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Multiple imputation has become an increasingly utilized
principled tool in dealing with incomplete data in recent
years, and reasons for its popularity are well documented.
In this work, we compare the performances of two continu-
ous imputation models via simulated examples that mimic
the characteristics of a real data set from psychiatric re-
search. The two imputation approaches under consideration
are based on multivariate normality and linear-mixed effects
models. Our research goal is oriented towards identifying the
relative performances of these methods in the context of con-
tinuous as well as ordinalized versions of a clinical trials data
set in a longitudinal setting. Our results appear to be only
marginally different across these two methods, which mo-
tivates our recommendation that practitioners who are not
computationally sophisticated enough to utilize more appro-
priate imputation techniques, may resort to simpler normal
imputation method under ignorability when the fraction of
missing information is relatively small.
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ity, Ignorability, Mixed-effects models, Longitudinal data,
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1. INTRODUCTION

Missing data are ubiquitous in statistical practice. Deter-
mining an appropriate analytical strategy in the absence of
complete data presents challenges for scientific exploration.
Missing values can give rise to biased parameter estimates,
reduced statistical power, and degraded coverage of interval
estimates, and thereby may lead to false inferences [1].

Advances in computational statistics have produced flexi-
ble missing-data procedures with a sensible statistical basis.
One of these procedures involves multiple imputation (MI),
a stochastic simulation technique that replaces each missing
∗The authors thank Don Hedeker for making the data used available
on his website.
†Corresponding author.

datum with a set of plausible values. The completed data
sets are then analyzed by standard complete-data methods,
and the results are combined into a single inferential sum-
mary that formally incorporates missing-data uncertainty
into the modeling process. The key ideas and advantages of
MI are reviewed by Rubin [2] and Schafer [3, 4]. When a
direct maximum likelihood procedure is available for a par-
ticular analysis, it may indeed be the convenient method.
However, MI still offers some unique advantages for data
analysts. First, MI allows researchers to use more conven-
tional models and software; an imputed data set may be
analyzed by literally any method that would be suitable if
the data were complete. As computing environments and
statistical models grow increasingly sophisticated, the value
of using familiar methods and software becomes important.
Second, there are still many classes of problems for which
no direct maximum likelihood procedure is available. Even
when such a procedure exists, MI can be more attractive due
to fact that the separation of the imputation phase from the
analysis phase lends greater flexibility to the entire process.
Lastly, MI singles out missing data as a source of random
variation distinct from ordinary sampling variability. For an
extensive bibliography see [5], for recent reviews see [6] and
[7], and for a comparison of MI and likelihood-based meth-
ods see [8].

The fundamental step in parametric MI is filling in the
missing data by drawing from the conditional distribution
of the missing data given the observed data under a pro-
posed model. For continuous data, joint multivariate nor-
mality among the variables has often been perceived as a
natural assumption, since the conditional distribution of the
missing data given the observed data is then also multivari-
ate normal and allows for dependence of missing quantities
on observed quantities.

In this work, we concentrate on incomplete longitudinal
data. In addition to employing an imputation model that as-
sumes joint multivariate normality, we use another continu-
ous imputation model that relies on a multivariate extension
of well-known linear mixed-effects models [9] for comparison
purposes. The second goal of this study is assessing the sen-
sitivity of these imputation approaches to the ordinalized
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version of the longitudinal data, where the type of data is
clearly unconformable to the underlying modeling assump-
tions.

The organization of this paper is as follows. In Section
2, we describe the salient operational characteristics of the
two imputation models of interest. In Section 3, we de-
scribe our simulation philosophy. Subsequently, motivated
by a longitudinal data set from psychiatric research, we de-
vise a study where we generate incomplete simulated data
sets that resemble the original data trends on average using
both ignorable and nonignorable missingness mechanisms.
We choose the parameter of interest to be the treatment ef-
fect over time, a key quantity in clinical trials, and evaluate
the comparative performances of the two imputation mod-
els in terms of commonly accepted accuracy and precision
measures. A secondary analysis will involve ordinalization
of continuous data sets in an attempt to explore the sen-
sitivity of continuous imputation models when applied to
ordinal data. Section 4 includes discussion and concluding
remarks.

2. IMPUTATION MODELS

We created multiply imputed data sets using 1) R/Splus
package NORM [10] which employs a normal imputation
model that imposes a multivariate normal distribution on
responses with unstructured covariances. NORM has the
nearly same functionalities as SAS PROC MI which seems to
be favored by most practitioners. 2) R/Splus package PAN
[11] which was developed for imputing multivariate panel
data, where a group of variables is measured for individuals
at multiple time points. Details are given below:

• NORM : Let yij denote an individual element of Y =
(Yobs, Ymis), i = 1, 2, ..., n, j = 1, 2, ..., p, where i and j in-
dex subjects and variables, respectively, and Yobs and Ymis

stand for the observed and missing portions of the complete
data matrix Y . The ith row of Y is yi = (yi1, yi2, ..., yip)T .
Assume that y1, y2, ..., yn are independent realizations of a
random vector, denoted as (Y1, Y2, ..., Yp)T , which has a mul-
tivariate normal distribution with the mean vector μ and co-
variance matrix Σ; that is y1, y2, ..., yn|θ ∼ N(μ,Σ), where
θ = (μ,Σ) is the unknown parameter and Σ is positive def-
inite. When imputations are created under Bayesian argu-
ments, MI has a natural interpretation as an approximate
Bayesian inference for the quantities of interest based on
the observed data. MI can be performed by first running an
Expectation-Maximization (EM)-type algorithm [12], and
then by employing a data augmentation procedure [13], as
implemented in some software packages (e.g. SAS procedure
PROC MI, Splus missing data library). The EM algorithm
is useful for two reasons: it provides good starting values
for the data augmentation scheme, and it gives us an idea
about the convergence behavior. Data augmentation using
the Bayesian paradigm has been perceived as a natural tool
to create multiply imputed data sets. For further details, see

[3] and [14]. When both μ and Σ are unknown, the conjugate
class for the multivariate normal data model is in the normal
inverted-Wishart family. When no strong prior information
is available about θ, one may apply Bayes’ theorem with an
improper prior. In the simulated examples, a noninformative
prior was used to reflect a state of relative ignorance, which
is often bluntly expressed as “let the data talk”. Initial es-
timates for θ are typically obtained by the EM algorithm.
Then, a data augmentation scheme is implemented as fol-
lows: First, a value of missing data from the conditional pre-
dictive distribution of Ymis, Y

(t+1)
mis ∼ P (Ymis|Yobs, θ

(t)), is
drawn. Then, conditioning on Y

(t+1)
mis , a new value of θ from

its complete-data posterior, θ(t+1) ∼ P (θ|Yobs, Y
(t+1)
mis ) is

drawn. Repeating these two steps from a starting value θ(0)

yields a stochastic sequence (θ(t), Y
(t)
mis) : t = 1, 2, ... whose

stationary distribution is P (θ, Ymis|Yobs), and the subse-
quences θ(t) and Y

(t)
mis have P (θ|Yobs) and P (Ymis|Yobs) as

their respective distributions. For a reasonably large number
of iterations, the convergence to these stationary distribu-
tions is achieved. Since the complete-data likelihood is as-
sumed to follow a multivariate normal distribution, drawing
from conditional distributions above is relatively straight-
forward and can be performed by applying sweep operators
to subsets of the vector μ and the matrix Σ.

• PAN : The model used by PAN was designed to pre-
serve the following relationships: (a) Relationships among
response variables within an individual at each time point;
(b) Growth or change in any response variable within an in-
dividual across time points; and (c) Relationships between
the response variables and any covariates included in the
model. It relies on a multivariate extension of well-known
linear mixed-effects models [9]. This type of model separates
the fixed effects (commonalities) and the random effects
(heterogeneities) which are population-averaged regression
coefficients and perturbations due to inter-subject variation,
respectively. The computational engine of PAN is a Gibbs
sampling algorithm [15] which simulates the unknown quan-
tities in a three-step cycle: (1) Draw subject-specific random
effects based on some plausible values assumed for the miss-
ing data and the model parameters. (2) Draw new random
values of the model parameters based on the assumed values
for the missing data and random effects obtained in (1). (3)
Draw new random values for the missing data given the val-
ues in (1) and (2). Repeating (1), (2) and (3) in turn defines
a Markov chain [16]. Upon convergence, the final simulated
values for the missing data come from the distribution which
multiple imputations should be drawn. In the current study,
a default noninformative prior was used. In addition, fixed
and random effects regressor matrices were defined in accor-
dance with the way we simulated complete data. For details
of PAN, see [11] and [17].
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3. SIMULATION STUDIES

3.1 Philosophy

Describing a real phenomenon by generating an environ-
ment within which the process is assumed to operate is not
uncommon and is often the only feasible way of evaluation.
In conjunction with this, creating simulated data sets that
are generated around a real data set has been increasingly
common in medical statistics, with the rationale being re-
producing the real data trends with compatible distribu-
tional characteristics. Because there is usually no consensus
among statisticians about which of the competing methods
is best, many advocate sensitivity analyses that could be
performed by trying a variety of methods, or varying the
model parameters over a plausible range to see what hap-
pens. This approach is valuable, but limited. Instead, we
suggest simulating the performance of a method when its
assumptions are unmet by proposing a variety of popula-
tions that are capable of producing data like those actually
seen, simulating behavior of various methods over repeated
samples from each population, and subsequently identifying
methods that seem to perform well for most of the popu-
lations. To elaborate further, suppose we identify a family
of models that, from a likelihood standpoint, fit the data
equally well. If our basic conclusions about effects of interest
do not change drastically over this family, then the scientific
validity of these conclusions is enhanced. Conversely, if the
answers do exhibit great variation, drawing firm conclusions
seems unwise. Robustness of results over the domain of pa-
rameters is desirable and fortunate when it occurs. Yet there
is another type of analysis which may lead us to prefer one
model, M1, to another, M2, even when M1 and M2 achieve
the same likelihood for the current data set. Suppose that
we devise a variety of plausible population models, different
in nature but all tending to produce samples that resemble
the observed data. If, by simulation, we discover that M1

performs better than M2 across many of these populations,
then we may be more inclined to trust M1 than M2 [19, 18].
In this section, we present two simulation studies driven by
this philosophy.

3.2 Simulation design

Our real-data example that anchors the simulation study
comes from Hedeker and Gibbons [20], who use the data
from the National Institute of Mental Health Schizophrenia
Collaborative Study. Patients were randomly assigned to re-
ceive one of three anti-psychotic medications or a placebo.
We collapsed the subjects from the three drug treatments
into a single group, because the performance of the three
drugs was reported to be quite similar [20]. The outcome
of interest, severity of illness, was measured on an ordinal
scale ranging from 1 (normal) to 7 (extremely ill), which we
treated as continuous. Of note, there are non-integer val-
ues due to multiple raters in the data set. Measurements

were planned for weeks 0, 1, 3, and 6, but missing values oc-
curred primarily due to drop-out. A few subjects had miss-
ing measurements and subsequently returned; for simplicity
we have removed these. (We could have included these cases
with non-monotone missingness, as Hedeker and Gibbons
[20] did. We decided to exclude them to simplify the task
of constructing alternative hypothetical population models
for our simulations.) The monotone missingness assumption
(drop-out) has little or indiscernible bearing on the conclu-
sions drawn in this paper and was merely done for conve-
nience. A small number of measurements were also taken at
intermediate time points (weeks 2, 4, and 5) which we also
ignore. With these exclusions, the sample contains 312 pa-
tients who received a drug and 101 who received a placebo.
In the drug group, 3 patients dropped out immediately af-
ter week 0, 27 dropped out after week 1, 34 dropped out
after week 3, and 248 completed the study. In the placebo
group, no patients dropped out after week 0, 18 dropped
out after week 1, 19 dropped out after week 3, and there
were 64 completers. Hedeker and Gibbons [20] noted that
the mean response profiles are approximately linear when
plotted against the square root of week, and they express
time on the square-root scale in their models. Adopting this
convention, we define time to be the square root of week.
Mean response profiles for drop-outs and completers in the
two groups are shown in Figure 1. In this trial, the mean
profile for the placebo group is slightly declining, indicating
mild improvement over time, but the drug group declines
more dramatically. Dropout affects the two groups differ-
ently. If we classify patients as dropouts or completers, the
dropouts in the placebo group appear to be more severely
ill than the completers, and show less improvement. In the
drug group, however, the opposite occurs: dropouts appear
to be less severely ill than completers, and improve more
rapidly. One plausible explanation is that those receiving
the placebo who experience little or no improvement may
be leaving the study to seek treatment elsewhere. On the
other hand, those in the drug group who improve dramati-
cally may be dropping out because they feel that treatment
is no longer necessary.

Figure 1. Mean observed response profiles by the treatment
group (placebo, drug) and the drop-out status (drop-out,

completer), plotted versus T = square root of week.
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3.3 Incomplete data generation

We generate the complete data based on well-known lin-
ear mixed-effects model [9]. Let yi = (yi1, . . . , yini)

T denote
the responses for subject i. The model is

(1) yi = Xiβ + Zibi + εi,

where Xi (ni × p) and Zi (ni × q) contain covariates, β con-
tains fixed effects, bi ∼ N(0, ψ) contains random effects, and
εi ∼ N(0, σ2Vi). Times of measurement are often incorpo-
rated into Xi and Zi, allowing the response trajectories to
vary by subject. Common choices for Vi include the identity
or patterned (e.g. autoregressive or banded) matrices that
reflect serial correlation. In this specific example, yi’s are the
responses for individual i at weeks 0, 1, 3, and 6. In our simu-
lated populations, we assume that yi = Xiβ+Zibi+εi where
the columns of Xi are a constant (one); G (0 for placebo, 1
for drug); T (square root of week); and GT . The columns
of Zi are a constant and T . For the first population, the
fixed effects are set to β = (5.36, 0.05,−0.32,−0.65)T , the
random effects bi are normally distributed with covariance
matrix

ψ =
[

0.35 0.04
0.04 0.23

]
,

and the elements of εi are independent and normal with
variance σ2 = 0.60.

We assume that dropout occurs by the following selec-
tion process: the probability that patient i drops out imme-
diately before week w = 1, 3, 6, given that he or she has not
previously dropped out, is

expit(αw + γ1yiw + γ2y
2
iw + γ3G),

where α1 = −1.90, α3 = 0.53, α6 = 0.90, γ1 = −1.25,
γ2 = 0.15, and γ3 = −0.90. For the second population, we
set β = (5.36, 0.05,−0.32,−0.65)T ,

ψ =
[

0.35 0.04
0.04 0.23

]
,

and σ2 = 0.60; the probability that patient i drops out im-
mediately after week w = 0, 1, 3 is

expit(αw + γ1yiw + γ2y
2
iw + γ3G),

where α0 = −0.69, α1 = 2.27, α3 = 2.48, γ1 = −2.02,
γ2 = 0.24, and γ3 = −0.87. Notice that dropout in the first
population is nonignorable, because the probability that yiw

is missing depends directly on its value; dropout in the sec-
ond population is ignorable, depending only on the past ob-
served response. The treatment effects in the two popula-
tions are −0.80 and −0.65, respectively. Average response
trajectories by treatment group (placebo versus drug) and
dropout status (dropout versus completer) for these two
populations are shown in Figure 2. As can be seen, the

Figure 2. Mean observed response profiles by the treatment
group (placebo, drug) and the dropout status (dropout,

completer) in simulated data from (a) nonignorable selection
population and (b) ignorable selection population.

Table 1. Average percentage of available subjects at four
measurement weeks across treatment groups for real data and
simulated data under ignorable and nonignorable missingness

Source Week0 Week1 Week3 Week6

Overall Real data 100 99.27 88.38 75.54
Ignorable 100 99.04 88.41 75.78
Nonignorable 100 99.17 89.64 74.84

Drug Real data 100 99.04 90.38 79.49
Ignorable 100 99.28 91.37 80.50
Nonignorable 100 99.43 92.12 78.53

Placebo Real data 100 100 82.18 63.37
Ignorable 100 98.33 79.29 61.21
Nonignorable 100 98.35 81.73 62.83

mean response profiles under both nonresponse mechanisms
closely mimic the characteristics of the real data trends on
average. In addition, the percentage of available subjects
(Table 1) and average scores (Table 2) at four measurement
weeks among drug and placebo patients for real and simu-
lated data, support this resemblance.

3.4 Parameter of interest

In clinical trials, drug effect over time (drug-time interac-
tion) is a critically important quantity in that the impact of
the treatment typically becomes apparent as the time goes
by. Since most practitioners regard this interaction effect as
a primary measure in assessing the effectiveness of treat-
ments, we treat it as our parameter of interest. The analysis
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Table 2. Average severity scores during four measurement
weeks for real and simulated data

Source Week0 Week1 Week3 Week6

Overall Real data 5.39 4.57 4.03 3.35
Ignorable 5.40 4.58 3.94 3.34
Nonignorable 5.41 4.57 3.94 3.43

Drug Real data 5.39 4.44 3.80 3.10
Ignorable 5.41 4.44 3.72 3.07
Nonignorable 5.44 4.41 3.69 3.13

Placebo Real data 5.37 4.99 4.79 4.32
Ignorable 5.36 5.04 4.73 4.40
Nonignorable 5.32 5.09 4.82 4.57

model for post-imputation data is the linear mixed model
(Equation 1) that is presented in Section 3.3.

3.5 Evaluation criteria

The simulation procedure consisted of complete data gen-
eration, imposing missing values, MI under NORM and
PAN with data augmentation whose starting values were ob-
tained from the EM algorithm, finding the estimates for the
drug-time interaction, and combining them by Rubin’s rules
[2]. The procedure was repeated 500 times for each of the
2×2 = 4 scenarios (two sets of data generation mechanisms,
and two imputation models). To make a genuine compari-
son, identical incomplete data sets were used for NORM and
PAN within each scenario for each of the N = 500 replicates
in the simulation. The number of subjects is 413 as in the
original data. Under NORM, the model included responses
at four measurement weeks as well as the treatment indica-
tor; and under PAN, the population-averaged and subject-
specific parts were the same as the one in Section 3.3. Un-
der both imputation models, the number of imputations was
10. The number of EM cycles varied between 100 and 200,
therefore following the recommendation by Schafer [3], the
number of iterations for the data augmentation procedure
was chosen to be 500.

The relative performances were evaluated using the fol-
lowing quantities that are frequently regarded as benchmark
accuracy and precision measures:

Standardized bias (SB): the relative magnitude of the raw
bias to the overall uncertainty in the system. If the param-
eter of interest is θ, the standardized bias is 100 × |E(θ̂)−θ|

SE(θ̂)
,

where SE stands for standard error. If the standardized bias
exceeds 50%, then the bias begins to have a noticeable ad-
verse impact on efficiency, coverage and error rates [21].

Coverage rate (CR): the percentage of times that the
true parameter value is covered in the confidence interval.
If a procedure is working well, the actual coverage should
be close to the nominal rate (i.e. Type I and Type II er-
ror rates are properly controlled). However, it is important
to evaluate coverage with the other measures, because high
variances can lead to higher coverage rates. We regard the

Table 3. Performances of NORM and PAN for continuous
data under both missingness mechanisms. TV=True value,

AE=Average estimate, CR=Coverage rate, SB=Standardized
bias, RMSE=Root mean square error, and AW=Average
width. The number of subjects is 413, and the number of

simulation replicates is 500
Ignorable Nonignorable

Quantity NORM PAN NORM PAN

TV −0.6504 −0.650 −0.800 −0.800
AE −0.652 −0.655 −0.714 −0.726
CR 95.1 94.8 81.9 85.4
SB 0.46 3.05 105.07 91.24
RMSE 3.031 3.032 3.059 3.067
AW 0.33 0.32 0.32 0.32

performance of the interval procedure to be poor if its cov-
erage drops below 90%.

Root-mean-square error (RMSE): an integrated measure
of bias and variance. It is considered to be arguably the best
criterion for evaluating θ̂ in terms of combined accuracy and

precision. RMSE(θ̂) is defined as
√

Eθ[(θ̂ − θ)2].
Average width of confidence interval (AW): the distance

between average lower and upper limits across 500 confi-
dence intervals. A high coverage rate along with narrow,
calibrated confidence intervals translates into greater accu-
racy and higher power.

Under the above specification, standardized bias is the
pure accuracy measure, average width is the pure efficiency
measure, coverage rate and RMSE are the hybrid measures.

3.6 Results

The results for the two imputation models (NORM and
PAN) under the two missingness mechanisms (ignorable and
nonignorable) are shown in Table 3. In addition to the quan-
tities mentioned in Section 3.5, we report the true value
(TV). The true values were computed based on complete
data. Since conditional normality in the linear-mixed ef-
fects model implies marginal normality, the true values are
the same under NORM and PAN. When the nonresponse
mechanism is ignorable, NORM and PAN produced almost
identical results in terms of bias, coverage, and efficiency
measures (left half of Table 3). These imputation models
are designed for ignorable nonresponse, although the theory
of MI does not necessarily require ignorability. Imputation
inferences can be conducted under nonignorable models as
well [18, 19]. As one would expect, in this particular exam-
ple, the performance of the methods as measured by the
key evaluation quantities becomes worse when the missing-
ness mechanism is nonignorable. However, the research goal
of this manuscript is not assessing sensitivity for departures
from the ignorability assumption. Rather, it is a comparison
study between the two well-accepted continuous imputation
approaches. It is interesting to note that regardless of their
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marginal performances, from a comparative point of view,
they fare nearly equally in this example in terms of the bias
and efficiency measures we considered.

The fraction of missing information (FMINF) is a major
aspect in the imputation world. In this example, FMINF for
the regression coefficient of the interaction effect is about
20%. NORM is conceptually, operationally and computa-
tionally simpler than PAN, and comparable results sug-
gest that practitioners may prefer NORM over PAN, when
FMINF is not too large for the continuous longitudinal
data although PAN is specifically designed for this type of
data. In other words, PAN would be more correct, accurate
and appropriate, however, applied researchers who are not
statistically sophisticated enough may rely on NORM on
the grounds of simplicity and familiarity with user-friendly
software (Windows-based software package is available at
http://www.stat.psu.edu/∼jls/misoftwa.html).

What if the data type is clearly unconformable with these
imputation methods? In the next section, we attempt to
answer this question.

3.7 Ordinal data: A sensitivity study for
incompatible data types

Here, we investigate a situation where the data are of
ordinal type, hence the two imputation models are incom-
patible with the data.

The original data were ordinal, although there was a mi-
nor twist due to multiple raters, as mentioned in Section
3.2. Simulated data sets that we used up to this point were
continuous. We proceeded with the same incomplete data
generation scheme, then ordinalized the data to seven cat-
egories by rounding to the nearest observed category. The
original “severity of illness” was scored as 1=normal, not at
all ill; 2=borderline mentally ill; 3=mildly ill; 4=moderately
ill; 5=markedly ill; 6=severely ill; 7=extremely ill. We also
considered a case with four ordinal levels by re-coding the
seven ordered categories into four as Hedeker and Gibbons
[22] did: (1) normal or borderline mentally ill, (2) mildly
or moderately ill, (3) markedly ill, and (4) severely or ex-
tremely ill.

After imputation and rounding imputed values to the
nearest observed category, we analyzed the resulting data
sets by a random intercept and slope mixed-effects ordinal
regression model. For subject i at timepoint j, for c− 1 cu-
mulative logits (here, c = 4 or 7), with D denoting Drug
(0 for placebo, 1 for anti-psychotic drug), and W denoting
Week, log

[ Pijc

1−Pijc

]
= γc − [β0 + β1

√
Wj + β2Di + β3(Di ×√

Wj) + ν0i + ν1i

√
Wj ], where β’s stand for fixed effects,

ν0i is the random intercept, ν1i is the random slope, and γ’s
stand for thresholds (γ1 = 0). Random effects are assumed
to follow a normal distribution. For the four-category case,
in this model, −β0 represents the week 0 first logit (category
1 versus 2-4), γ1 − β0 the week 0 second logit (1-2 versus
3-4), and γ2 − β0 the week 0 third logit (1-3 versus 4) for

Table 4. Performances of NORM and PAN for ordinal data
with four and seven levels under both missingness

mechanisms. TV=True value, AE=Average estimate,
CR=Coverage rate, SB=Standardized bias, RMSE=Root

mean square error, and AW=Average width. The number of
subjects is 413, and the number of simulation replicates is 500

Ignorable Nonignorable
Levels Quantity NORM PAN NORM PAN

TV −0.859 −0.859 −1.018 −1.018
AE −0.826 −0.829 −0.926 −0.935

4 CR 94.9 95.2 88.5 90.5
SB 24.40 22.06 72.40 65.92
RMSE 0.561 0.563 0.726 0.733
AW 0.51 0.51 0.51 0.51

TV −0.861 −0.861 −1.035 −1.035
AE −0.843 −0.847 −0.950 −0.961

7 CR 94.9 94.3 91.6 91.6
SB 14.92 11.38 69.64 61.26
RMSE 0.575 0.578 0.745 0.753
AW 0.50 0.50 0.51 0.50

the placebo group. In terms of the regression parameters, β1

represents the weekly (in square root units) logit change for
placebo patients, β2 is the difference in the week 0 for drug
patients, and β3 is the difference in the weekly (square root)
logit change between drug and placebo groups. The random
subject effects ν0i and ν1i represent intercept and slope de-
viations for subject i, respectively. The seven-category case
relies on the same model with different interpretations for
the β coefficients. In both the four- and seven-category cases,
the parameter of interest is β3. The simulation setup is iden-
tical to the one that is presented in Sections 3.2 to 3.5, ex-
cept that we have ordinal data rather than continuous data,
and the mixed model formulation is non-linear rather than
linear at the analysis phase.

The results have been shown in Table 4. We have not
found substantial differences between NORM and PAN as
measured by the key evaluation quantities. Coverage rates,
biases, variabilities, and average width of the confidence
intervals revealed negligible differences. Furthermore, it is
worth noting that the performances of both imputation
models are very satisfactory under ignorable nonresponse
(we observed a deterioration under nonignorable nonre-
sponse) when the imputation technique is clearly incompat-
ible with the data type. Again, similar results may be due
to the fairly low FMINF (about 18%) for β3. Moreover, we
encourage researchers that they use discrete data imputa-
tion models [3, 23, 24] when they can, however, they may
resort to simpler methods for convenience and simplicity,
especially if FMINF is small and if they feel uncomfortable
with more appropriate but complicated discrete data meth-
ods. We further discuss this issue in Section 4.

Of note, implementing the two imputation models on the
real data set yields parameter estimates that are very close
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to the true values for the seven-category case we tabulate
in Table 4 under ignorable nonresponse (−0.856 for NORM,
−0.852 for PAN), as one would expect since the simulated
data sets carry the underlying characteristics of the real data
on average.

4. DISCUSSION

We did not identify major performance differences be-
tween PAN and NORM for both continuous and ordinal
versions of data. For continuous longitudinal data, PAN is
conceptually more appropriate; for ordinal data, both im-
putation models are technically unsuitable. However, our
limited simulation study demonstrates that imputing with
NORM may be a viable approach in some settings given its
simplicity and ease of execution from a practitioner’s point
of view.

There are a few issues that need to be addressed. First,
this manuscript is not intended to give definitive advice. The
results are based on a limited simulation study. One may ar-
gue that simulation studies presented herein are too simplis-
tic compared to many real-life situations where incomplete
data structures are more complicated. This argument has
certain validity. However, our intention was giving applied
researchers some guidance on the relative performances of
PAN and NORM for continuous and ordinalized longitudi-
nal mental health data via simulated examples that mimic
the features of the real data set. Second, both imputation
models are designed to work under ignorable nonresponse,
although nonignorable extensions are available [19]. For this
reason, they did not perform very well under nonignorable
nonresponse. Nevertheless, it is worth to repeat that they
yielded similar results. Third, the interaction effect of the
treatment group and time was chosen to be the parameter of
interest. Other parameters could have been investigated, but
drug effect over time is typically regarded as a key quantity
in practice. Fourth, for discrete data, we rounded imputed
data to the nearest observed category; better rounding rules
can be developed. Fifth, we recognize that negligible differ-
ences between PAN and NORM may be due to the magni-
tude of fraction of missing information which was relatively
small. Finally and most importantly, whenever feasible, re-
searchers should employ “correct” imputation models such
as PAN for continuous longitudinal data, saturated multi-
nomial model [3] or sequential regression imputation [23]
for discrete data. Again, if computational capabilities of re-
searchers do not allow them to use these more “appropriate”
methods, imputing under multivariate normality assump-
tion may be a reasonable way to proceed in some settings.
As always, imputation and analysis modes should be guided
by the applied context of the problem as well as convenience
versus accuracy considerations.
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