
t

)

Let C be the class of functions g that satisfy the following: (i)∫
| ĝ(x) | dx < ∞, uniformly in C, and {

∑
u x2

uĝ(x), g ∈ C}
is uniformly integrable (here, ĝ is the Fourier transform of
g, which must exist for each g ∈ C); or (ii) g(x) = f(zixi),
with

∑
i zizi, f and f ′′ bounded, uniformly in C, and with

{f ′′ : g ∈ C} equicontinuous almost everywhere (under
Lebesgue measure). Under assumptions (I1) and (I2) stated
in Appendix B, for any g ∈ C,

Eg(X∗(n)
T ) = Eg(N(0, λT )) + o(1/n)

The details are given in Appendix B. Thus, if the payoff
function has some smoothness properties, then the expec-
tation under the birth and death model is very close to
that under the geometric Brownian motion model. However,
many traded options do not have these smoothness proper-
ties. That is why we study these deviations computationally
in Section 6.

4. HEDGING

4.1 Background

To hedge an option means to form a self-financing repli-
cating portfolio for the option. Self-financing means we do
not have to put in money into the portfolio after the ini-
tial time. Replicating means that the terminal value of this
portfolio is the same as the payoff of the option. That is, we
would like to arrange things so that there is absolutely no
risk to us of having to pump in any of our own money later
to cover the option at expiration.

We form a self-financing risk-less portfolio with the stock,
the bond and two options. Risk-less means that there is
no randomness involved in the total value of the portfolio.
For this portfolio, we obtain the hedge ratios, that is, the
proportion of money invested in each asset at each point
of time. The idea is similar to that of delta-neutral hedges
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in stochastic volatility models as discussed in Bakshi et al.
(1997).

In this section we derive the hedging strategy in this mar-
ket. We can hedge an option by trading the stock, the bond
and another option.

4.2 Hedging when the intensity rate is
constant

Let F1(x, t), F2(x, t) be the prices of two options O1 and
O2 at time t when the price of the stock is cx. Let F3(x, t) =
cx be the price of the stock and F0(x, t) = B0 exp{−

∫ t

0
rsds}

be the price of the bond. Note that Nt is the difference of
two counting processes: N0t, the number of births and N1t,
the number of deaths. Assume Fi are continuous in both
arguments and the following partial derivatives exist.

∂Fi

∂t
= αFi

∂Fi

∂N0
= βFi

∂Fi

∂N1
= γFi

We shall construct a self financing risk-less portfolio

V (t) =
3∑

i=0

φ(i)(t)Fi(x, t)

Let u(i)(t) = φ(i)(t)Fi(x,t)
V (t) be the proportion of wealth in-

vested in asset i.

(4.1)
∑

u(i) = 1

Since Vt is self financing,

dV (t)
V (t)

=
3∑

i=0

u(i)(t)
dF (x, t)
F (x, t)

= u(0)(t)rtdt + u(3)(t)
1
cx

(dN0t − dN1t)

+
2∑

i=1

u(i)(t)αFi(x, t)dt

+
2∑

i=1

u(i)(t)(βFi(x, t)dN0t + γFi(x, t)dN1t)

Vt is risk-less implies

u(3)(t)
1
cx

+
2∑

i=1

u(i)(t)βFi(x, t) = 0(4.2)

−u(3)(t)
1
x

+
2∑

i=1

u(i)(t)γFi(x, t) = 0(4.3)

The no arbitrage assumption implies

(4.4) u(0)(t)rt +
2∑

i=1

u(i)(t)αFi(x, t) = rt

Solving equations (4.1)–(4.4), we get the hedge ratios as:

u(1) = [(1 − αF1

r
− xβF1) −

γF1 + βF1

γF2 + βF2

(1 − αF1

r
− xβF1)]

−1

u(2) = [(1 − αF2

r
− xβF2) −

γF2 + βF2

γF1 + βF1

(1 − αF2

r
− xβF2)]

−1

u(0) = − 1
rt

(u(1)αF1 + u(2)αF2)

u(3) = − x(u(1)βF1 + u(2)βF2)

A self-financing replicating portfolio for option O2 can
be formed by investing φ(i)/φ(2) units of asset i, that is,
u(0)F (2)/u(2)F (0) units of Bond, u(3)F (2)/u(2)F (3) units of
Stock and u(1)F (2)/u(2)F (1) of option O1.

4.3 Hedging when the intensity rate is time
varying and stochastic

Let us assume that λt is a Markov process with state
space {λ0, λ1}. Suppose there is an unobserved state process
θt which takes 2 values, say 0 and 1. The transition matrix is
Q. When θt = i, λt = λi. Jump process associated with θt is
ζt. We denote by {Gt} the complete filtration σ(Su, λu, 0 ≤
u ≤ t).

We introduce πi(t) = P (θt = i|Ft) where Ft = σ(Su, 0 ≤
u ≤ t).

Let Gi(x, t) := E(P |Gt) for a security with payoff P when
the stock price is cx and λt = λi.

Let G(x, t) := E(P |Ft) = π0(t)G0(x, t) + π1(t)G1(x, t).

As shown in Snyder (1973), the πit process evolves as:

(4.5) dπ0t = a(t)dt + b(t, 0)dN0t + b(t, 1)dN1t

where a(t) and b(t, i) are Ft adapted processes. Note that
π1t = 1 − π0t.

Theorem 4.1. dG/G = α̃Gdt + β̃GdN0t + γ̃GdN1t where

α̃G =
a(t)(G0 − G1) − (π0t

∂G0
∂t + π1t

∂G1
∂t )

π0tG0 + π1tG1

β̃G =
π0tβG0G0 + π1tβG1G1

π0tG0 + π1tG1

+
b(t, 1)(G0(1 + βG0) − G1(1 + βG1))

π0tG0 + π1tG1

γ̃G =
π0tγG0G0 + π1tγG1G1

π0tG0 + π1tG1

+
b(t,−1)(G0(1 + γG0) − G1(1 + γG1))

π0tG0 + π1tG1
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Proof.

dG = π0dG0 + π1dG1 + G0dπ0 + G1dπ1 + covariance term
= π0dG0 + π1dG1 + (G0 − G1)dπ0 + d[G0 − G1, π0]

= − (π0
∂G0

∂t
+ π1

∂G1

∂t
)dt

+ (π0βG0G0 + π1βG1G1)dN0t

+ (π0γG0G0 + π1γG1G1)dN1t

+ (G0 − G1)(a(t)dt + b(t, 1)dN0t + b(t,−1)dN1t)
+ (βG0G0 − βG1G1)b(t, 1)dN0t

+ (γG0G0 − γG1G1)b(t,−1)dN1t

= α̃dt + β̃dN0t + γ̃dN1t

We can hedge an option in the same way as in the fixed
λ case with α, β, γ replaced by α̃, β̃, γ̃. We still need one
market traded option and the stock to hedge an option. But
to get the hedge ratios, we need π(t), a(t), b(t).

5. ESTIMATION

We use the generalized method of moments to obtain
parameter estimates, which is common in finance, specially
when options are involved. These are called the ‘risk neutral’
parameters since they incorporate the price of risk associ-
ated with holding options that mature in the future. Prices
of options are expectations of discounted terminal payoffs
under the risk neutral parameters. So the estimates are ob-
tained by minimizing some distance between the observed
price of options and computed expected terminal payoffs
under the model.

5.1 Estimation of constant intensity rate

We use a Monte Carlo approach for computing the ex-
pected terminal payoffs for option prices. We generate the
stock price process as follows:

• Generate ξt, the process of waiting times as a homoge-
neous Poisson process with intensity rate λ.

• At each event time St jumps by ±c with probability
pt,Nt and 1 − pt,Nt .

Generating a large number of samples, we compute the
average of PT , the payoff of an option at expiration T for dif-
ferent options and expirations. We then compute the mean
square error between these and the observed prices of the
corresponding options. The value of λ that minimizes this
error is the GMM estimator.

5.2 Estimation for stochastic intensity rate

The parameters involved in this case are: π(t) which is
the probability that the unobserved intensity process is in
state λ0 at time t, the two intensity parameters λ0, λ1, the

transition matrix of the intensity process that is determined
by q01, q10, and π = π(0). Let Θ = (λ0, λ1, q01, q10, π).

We take an Empirical Bayes approach where the hyper-
parameters Θ are estimated from the observed price of mar-
ket traded options. We then update the posterior of the
unobserved intensity process by filtering techniques applied
on the stock price process.

Inference on the parameter π(t) can be done by invert-
ing options at each point of time. Besides involving huge
amount of computations this also has the following theoret-
ical drawbacks:

• The hedge ratios involve a(t), b(t). This implies that we
need them to be predictable. But if we have to invert an
option to get them, then we need to observe the price
at time t to infer πt and from there to get at and bt. So
they are no more predictable.

• Options are not as frequently traded as stocks and
hence option prices are not as reliable as stock prices.
Thus, inferring π(t) at each time point t by inverting
options will give incorrect prices and lead to arbitrage.

So we base our updates only on the stock prices. We describe
the various steps involved in this procedure below.

5.2.1. Monte Carlo approach for pricing options

The Monte Carlo algorithm to obtain PT , the terminal
payoff, under fixed values of Θ is as follows:

• Fix θ0 = i.
• Generate the θ process.
• Generate ξt, the process of waiting times as non-

homogeneous Poisson process with intensity rate λθt .
• At each event time St jumps by ±c with probability

pt,Nt and 1 − pt,Nt .
• Get the expectation under θ0 = i for i = 0, 1.
• Now take the average of these with respect to π0.

The only difficult step here is generating the ξt process. This
is done as follows:

• Generate T0 from Exp(λθ0N
2
0)

• Let τ0 = inf{t : θt �= θ0}
• If T0 < τ0, jump at time T0.
• Otherwise, generate T1 from Exp(λθτ0

N2
τ0

)
• τ1 = inf{t : θt �= θτ0}
• If T1 < τ1, jump at time τ0 + T1

• Continue.

This is justified by memorylessness.

5.2.2. Estimation of hyper-parameters

The objective is to find the parameter set that minimizes
the root mean square error between the observed option
price and the computed expected terminal payoff, for all op-
tions in the training sample. We followed a diagonally scaled
steepest descent algorithm with central difference approxi-
mation to the differential.
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The starting values of λ0, λ1 are taken to be equal to the
value of the estimator λ̂ obtained in the constant intensity
model.

The starting values of q01, q10 are obtained by a hidden
Markov model approach using an iterative method that has
two steps. Let the underlying state process be ηt, that is
the intensity is λi when ηt is i. In one step, the MLE of the
parameters is obtained given the ηt process. For details on
the method for obtaining the MLE in this setting, refer to
Elliott et al. (1995). Given the latent process the MLE’s are
obtained from the following equations:

q̂ij =
No. of times latent process jumps from state i to j

Time spent by latent process in state i

∑
j∈State space

Am
j,j+1

λm + r
j

+
Am

j,j−1

λm − r
j

− j2T j,m
t = 0

where Am
i,j = Number of times observed process jumps from

state i to state j when latent process is in state m and
T j,m

t = Time during which latent process is in state m and
observed process is in state j. In the next step, for each t
when there is a jump in the stock price, we assign ηt to that
i which maximizes the probability of an event.

We do a finite search on the parameter π.
Then we perform the minimization algorithm to get the

risk neutral parameters.

5.2.3. Bayesian filtering for inference on the unobserved
state process

As shown in Elliott et al. (1995), the posterior of πj(t) is
given by:

πj(t) = πj(0) +
∫ t

0

∑
i

qijπi(u)du

+
∫ t

0

πj(u)(λ̄(u) − λj)N2
udu

+
∑

0<u<t

πj(u−)
(

λjpλj (Su− → Su)∑
i πi(u)λipλi(Su− → Su)

− 1
)

where λ̄(t) =
∑

i πi(t)λi.
Thus, aj(u) =

∑
i qijπi(u) +

∫ t

0
πj(u)(λ̄(u) − λj)N2

u , and

bj(u) = πj(u−)
(

λjpλj
(Su−→Su)∑

i
πi(u)λipλi

(Su−→Su)
− 1

)
.

This is the conditional law of the unobserved rate pro-
cess given the path upto time t of the observed stock price
process as in a hidden Markov model.

5.3 Generalizations

According to Snyder (1973), the evolution of the πi(t)
process is given by (4.5). Even if we do not want to spec-
ify the prior for the λ process, it is still of that form. So
the problems that we mentioned in Section 5.2.3 remain,
whatever be the prior for the evolution of λt.

Let us see the form of the posterior in the general case.
Let ct(v|Nt0,t) be the posterior characteristic function for λt

given an observed path.

dct(v|Nt0,t) = E(exp(ivλt)Ψt(v|Nt0,t, λt)|Nt0,t)dt

− E(exp(ivλt)g(Nt)(λt − λ̂t)|Nt0,t)dt

+ E(exp(ivλt)(λNt,Nt+dt
− λ∗

Nt,Nt+dt
)|Nt0,t)

× λ∗−1
Nt,Nt+dt

dξt

where λNt,ζt = g(Nt)λtpλt,Nt if ζt = Nt + 1
g(Nt)λt(1 − pλt,Nt) if ζt = Nt − 1
0 o. w.

λ∗
Nt,ζt

= E(λNt,ζt(t, Nt0,t, λt)|Nt0,t)

Ψt(v|Nt0,t, λt) = E(exp(ivΔλt)|Nt0,t, λt)

For example, let dλt = ft(λt)dt+Gt(λt)dWt, where Wt is
Brownian motion. In this case Ψt(v|Nt0,t, λt) = ivft(λt) −
v2G2

t (λt)/2.
As long as the observed process is Markov jump process,

the second and third terms are same as in the two state
Markov case and hence yield the same function on taking
inverse Fourier transform. The first term, on taking inverse
Fourier transform yields L, the Kolmogorov-Fokker-Plank
differential operator associated with λ.

6. REAL DATA APPLICATIONS

6.1 Description

Data on stock price and option price was obtained from
the option-metrics database for three stocks Ford, ABMD
and IBM. The stock data is transaction by transaction. The
format of the raw stock data is: SYMBOL, DATE, TIME,
PRICE, SIZE, G127, CORR, COND, EX. After filtering
for after hour and international market trading, the data
is on tradings in NASDAQ regular hours. The prices are
divided by the tick size to obtain integers. We use part
of the data as training sample and the rest as test sam-
ple. The option data is daily best bid and ask prices. The
data has DATE, CALL/PUT, EXPIRATION, BEST-BID,
BEST-ASK, STRIKE.

We estimate parameters from the training sample and
use these estimates to predict prices of options in the test
sample. The 3 stocks provide some variety. The Ford stock
is a little old when the tick size used to be $1/16 while the
others have tick size $1/100. The ABMD data is more thinly
traded than the other two. Table 1 presents the dates, sam-
ple size, observed range of option prices and the average bid-
ask spread. The figures quoted are in multiples of the tick
size. Table 2 presents λ, average length of predicted interval
and the distance measure a for the 2 methods and various
datasets. Here λ is the volatility for Black-Scholes model
and the intensity for the birth-death model. It is observed

Hedging in incomplete market 475



Table 1. Description of data

Data Date Sample Range of Bid-ask Trades
Size Option Prices spread per day

IBM Training June 3, 02 92 0–3700 5 4270
IBM Test June 4–12, 02 620 0–8000 5 4270
ABMD Training Feb 3, 03 12 0–160 25 400
ABMD Test Feb 4–28, 03 33 0–550 25 400
Ford Training Dec 1, 00 38 0–180 2 1675
Ford Test Dec 5–31, 00 578 0–256 2 1675

All figures are in multiples of the tick size. Sample size denotes the number of different
options that are traded: trading date, put/call, strike, expiration combinations. The
last column gives the average number of trades per day for that stock over a year.

Table 2. Results for constant intensity rate

Model Dataset λ Training Test
Length Distance Length Distance

BS IBM 8.0e-07 99.180 10.603 52.199 19.481
BD IBM 1.1e-06 124.402 10.111 81.048 20.502
BS ABMD 6.5e-06 9.637 1.031 12.768 3.873
BD ABMD 7.5e-06 17.540 0.973 19.465 2.431
BS F 9.0e-07 6.096 0.297 5.919 0.609
BD F 1.3e-06 6.791 0.225 6.578 0.586

For constant intensity rate, this table summarizes the estimated
λ from the training sample, average length of the predicted in-
terval for option prices and the distance between the observed
and predicted intervals.

that the two models provide very similar results. The Black-
Scholes model gives better prediction for the IBM data. The
gain in using the birth-death model is most in the AMBD
data possibly because it is thinly traded. There is some gain
in the Ford data possibly because of the large tick-size. In
both of these cases once we fix the parameter we are consid-
ering one fixed model. We get the intervals as the maximum
and minimum of the option prices as the stock price varies
over the day. So these are not any prediction intervals, but
just arise because of intra-day variation in the predicted op-
tion price.

In Fig. 2 we present the error (observed-expected) us-
ing midpoints of the intervals in pricing of options against
strikes conditional on number of days to expiration. It is seen
that the CALL options are priced higher by the model. Also
we observe the phenomenon of smile that is common to all
option pricing models. The top panels are for the learning
sample and bottom panels for Fig. 2 the test sample. From
the test sample data it is noticed that options that are in
the money have higher variability of pricing errors. This is
also a common phenomenon of many option pricing models,
the cause for which is attributed to higher trading of in the
money options than out of the money options.

In Fig. 3 we present the hedging error of the birth-death
and the Black Scholes model, both with constant intensity
rate. This gives us an idea of the magnitude of gain achieved

Table 3. Evolution of algorithm

λ0 λ1 RMSE

1.100000e-06 1.100000e-06 52.7742
1.065162e-06 1.594270e-07 39.5022
1.043488e-06 8.320846e-08 38.2857
1.042039e-06 8.326884e-08 29.6799

This table gives the values of the parameters and the root mean
square error at consecutive stages of iteration of the algorithm
for IBM dataset.

by using the birth-death model. It is seen that considerable
gain is achieved by using the birth-death model.

6.2 Stochastic intensity rate

For the ABMD and Ford datasets, the RMSE of predic-
tion obtained from the constant intensity method is less than
the bid-ask spread. This means that the constant intensity
model attains the lower bound on the possible quadratic
calibration error as referred to the intrinsic error in Cont
(2002). Since the data is observed with an error, that is
only as bid-ask quotes, we cannot hope to achieve a level of
error less than the precision of the observed data. However
for the IBM data there is scope for improvement.

Table 3 shows the values of λ0, λ1 and the RMS error for
the evolution of the algorithm. The initial values of q01, q10

and π are 8.64e-02, 1.2126 and 0.5 and they do not change
in the significant digits over the evolution of the algorithm.

The algorithm converges with the value of RMSE equal to
29.6799. It is seen that we do achieve substantial improve-
ment in the RMSE by using the stochastic intensity rate
model over the birth death model with constant intensity
(RMSE = 52.7729). However, the bias and smile that were
observed in the constant volatility model still remain for the
stochastic volatility model. Also, this is an ill-posed problem
in the sense that the solutions are not unique and depend
on the starting values of the parameters. There is still scope
for improvement since the best RMSE we can hope to attain
is the daily bid-ask spread which is 5 in this case.
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Figure 2. Error in CALL price of IBM data. Top: Training sample, Bottom: Test sample. The four panels are for four
Expiration Dates. Inside each panel, we plot the error against the Strike.

7. CONCLUSIONS

• Modeling: The birth and death model takes into ac-
count the fact that stock prices move in multiples of
the tick. This model removes the inconsistency between
theory and practice that the continuous path models
run into, like quadratic variation being observable.

• Pricing: Both Edgeworth expansion results and study
of real data show that the birth and death model with
quadratic intensity rate produces option prices that are
very similar to the Black-Scholes model. In a way, this

study explains why the industry practice of using the
Black-Scholes model works in practice despite of being
adhoc and contradicting the underlying theory.

• Hedging: The birth and death model is different from
general models with jumps in the capacity that one can
set up derivative security hedging in this model. The
hedging is qualitatively and significantly different from
the Black-Scholes model. One needs not only the stock
and bond, but another market traded option to hedge.
This is analogous to the industry practice of gamma
hedging. Considerable monetary gain is attained by us-
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Figure 3. Hedging error for the IBM data-set. For Put-options
expiring on July 22, 2002, we obtain the hedging errors (in
real dollars) for holding the portfolio from July 1–July 22.

The error obtained by hedging using the Black-Scholes model
is shown with dots and that with the Birth-Death model is

shown with stars. The x-axis is the strike price.

ing the birth and death model for hedging as opposed
to the Black-Scholes model. Also, the introduction of
stochastic volatility does not necessitate the introduc-
tion of extra derivative securities for hedging purposes.

APPENDIX A. PROOF OF THEOREM

Define X
(n)
t = ln(N

(n)
t

n ) and

X
∗(n)
t = X

(n)
t −

∫ t

0

[pu log(1 +
1

Nu
)]

+
∫ t

0

[(1 − pu) log(1 − 1
Nu

)]N2
uσ2

udu − X
(n)
0

where pt,Nt = 1
2 (1 + rt

Ntσ2
t
).

Lemma 1. ∀t > 0,

[pt,Nt log(1+ 1
Nt

)+(1−pt,Nt) log(1− 1
Nt

)]N2
t σ2

t
P−→ rt − σ2

t

2 .

Proof. [pt,Nt log(1 + 1
Nt

) + (1 − pt,Nt) log(1 − 1
Nt

)]N2
t σ2

t =
(2pt,Nt − 1)N2

t σ2
t

∑∞
k=1

1

(2k−1)N2k−1
t

− N2
t σ2

t

∑∞
k=1

1
2kN2k

t

=

rt − σ2
t

2 + rt

∑∞
k=1

1
(2k+1)N2k

t

− σ2
t

∑∞
k=1

1
(2k+2)N2k

t

P−→

rt − σ2
t

2 .

Lemma 2. X
∗(n)
t is a local martingale.

Proof. Let dN1t = IYt=+1dNt and dN2t = −IYt=−1dNt with
Ni0 = 0. (N1t, N2t) is 2-dimensional point processes with
dNt = dN1t − dN2t and intensity (λ1t := σ2

t pt,NtN
2
t , λ2t :=

σ2
t (1 − pt,Nt)N

2
t )

Qit = Nit −
∫ t

0
λisN

2
s ds is the compensated point process

associated with Nit and hence by Theorem T8 of Bremaud
(1981) X

∗(n)
t =

∫ t

0
log(1 + 1

Nt
)dQ1t +

∫ t

0
log(1 − 1

Nt
)dQ1t is

a local martingale if
∫ 1

0
| ln(1 + 1

Nt
) | N2

t λtdt and
∫ 1

0
|

ln(1 − 1
Nt

) | N2
t λtdt are finite a.s.

Lemma 3. [X∗(n)
t , X

∗(n)
t ]t

P−→
∫ t

0
σ2

udu ∀t ∈ D dense.

Proof. Using the same technique as in step (2), we can show
that:

∫ t

0
log(1 + 1

Nt
)2dQ1t +

∫ t

0
log(1 − 1

Nt
)2dQ1t is a local

martingale if
∫ 1

0
| ln(1+ 1

Nt
)2 | N2

t σ2
t dt and

∫ 1

0
| ln(1− 1

Nt
)2 |

N2
t σ2

t dt are finite a.s.
Hence,

d

dt
< X∗(n), X∗(n) >t

= [pt,Nt{log(1 +
1
Nt

)}2 + (1 − pt,Nt){log(1 − 1
Nt

)}2]N2
t σ2

t

An expansion similar to the one in Lemma 1 shows that this
quantity converges in probability to σ2

t for all t > 0.

Let M
(n)
t = [X∗(n)

t , X
∗(n)
t ]− < X∗(n), X∗(n) >t

if Assumption 2.2 holds, [M (n), M (n)]t =
∑
τi≤t

|ΔX(n)
τi

|4 P−→ 0

and the result follows.

(A.1) | ΔX
∗(n)
t |= log(1 +

Yt

Nt
) ≤ log(2) identically.

Lemma 2, Lemma 3, (A.1) and Theorem VIII.3.11 of
Jacod and Shiryaev (2003) imply X∗(n) converges in law
to a continuous Gaussian Martingale with characteristics
(0,

∫ t

0
σ2

udu, 0). This and Lemma 1 imply X(n) converges in
law to X, a continuous Gaussian Martingale with charac-
teristics (

∫ t

0
(ru − 1

2σ2
u)du,

∫ t

0
σ2

udu, 0).

APPENDIX B. EDGEWORTH EXPANSION

We shall use the Theorem 1, conditions (I1–3) and Propo-
sition 3 from Mykland (1995). Let us consider �n

t =
√

nX
∗(n)
t

where X
∗(n)
t is defined in Appendix A. Let κ = λT , Tn = T ,

cn = n, rn = 1/n. We shall suppress the i in the notation,
because we are in the univariate case. Then

[�n, �n, �n, �n]Tn = n2

∫ T

0

[
log

(
1 +

Yu

Nu−

)]4

dξu

E[�n, �n, �n, �n]Tn = n2

∫ T

0

E

[(
1

Nu−

)4

N2
uλ

]
du + o(1)

=
∫ T

0

E
(

1
S2

u−

)
λdu + o(1)

= O(c2
nr2

n)
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So condition (I3) is satisfied.

< �n, �n, �n >uTn

c
3/2
n rn

=
n3/2

√
n

∫ T

0

E

[{
ln

(
1 +

Yu

Nu−

)}3 ∣∣∣∣Fu−

]
N2

u−λdu

=
1
n

(r − 3λ

2
)
∫ T

0

1
S2

u−
du + o(1/n)

This implies η of Proposition 3 in Mykland (1995) is 0.
Hence we can replace (�n, �n)Tn by < �n, �n >Tn in the def-
inition of �.

< �n, �n >T /n

=
∫ T

0

E

[{
ln

(
1 +

Yu

Nu−

)}2 ∣∣∣∣Fu−

]
N2

u−λdu

=
∫ T

0

[
pu,Nu−

{
ln

(
1 +

1
Nu−

)}2
]

N2
u−λdu

+

[
(1 − pu,Nu−)

{
ln

(
1 +

1
Nu−

)}2
]

N2
u−λdu

=
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0

[
1

N2
u−

+
1 − 2pu,Nu−

N3
u−

+
2

3N4
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+
1

4N4
u−

]
N2

u−λdu

+ smaller order terms

= λT + (
2
3

+
1
4
− r

λ
)λ

∫ T

0

1
N2

u−
du + smaller order terms

� = Eas

(
n

(
< �n, �n >T

n
− λT

) ∣∣∣∣X∗(n)
T

)

=
(

11
12

λ − r

)
Eas

(
1
n

∫ T

0

1

S(n)2
u−

du
∣∣∣∣X∗(n)

T

)

= 0

Hence, if there exist constants k, k̄ satisfying assump-
tions (I1) and (I2), then for any g ∈ C,

Eg(X∗(n)
T ) = Eg(N(0, λT)) + o(1/n).
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