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A latent model approach to define event onset
time in the presence of measurement error

Peng Huang, Ming-Hui Chen and Debajyoti Sinha

For progressive diseases, it is often not so straightfor-
ward to define an onset time of certain disease condition due
to disease fluctuation and clinical measurement variation.
When a disease onset is claimed through the first presence
of some clinical event which is subject to large measurement
error, such onset time could be difficult to interpret if pa-
tients can often be seen to “recover” from the disease condi-
tion automatically. We generalize the traditional event onset
time concept to control the recovery probability through the
use of a stochastic process model. A simulation algorithm is
provided to evaluate the recovery probability numerically.
Bayesian latent residuals are developed for model assess-
ment. This methodology is applied to define a new postural
instability onset time measure using data from a Parkin-
son’s disease clinical trial. We show that our latent model
not only captures the essential clinical features of a postural
instability process, but also outperforms independent pro-
bit model and random effects model. A table of estimated
recovery probabilities is provided for patients under various
baseline disease conditions. This table can help physicians to
determine the new postural instability onset time when dif-
ferent thresholds of estimated recovery probability are used
in clinical practice.

AMS 2000 subject classifications: Primary 62P10; sec-
ondary 62M05.
Keywords and phrases: Binary process, Brownian mo-
tion, Event onset time, Latent model, Probit model, Ran-
dom effects model.

1. INTRODUCTION

Many chronic diseases are progressive. For example, the
progression of Parkinson’s disease (PD) is caused by a con-
tinuous and irreversible brain neuronal cell death. The onset
time to a milestone event, which is biologically difficult to re-
cover without medical treatment, is often used by physicians
to assess a patient’s disease condition and to determine when
certain intervention should be initiated. There are many
such examples. The onset of a prespecified glomerular fil-
tration rate for the end-stage renal disease is an indicator
of kidney function failure and often requires the initiation
of certain kidney treatment. In Parkinson’s disease, the on-
set of postural instability is an indicator of impaired body

balance and often requires special care to prevent patients
from falling that can cause serious injury or death. If the
presence or absence of an event is subject to large measure-
ment errors, the traditional onset time, defined as the first
time when this event is seen, could become difficult to in-
terpret and less valuable to physicians in medical decision
making.

The onset of postural instability (PI) or impaired body
balance and coordination in PD is one of the most seri-
ous indicators of disease progression that is associated with
high risk of falling (resulting in fractured ankles, hips, shoul-
ders, and skulls), dementia, and death (Kieburtz, 2003).
Currently, PI status is primarily determined by the pos-
tural stability score which is evaluated through a pull test.
The pull test is performed by pulling a patient’s shoulders
from behind briskly and scoring how well the patient could
recover from falling. Although patients with PI are, in prin-
ciple, difficult to recover to normal PI absence through PD
medications (Bloem, 1992; Rogers, 1996), examiner’s inade-
quate evaluation (even from a well trained examiner) makes
more than 90% of the examinations incorrectly measured
(Munhoz et al., 2004). Many factors contribute to measure-
ment errors, for example, the examiner’s force of pull and
the patient’s effort to recover body balance when pulled. As
pointed out by Fahn (2006) and Hauser (2006), large mea-
surement errors can still be seen even if examinations are
performed by the same examiner, on the same patient, and
at the same clinical visit. Large measurement errors lead
to high false positive rate of PI presence, particularly for
early PD patients. That is, patients without PI have a high
chance to be misclassified as having PI. This is frequently
seen in clinical trials and clinical practices. For example, in
the multicenter controlled clinical trial of deprenyl and toco-
pherol antioxidative therapy of Parkinsonism (DATATOP,
The Parkinson Study Group, 1989, 1990), more than 50%
of treatment naive patients “recovered” to normal PI ab-
sence within 3 months of their previous PI presence without
receiving any anti-PD medication. Although limitations of
pull test were well documented in the literature, such a way
of measuring PI onset time continues to serve as one of the
most critical measures of PD disability because there is no
other commonly accepted clinical measure that could re-
place it. As a consequence, an early PD patient not treated
with PD medication can be seen to have frequently alter-
nated PI presence and absence observations before the pa-
tient has become seriously paralyzed. This makes inference
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drawn from the traditional PI onset time difficult to inter-
pret (Section 5).

We extend the traditional onset time measure to a more
general setting when the presence of an event is subject to a
high false positive rate. Let {Y (t), t ≥ 0} be a binary process
taking value 0 or 1. For the above PD example, Y (t) = 1 (or
Y (t) = 0) represents PI presence (or absence) at time t. Sec-
tion 2 proposes a latent model that characterizes important
clinical and biological features of longitudinal PI process.
Whenever a Y (t) = 1 is observed at time t = c, we use the
latent model to compute the recovery probability that an
Y (u) = 0 is observed within time interval u ∈ [c, c + d] for
some clinically meaningful choice of interval width d > 0.
The new PI onset time defined in Section 3 is the first
time c such that the corresponding recovery probability is
lower than some prespecified clinically meaningful threshold
η. Theoretical properties of the new PI onset time are in-
vestigated. A simulation algorithm is provided to compute
the recovery probability. Section 4 gives a model assessment
method. Section 5 applies the proposed latent model and
the new PI onset time measure to DATATOP trial data. A
table of recovery probabilities for patients with different dis-
ease conditions is provided. Proofs of all relevant theorems
are given in the Appendix.

2. A LATENT PROCESS MODEL

For a typical PI process {Y (t), t ≥ 0}, the marginal
variance of Y (t) initially increases in time, representing a
gradual increased variation in the function of body balance.
Later, the variance decreases in time, representing the pro-
gression toward final paralyzation. A dynamic latent pro-
cess model is a useful and popular tool to model a corre-
lated binary process. Latent process models for independent
binary response data proposed by Albert and Chib (1993,
1995), Chen, Dey, and Shao (1999) and others are not ap-
plicable to this problem because they cannot account for
within-subject association of Y (t). Although Chen and Dey
(1998) developed a unified approach to model correlated bi-
nary and ordinal response data using scale mixture of mul-
tivariate normal links, and Dunson (2003) proposed a dy-
namic model for multidimensional longitudinal data, their
approaches essentially require observation times of Y (t) to
be evenly-spaced and equal for all patients. To ensure a
good quality of the new PI onset time measure, this sec-
tion presents a latent model that satisfactorily character-
izes important clinical and biological features of PI process.
Transitions between Y (t) = 1 status and Y (t′) = 0 status
are modeled longitudinally, accommodating within-subject
association of the observed longitudinal process and poten-
tial confounding covariates.

Suppose a study has n subjects. Let Yi(t) be the observ-
able binary PI status from subject i at time t measured
by examiner δi, δi ∈ {1, 2, . . . , C}, Yi(s) = {Yi(t), t ≤ s}
be all available information up to time s from subject i

(i = 1, . . . , n), and Y(s) = (Y1(s), . . . ,Yn(s))′. We consider
the point process whose follow up times are independent of
the treatment assignment and Yi(t). The unobservable tra-
jectory of disease biomarker Wi(t) from the ith patient is
modeled through a latent process

(1) Yi(t) =
{

1 if Wi(t) > 0,
0 if Wi(t) ≤ 0,

where

(2)
Wi(t) = z′iβ1 + h(t, β2)

+ σbi + τb(δi) + εi0I[t = 0]
+ 1√

g(t)
εi(t)I[t > 0];

bi ∼ iid N(0, 1); b(δi) ∼ iid N(0, 1); nonnegative continuous
function g(t) is used to capture the variation of the latent
process; {εi} = {εi(t), t ≥ 0} is a standard Brownian motion
with drift zero and origin εi(0) ≡ 0. Process {εi}, bi, b(δi),
and εi0 are independent. Since var[Wi(t)] = σ2 +τ2 + t/g(t)
for t > 0 and var[Wi(0)] = σ2 + τ2 + 1, it is natural to
assume that limt→0 t/g(t) = 1 to ensure continuity of vari-
ance function at t = 0. Vector zi contains all covariates from
subject i. The h(t, β2) is a known continuous function of the
follow up time t and unknown parameter β2. Parameters β1

and β2 measure the fixed effects of the treatment and other
risk factors on the patient-specific latent disease trajectory
Wi(t). Random variables bi and b(δi) capture patient-specific
and examiner-specific random effects respectively. The indi-
cator function I[E] is defined as I[E] = 1 if event E is true
and 0 otherwise. Random variable εi0 ∼ N(0, 1) takes unit
variance to ensure the identifiability of the latent process
model. Variable εi0 captures a possible lack of predictabil-
ity of the baseline status Yi(0) for the status Yi(t) at time
t > 0. The reason to include εi0 is to adjust for the expected
discontinuation of the latent disease trajectory at t = 0.

The motivation of this model is to capture the desired
clinical and biological features of the postural instabil-
ity process. First, the marginal expectation E[Wi(t)|zi] =
h(t, β2) + z′iβ1 depends on t only through h(t, β2). When
the disease is progressive and the patients do not re-
ceive any treatment that could effectively stop the dis-
ease progression, h(t, β2) is a monotone increasing func-
tion in t. Second, since P{Yi(t) = 1|β1, β2, σ, τ, zi} =
Φ[{z′iβ1 + h(t, β2)}/

√
σ2 + τ2 + t/g(t) ], the marginal vari-

ation of Yi(t) is increasing in t when z′iβ1 + h(t, β2) < 0
and h(t, β2) is increasing in t. This is true for early PD pa-
tients who are not on anti-PI treatment. However, after a
patient has progressed to a certain advanced level such that
z′iβ1 + h(ti0, β2) > 0 for some ti0 > 0, the patient is more
likely to have sustained Yi(t) = 1 observations. This feature
is further captured by the decreasing marginal variation of
Yi(t) in t. Third, marginal probability P{Yi(0) = 1} is the
same as the binary regression model with probit link. This
property is important since the primary role of the latent
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Brownian process is to capture the dependency among re-
peated measures of Yi(t), and, at the same time, to preserve
the marginal model of Yi(t) as a binary regression model un-
der the probit link. Fourth, for any 0 ≤ t1 < t2, correlation
of two latent values from the same subject is

corr{(Wi(t1), Wi(t2))|bi, b
(δi)} =

√
t1
t2

.

It goes to zero as (t2− t1) increases to infinity while keeping
t1 fixed; and increases to 1 as both t1 and t2 go to infinity
while keeping (t2 − t1) fixed. This captures an essential PD
feature that a PD patient will eventually completely lose the
postural reflexes and becomes “frozen” if the PD progression
was not stopped or reversed.

The proposed model does not require regularly spaced
and common follow up visit times for all patients. Although
Wi(t) is Markovian, the resulting binary process Yi(t) is not.
When the Markov assumption on the observable binary pro-
cess Yi(t) is violated, our proposed latent process model is
useful to model a dynamic binary process measured at irreg-
ular time points. In this sense, our proposed model is quite
different from transition models discussed in Diggle, Liang,
and Zeger (1994, Chapter 10).

Let yi0 = {Yi(t) : t = ti0 = 0, ti1, . . . , timi} be the col-
lection of all observed PI values from patient i. Write W =
(Wi0,W′

i, i = 1, 2, . . . , n)′ where Wi0 = Wi(0) and Wi =
(Wi(ti1), Wi(ti2), . . . , Wi(timi))

′. Let Y = (y′
10, . . . ,y

′
10)

′,
z = (z′1, z

′
2, . . . , z

′
n)′, and T = (tij , j = 1, 2, . . . ,mi, i =

1, 2, . . . , n). We use D = (Y, z, T,W) to denote the com-
plete data and use θ = (β1, β2, σ

2, τ2) to denote the collec-
tion of all model parameters. The complete data likelihood
function is given by

L(θ|D) =∫
. . .

∫
1

(2π)C/2
exp

{
− 1

2

C∑
k=1

b(k)2

}

n∏
i=1

1
(2π)1/2

exp
{
− 1

2
b2
i

}
[ mi∏

j=0

{Yi(tij)I[Wi(tij) > 0] + (1 − Yi(tij))I[Wi(tij) ≤ 0]}
]

× 1√
2π

exp
[
−1

2

{
Wi0 − z′iβ1 − h(0, β2) − σbi − τb(δi)

}2
]

× exp
[
−1

2

{
Wi − (z′iβ1 + σbi + τb(δi))Jmi − Hi(β2)

}′

DiV
−1
i Di

{
Wi − (z′iβ1 + σbi + τb(δi))Jmi − Hi(β2)

} ]
|Di||Vi|−1/2

(2π)mi/2
db1 . . . dbndb(1) . . . db(C),

where Jmi is a mi × 1 vector whose components are all
equal to 1, ti0 = 0, Hi(β2) = (h(ti1, β2), h(ti2, β2), . . . ,

h(timi , β2))′, Di = diag(
√

g(ti1), . . . ,
√

g(timi)), and

(3) Vi =

⎛
⎜⎜⎜⎜⎜⎝

ti1 ti1 · · · ti1
ti1 ti2 · · · ti2
...

...
. . .

...
ti1 ti2 · · · timi

.

⎞
⎟⎟⎟⎟⎟⎠

The following theorem can be used to simplify expression
{Wi − (z′iβ1 + σbi + τb(δi))Jmi − Hi(β2)}′DiV

−1
i Di{Wi −

(z′iβ1 + σbi + τb(δi))Jmi − Hi(β2)} in likelihood function
L(θ|D):

Theorem 1. For any vector x = (x1, . . . , xm)′, the follow-
ing identity holds

x′V −1
i x =

x2
1

ti1
+

mi∑
j=2

(xj − xj−1)2

tij − ti,j−1
.

To estimate parameter θ, one can use a noninformative
prior π(θ) = π1(β1) π2(β2) π3(σ) π4(τ) ∝ π3(σ)π4(τ) for
θ, where distributions of π3(σ) and π4(τ) are obtained by
truncating Normal(0, λ2) (for large λ) distributions to the
range of (0, +∞). Given W, bi’s, b(k)’s, β1, β2, and τ , the
conditional posterior distribution of σ is a truncated normal.
Similarly, given W, bi’s, b(k)’s, β1, β2, and σ, the conditional
posterior distribution of τ is also a truncated normal. Gibbs
sampling algorithm can be used to sample (θ,W) from the
joint posterior distribution π(θ,W|Dobs). The implementa-
tion of the Gibbs algorithm is straightforward due to the
result established in Theorem 1 as well as the conjugate
priors for σ and τ .

3. A NEW MEASURE OF PI ONSET TIME

Applying the latent process model described in Section
2, this section develops a new measure of PI onset time
that is more consistent with characteristics of PD and
also incorporates measurement errors. When a PI is ob-
served at time c, we compute the conditional probability
P{min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, τ, z}, where d is a
pre-specified time interval width, and θ = (β1, β2, σ

2, τ2).
More specifically, for a chosen critical value η (0 < η <
0.5) and a pre-specified width d, we define the PI on-
set time of a patient with covariate vector zi by inf{c >
0, P [min(c≤t≤c+d) Yi(t) = 0 | Yi(c) = 1, θ, Zi] ≤ η}. In
other words, our new PI onset time is defined as the first
time when a patient has little chance to recover from PI in
a given length of time interval. Since PD is progressive and
the loss of postural reflexes is difficult to recover, the new PI
onset time measure is more robust than the traditional one
in the sense that it not only reflects the steadily degenerative
feature of PD, but also incorporates the variation from the
examiner. The use of a threshold value η to the conditional
probability P{min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, τ, z}
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makes the new PI onset time more clinically meaningful to
physicians in defining patient’s disease status.

Write Wi(t) as Wi(t) = ai0(t) + εi(t)I[t > 0]/
√

g(t) +
εi0I[t = 0], where {εi(t), t ≥ 0} is a standard Brownian mo-
tion with zero drift, εi(0) = 0, and ai0(t) = z′iβ1 +h(t, β2)+
σbi + τb(δi). In the following discussion about the computa-
tion of P{min(c≤t≤c+d) Yi(t) = 0 | Yi(c) = 1, θ, Zi, bi, b

(δi)},
we focus on the computation for a fixed subject. We thus
omit subscript i to simplify our notation and use b to de-
note (bi, b

(δi)). The density function of W (c) at W (c) = w,
given (θ, Z, b), is f(c, w) = φ(a0(c) − w), where φ(x) =
exp(−x2/2)/

√
2π is the density function of the standard

normal distribution. For w > 0, define continuous function
a(t, c, w) = a0(t + c)

√
g(t + c) − {a0(c) − w}

√
g(c) and the

stopping time T = inf{t : t ≥ 0, ε(t) = a(t, c, w)}. We are
led to the following Theorem.

Theorem 2. Suppose a(t, c, w) is continuous and left dif-
ferentiable in 0 < t ≤ d, P{W (c) > 0|θ, b, Z} = pc, and
f(c, w) = φ{a0(c)−w}. For the process {Y (t)} defined above
and two positive constants c and d, we have
P{min(c≤t≤c+d) Y (t) = 0 | W (c) = w, θ, b, Z} = P{T ≤
d|θ, b, z}. Furthermore,

P{min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, Z, b}

=
1
pc

∫ +∞

0

f(c, w)dw

∫ d

0

1√
t

φ

(
a(t, c, w)√

t

)

× lim
s↑t

1
t − s

E[I{T > s}{a(s, c, w) − ε(s)} |

ε(t) = a(t, c, w), θ, b, Z]dt.

This theorem shows that the new PI onset time can be
computed through the integration of a weighted boundary
cross probability of a standard Brownian motion to hit stop-
ping boundary a(t, c, w) in a given time interval. The com-
putation can be quite involved. However, if we note that
P{T ≤ d|θ, b, z} = P{ε(t) crossing over a(t, c, w) in 0 ≤ t ≤
d|θ, b, z}, we can use the following simulation algorithm to
estimate probabilities P{min(c≤t≤c+d) Y (t) = 0 | W (c) =
w, θ, Z, b} and P{min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, Z, b}:
Step 1. Generate a random value of b from the standard

normal distribution N(0, 1);
Step 2. Compute a0(t) = z′β1 + h(t, β2) + b

√
σ2 + τ2;

Step 3. Generate w from a truncated normal distribu-
tion N(a0(c), 1) with w ≥ 0. Let a(t, c, w) = a0(t +
c)

√
g(t + c) − {a0(c) − w}

√
g(c);

Step 4. Choose an integer n and generate a random sam-
ple x1, . . . , xn from the normal distribution N(0, d/n).
Compute the cumulative sum s(i) = x1 + · · · + xi,
i = 1, . . . , n for i = 1, . . . n;

Step 5. Compute δ = max1≤i≤n{s(i) − a(id/n, c, w)};
Step 6. Repeat Steps 4 and 5 for N1 times and record the

proportion of times when a δ > 0 is observed. De-
note this proportion by p(w, θ, b). This gives a Monte

Carlo estimate of P{min(c≤t≤c+d) Y (t) = 0 | W (c) =
w, θ, Z, b};

Step 7. Repeat Steps 3 through 6 for N2 times and average
p(w, θ, b) over w. This gives a Monte Carlo estimate of
P [min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, Z, b];

Step 8. Repeat Steps 1 through 7 for N3 times and average
P{min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, Z, b}
over b. This gives a Monte Carlo estimate of
P{min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, Z}.

When a patient’s disease condition is worsening over
time, h(t, β2) will be a monotone function in t. This is the
case when the onset time of a milestone event onset is in-
formative to physicians in determining treatment options.
The monotonicity established in the following Theorem 3
provides a theoretical support that the new PI onset time
measure not only provides a meaningful measure of disease
status but also reflects the stable degenerating nature of the
disease as well. Time c discussed above represents the po-
tential time that PI can occur. Let c0(> 0) be a lower bound
of c. The value of c0 depends on patient population and is
generally known to physicians. For example, c0 ≥ 1 day is
always true for all PD patients who does not have PI at
baseline (t = 0) since PD is a slow progressive disease. We
now establish some sufficient conditions when the probabil-
ity function P{min(c≤t≤c+d) W (t) ≤ 0 | W (c) = w, θ, Z, b}
is monotone in c (≥ c0) and w (> 0).

Theorem 3. (i) For any fixed c, θ, and Z, the probabil-
ity function P [min(c≤t≤c+d) Y (t) = 0 | Y (c) = 1, θ, Z, b] is
monotone increasing in d for d > 0. (ii) If g(t) = t and func-
tion a0(t+c)

√
g(t + c)−a0(c)

√
g(c) is monotone increasing

in c, then P [min(c≤t≤c+d) W (t) ≤ 0 | W (c) = w, θ, Z, b] is
monotone decreasing in c. (iii) If a0(t) is linear in t such
as a0(t) = γ0 + γ1t and g(t) = t, then the sufficient condi-
tions that P [min(c≤t≤c+d) W (t) ≤ 0 | W (c) = w, θ, Z, b] is
monotone decreasing in c in interval c ≥ c0 are γ1 > 0 and
γ0 ≤ 3c0γ1.

The sufficient conditions (iii) in Theorem 3 have a nice
clinical interpretation. When h(t, β2) is monotone increasing
in t, we must have γ1 > 0. Quantities γ1 and γ0 characterize
the disease progression rate and patient’s baseline disease
condition. If the patient’s condition is worsening over time,
and the disease progression rate is fast enough compared to
the patient’s baseline condition (malignant PD) such that
γ1 > 0 and γ0 ≤ 3c0γ1 hold, then the patient’s probability
to become PI in a time interval with fixed interval width is
increasing over time.

4. MODEL ASSESSMENT

Since repeated measures from binary process Yi(t) are
correlated, classical residuals such as Pearson residuals and
deviance residuals (McCullagh and Nelder, 1989) are diffi-
cult to calibrate because they have unknown sampling distri-
butions. We propose to use Bayesian residuals with continu-
ous posterior distributions. These residuals can be plotted to

428 P. Huang, M.-H. Chen and D. Sinha



check model fitting and to identify outliers. Albert and Chib
(1995) proposed Bayesian latent residuals for independent
binary response regression models. Chen and Dey (2000)
generalized the univariate Bayesian residuals of Albert and
Chib (1995) for correlated ordinal data.

For the latent model defined by (1) and (2), we propose
a simple approach based on subject-specific latent residuals
for assessing the goodness-of-fit of the proposed model. The
subject-specific latent residuals are defined as

ξi = V
−1/2
i Di{Wi − (z′iβ1 + σbi + τb(δi))Jmi − Hi(β2)}

where ξi is an mi-dimensional latent vector. It is easy to
see that ξi ∼ N(0, Imi) apriori. Also, ||ξi||2 = ξ′iξi ∼ χ2

mi

apriori. One common approach of using latent residuals in
model assessment is to compare the posterior distributions
of ξi’s. However, this approach does not work here because
mi’s are subject-dependent and posterior distributions of
ξi’s are not directly comparable between any two subjects
with different mi’s. To circumvent this problem, we calcu-
late the posterior probability pi = P (||ξi||2 ≥ ξ2

mi,α|Dobs)
and plot pi versus E(||ξi||2|Dobs), where ξ2

mi,α denotes the
(1 − α)th quantile of the χ2

mi
distribution, and the expec-

tation is taken with respect to the posterior distribution
π(θ, W |Dobs). As ||ξi||2 ∼ χ2

mi
apriori, it is expected that

pi’s should be roughly around α. Many large pi’s cast doubt
upon the model. In addition, an extreme large value of pi

reveals a possible outlier. For our application, α = 0.05 may
be sufficient although some other values of α can be tried.
The subject-specific residuals are quite attractive as they
account for the dependency of the repeated longitudinal
measurements of Yi(t). All posterior quantities involved in
the subject-specific latent residuals can be easily computed
using Gibbs outputs. Thus, our method of using Bayesian
latent residuals clearly has an advantage of computational
simplicity.

5. APPLICATION IN PARKINSON’S
DISEASE CLINICAL TRIAL

5.1 Description of DATATOP Data

The multicenter controlled clinical trial of deprenyl
and tocopherol antioxidative therapy of Parkinsonism
(DATATOP) was carried out in 1987–1989 (The Parkinson
Study Group, 1989, 1990). Eight hundred early PD patients
were evaluated by 34 investigators (examiners) from 28 clin-
ical centers. We adopted the PI definition from Elm et al.
(2005) to define Y (t) = 1 if any one of the following three
conditions holds at time t: postural stability ≥ 1; or falling
≥ 1; or freezing ≥ 3, and defines Y (t) = 0 otherwise. In the
DATATOP trial, although each subject was examined by the
same investigator throughout the study, the high PI recov-
ery probability makes the traditional PI onset time measure
based on the first transition time to Y (t) = 1 difficult to
interpret and even controversial, as shown below.

Since no tocopherol effect was found in the DATATOP
trial, we combined all patients who received deprenyl in
DATATOP to form a new treatment group and combined all
other patients to form a new placebo group. Let T1t and T1p

be the times from baseline with Y (0) = 0 to the first times of
PI presence with Y (t) = 1 in deprenyl and placebo groups,
respectively, and let T2t = min{t − T1t : t > T1t, Y (t) = 0}
and T2p = min{t − T1p : t > T1p, Y (t) = 0} be the cor-
responding first recovery times from PI presence status to
PI absence status in deprenyl treatment group and placebo
group respectively. Using all subjects with Y (0) = 0 at
baseline (301 subjects in placebo and 302 subjects in de-
prenyl treatment), and comparing Kaplan-Meier curves of
T1t and T1p using the logrank test, we find a strong evidence
of deprenyl treatment superiority over the placebo (logrank
test p-value = 0.0239). After fitting a proportional hazards
model with baseline covariates gender, age, disease duration
(duration0 and du2=duration02), total UPDRS (total0),
Schwab & England activities of daily living scale (seadl0),
and treatment (indicator of receiving deprenyl), the esti-
mated hazard ratio is exp(−0.324) = 0.723 for deprenyl
with p-value equal to 0.016 (Table 1). These results sug-
gest that deprenyl treatment improves the PI measure and
possibly even decreases the progression rate of PD. How-
ever, by comparing T2t and T2p using proportional hazards
model adjusting for covariates measured at times T1t and
T1p respectively, the hazard ratio was exp(−0.478) = 0.620
for deprenyl with p-value equal to 0.006 (Table 1). This
result, contrasting to the previous result, show that de-
prenyl worsens the progression of PD. Such conflicting re-
sults not only make the assessment of treatment effect
on PD progression difficult, but also make the PI onset
time measure not useful to assess a patient’s disease con-
dition.

5.2 Posterior inference

There were 34 investigators (examiners) from all 28 cen-
ters in the DATATOP trial. Each patient was evaluated by
the same investigator throughout the study. Each investiga-
tor examined 19 to 44 patients. We use b(δi) to denote the
random effect from investigator δi and set C = 34. To apply
the latent process model described in Section 2, we choose
h(t, β2) = β20 + β21t + β22Trt + β23t× Trt because a linear
fit in time is adequate for such a short two-year study. The
Trt is the binary indicator of the deprenyl treatment as-
signment. Covariates in zi include baseline measures of gen-
der (indicator of female), age (age0), disease duration (du-
ration0 and du20=duration02), total UPDRS (total0), and
Schwab & England activities of daily living scale (seadl0).
The follow up time t is measured in quarters (= 3× 30.4375
days). For a comparison, we fit data using three models:
the latent process model (LPM) proposed in Section 2, the
independent probit model (IPM) that ignores dependency
among repeated measures with P (Yi(t) = 1|β1, β2, σ, zi) =
Φ(z′iβ1 + h(t, β2)), and the random effects probit model
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Table 1. Maximum likelihood estimate of parameters using a proportional hazard model. Covariates for T1 are measures at
baseline visit while covariates for T2 are measures at time T1

Variable Estimate Standard Error P-value Hazard Ratio

T1 = time treatment −0.324 0.134 0.016 0.723
from baseline age0 0.029 0.008 0.0001 1.030
to the first total0 0.045 0.006 <.0001 1.046
onset time seadl0 −0.006 0.010 0.561 0.994
of Y = 1 duration0 0.043 0.168 0.797 1.044

du20 0.019 0.037 0.598 1.020
gender 0.610 0.139 <.0001 1.841

T2 = time treatment −0.478 0.174 0.006 0.620
from T1 age 0.021 0.010 0.050 1.021
to the first total 0.004 0.009 0.621 1.004
recovery time seadl 0.002 0.016 0.887 1.002
of Y = 0 duration −0.340 0.244 0.155 0.706

du2 0.092 0.045 0.041 1.097
gender −0.091 0.178 0.608 0.913

(RPM) with Wi(t) = z′iβ1 + h(t, β2) + σbi + τb(δi) + wit

and wit ∼ N(0, 1), where {wit, t ≥ 0}, bi, and bδi are inde-
pendent.

Gibbs sampling algorithm is used to sample from the pos-
terior distribution and 50,000 Gibbs samples after a burn-in
of 1,000 iterations were used to obtain all posterior esti-
mates. The Gibbs sampling algorithm performs quite well.
The autocorrelations for all model parameters disappear at
lag 10, and the Gibbs sampler converges much earlier before
1,000 iterations. The resulting posterior estimates from the
3 models are given in Table 2. All 95% highest posterior
density (HPD) intervals are computed via the Monte Carlo
method proposed by Chen and Shao (1999).

Large measurement error in PI measures was well recog-
nized among neurologists. Variability of the force of the pull
test leads to inconsistence among examiners and even by the
same examiner (Fahn, 2006). This is described vividly by Dr.
Robert Hauser: “Sometimes the patient doesn’t quite under-
stand the instructions, sometimes he is a little better pre-
pared, sometimes I may pull a little harder, sometimes he’ll
lean forward just as I pull because he knows what’s coming,
sometimes he might not try as hard” (Hauser, 2006). Such
large measurement error was confirmed by the fitted latent
process model. From Table 2, we see that both LPM and
RPM found significant effects from patient and examiner as
both τ and σ are significantly greater than zero. IPM indi-
cates significant effects of both treatment and treatment-by-
time interaction. It suggests that treatment has a short-term
benefit at baseline and then it accelerates disease progres-
sion during the follow up. The positive sign of the interaction
coefficient in RPM also suggests that treatment accelerates,
though not significantly, disease progression. Contrasting to
IPM and RPM, the negative sign of the treatment and the
magnitude of its interaction with time in LPM suggest that
treatment slows down, though not significantly, disease pro-
gression. Comparing these three models, results from LPM

are more consistent with findings from DATATOP investiga-
tors who reported beneficial effect of dyprenyl on PD (The
Parkinson Study Group, 1989, 1990) and also pointed out
that such an effect was only symptomatic but not neuropro-
tective (Shoulson, 1998).

All three models give similar conclusions regarding to ef-
fects of gender, age0, total UPDRS, and seadl0. Both LPM
and RPM suggest that patient’s PI condition was worsen-
ing over time when other covariate levels are held fixed.
But IPM fails to detect this PI progression. The poste-
rior mean of σ under RPM is larger than the one under
LPM. This is intuitive since σ is the only parameter in
RPM to capture the longitudinal dependency. Both LPM
and RPM have identified a significant investigator (exam-
iner) effect.

5.3 Model fit assessment

We compare the goodness-of-fit of the proposed latent
structural model with the independent probit model and
the random effects probit model through the quantity pi =
P (||ξi||2 ≥ ξ2

mi,α|Dobs). For LPM, ξi = V
−1/2
i Di{Wi −

(z′iβ1 + σbi + τb(δi))Jmi − Hi(β2)} which is the subject-
wise latent residual defined in Section 4; for IPM, ξi =
Wi − z′iβ1Jmi − Hi(β2); and for RPM, ξi = Wi − (z′iβ1 +
σbi + τb(δi))Jmi − Hi(β2). Frequencies of the pis in differ-
ent ranges (pi ≤ 0.05, 0.05 < pi ≤ 0.1, 0.1 < pi ≤ 0.3,
0.3 < pi ≤ 0.5, 0.5 < pi ≤ 0.8 and 0.8 < pi ≤ 1) are tabu-
lated in Table 3. Although IPM has the highest proportion
of pis below 0.05, it has 16.79% of pis greater than 0.1 with
2.88% of them even greater than 0.5. The LPM is slightly
better than RPM with a higher proportion of pis below 0.05.
However, LPM provides many more attractive features than
the other two models and is more suitable for modeling the
PI process.

The fit from latent process model (LPM) is further com-
pared with the observed proportion of Y (t) = 1 in different
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Table 2. Posterior Estimates for DATATOP Trial Data

Variable model Posterior Mean Posterior Standard Error 95% HPD Interval

intercept LPM −1.382 0.717 (−2.827,−0.023)
IPM −2.037 0.331 (−2.689,−1.396)
RPM −1.912 1.031 (−3.863, 0.183)

gender LPM 0.313 0.072 (0.174, 0.458)
IPM 0.363 0.034 (0.296, 0.428)
RPM 0.492 0.100 (0.301, 0.690)

age0 LPM 0.015 0.004 (0.007, 0.022)
IPM 0.013 0.002 (0.010, 0.017)
RPM 0.023 0.005 (0.013, 0.033)

duration0 LPM 0.085 0.088 (−0.090, 0.255)
IPM 0.240 0.044 (0.155, 0.328)
RPM 0.128 0.125 (−0.117, 0.370)

du2 LPM −0.020 0.020 (−0.059, 0.021)
IPM −0.056 0.011 (−0.077,−0.035)
RPM −0.030 0.029 (−0.086, 0.027)

total0 LPM 0.038 0.004 (0.030, 0.047)
IPM 0.035 0.002 (0.031, 0.039)
RPM 0.055 0.006 (0.043, 0.067)

seadl0 LPM −0.020 0.007 (−0.033,−0.008)
IPM −0.012 0.003 (−0.018,−0.006)
RPM −0.032 0.010 (−0.050,−0.013)

Trt LPM −0.113 0.075 (−0.259, 0.034)
IPM −0.130 0.053 (−0.233,−0.027)
RPM −0.176 0.105 (−0.382, 0.031)

t LPM 0.064 0.010 (0.045, 0.082)
IPM 0.008 0.007 (−0.005, 0.021)
RPM 0.057 0.010 (0.038, 0.076)

t × Trt LPM 0.001 0.012 (−0.023, 0.026)
IPM 0.024 0.009 (0.006, 0.041)
RPM 0.006 0.012 (−0.018, 0.031)

σ LPM 0.346 0.109 (0.111, 0.546)
RPM 1.039 0.064 (0.920, 1.169)

τ LPM 0.414 0.069 (0.287, 0.553)
RPM 0.548 0.092 (0.380, 0.734)

Table 3. Frequency and proportion of residuals pi = P (||ξi||2 ≥ ξ2
mi,α|Dobs) in different ranges

Range LPM IPM RPM

pi ≤ 0.05 490 (61.40%) 527 (66.04%) 422 (52.88%)
0.05 < pi ≤ 0.1 277 (34.71%) 137 (17.17%) 350 (43.86%)
0.1 < pi ≤ 0.3 31 (3.88%) 86 (10.78%) 26 (3.26%)
0.3 < pi ≤ 0.5 0 (0%) 25 (3.13%) 0 (0%)
0.5 < pi ≤ 0.8 0 (0%) 9 (1.13%) 0 (0%)
0.8 < pi ≤ 1 0 (0%) 14 (1.75%) 0 (0%)

Total 798 (100%) 798 (100%) 798 (100%)
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Figure 1. Comparison between observed proportion of Y (t) = 1 (symbol ◦) and posterior estimate E[P{Y (t) = 1|z̄, θ}|Dobs]
(symbol ×)

homogeneous patient clusters. We partition all patients into
4 mutually exclusive groups: male/treatment, male/placebo,
female/treatment, and female/placebo. In each of these 4
groups, we standardize patients’ baseline measures of seadl0,
total0, age0, and duration0 by dividing them by their sample
standard deviations. We use 4-dimensional Euclidean dis-
tance in standardized (seadl0, total0, age0, duration0) mea-
sure to further partition patients into two clusters. For each
cluster, we compute the observed proportion of {Y (t) = 1}
at each time interval (with width of 3 months), the posterior
estimate, E[P{Y (t) = 1|z̄, θ}|Dobs], and the corresponding
95% HPD interval of P{Y (t) = 1|z̄, θ}. The observed pro-
portion of {Y (t) = 1} is computed using the sample mean
of all available observations in Y (t) within that time win-
dow no matter whether it was from the same subject or not.
The expectation E[P{Y (t) = 1|z̄, θ}|Dobs] is taken with re-
spect to the posterior distribution of θ = (β1, β2, σ

2) and z̄ is
the average baseline covariates in that cluster. These results
show that the estimated values from LPM are quite close
to the observed values across all clusters. Figure 1 displays
plots from two chosen clusters.

5.4 New measure of PI onset time

Let ν(θ|c, d, Z) = P{min(c≤t≤c+d) Y (t) = 0 | Y (c) =
1, θ, Z}. To predict DATATOP patient’s PI onset time using

the new PI onset time measure, we compute the probabil-
ity ν(θ̂|c, d, Z) using some typical combinations of covariate
values Z, where θ̂ is the posterior mean of θ. In DATATOP
baseline visit, 75% patients have disease duration less than
1.66 years, and the first three quartiles of seadl0 are 90,
90, and 95, respectively. We thus fix duration0 = 1 year
and seadl0 = 90. Using the algorithm given in Section 3
with N1 = 500, N2 = 500, N3 = 2000, and n = 20, we
compute Monte Carlo estimates of probability ν(θ̂|c, d, Z)
under different combinations of baseline covariates Z and
set c = 1, 1.5 years. The results are given in Table 4 where
duration0 = 1, seadl0 = 90, and d = 3 months and 6 months
respectively. It is seen that older female subjects with higher
baseline total UPDRS score tend to have lower probabil-
ities to recover from PI in both d = 3 months and d = 6
months cases. As c increases, the probability to recover from
Y (t) = 1 decreases, representing a decreased chance to ob-
serve Y (t) = 0 and thus an increased chance to become PI.
The simulated recovery probabilities ν(θ̂|c, d, Z), across all
covariate combinations in Table 4, are much smaller than the
corresponding observations from T2p and T2t defined in Sec-
tion 5.1. In general, the threshold value η for the recovery
probability ν(θ̂|c, d, Z) should be obtained from clinicians
or physicians, and it often depends on physician’s objective.
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Table 4. Monte Carlo Estimates of Probabilities ν(θ̂|c, d, z) with duration0= 1, seadl0 = 90, and d=3 months and 6 months
for DATATOP Trial Data

c in years treatment total0 age0 gender ν(θ̂|c, d = 3, z) ν(θ̂|c, d = 6, z)

1.0 Placebo 16 55 Female 0.378 0.469
1.0 Placebo 16 55 Male 0.425 0.524
1.0 Placebo 16 69 Female 0.342 0.428
1.0 Placebo 16 69 Male 0.399 0.494
1.0 Placebo 25 55 Female 0.323 0.404
1.0 Placebo 25 55 Male 0.372 0.462
1.0 Placebo 25 69 Female 0.279 0.352
1.0 Placebo 25 69 Male 0.343 0.428
1.0 Deprenyl 16 55 Female 0.395 0.489
1.0 Deprenyl 16 55 Male 0.444 0.546
1.0 Deprenyl 16 69 Female 0.357 0.444
1.0 Deprenyl 16 69 Male 0.409 0.505
1.0 Deprenyl 25 55 Female 0.328 0.410
1.0 Deprenyl 25 55 Male 0.385 0.478
1.0 Deprenyl 25 69 Female 0.297 0.374
1.0 Deprenyl 25 69 Male 0.349 0.435
1.5 Placebo 16 55 Female 0.296 0.374
1.5 Placebo 16 55 Male 0.340 0.427
1.5 Placebo 16 69 Female 0.268 0.340
1.5 Placebo 16 69 Male 0.305 0.386
1.5 Placebo 25 55 Female 0.241 0.307
1.5 Placebo 25 55 Male 0.286 0.362
1.5 Placebo 25 69 Female 0.220 0.282
1.5 Placebo 25 69 Male 0.254 0.323
1.5 Deprenyl 16 55 Female 0.305 0.384
1.5 Deprenyl 16 55 Male 0.353 0.442
1.5 Deprenyl 16 69 Female 0.280 0.354
1.5 Deprenyl 16 69 Male 0.330 0.415
1.5 Deprenyl 25 55 Female 0.260 0.329
1.5 Deprenyl 25 55 Male 0.304 0.383
1.5 Deprenyl 25 69 Female 0.229 0.292
1.5 Deprenyl 25 69 Male 0.280 0.354

For example, if the goal is to detect mild impairment in pos-
tural reflexes, η can be set at a relative larger value such as
η > 30%. On the other hand, if the goal is to detect a severe
postural impairment, one can set η < 5%. In any case, pro-
viding ν(θ̂|c, d, Z) with different combinations of c, d, and Z
will help investigators and physicians in assessing a patient’s
disease condition and designing future Parkinson’s disease
studies.

We close this section with a remark that Monte Carlo
estimates of probability ν(θ̂|c, d, z) evaluated at the pos-
terior mean of θ are very close to the Monte Carlo esti-
mates of probability E[ν(θ|c, d, z) | Dobs], where the ex-
pectation is taken with respect to the posterior distribu-
tion of θ given the observed data Dobs. For example, for
all estimates with d = 3 listed in Table 4, the mean differ-
ence {ν(θ̂|c, d, z) − E[ν(θ|c, d, z) | Dobs]} is −0.011 with a
range from −0.028 to 0.013. Similar results are obtained
when d = 6. This finding suggests that ν(θ̂|c, d, z) pro-
vides a good approximation to E[ν(θ|c, d, z) | Dobs]. In addi-
tion, the use of ν(θ̂|c, d, z) is more computationally attrac-

tive as computing E[ν(θ|c, d, z) | Dobs] takes much longer
time.

6. DISCUSSION

A good clinical outcome should be clinically relevant and
accurate. Traditional onset time can be inaccurate and clin-
ically less useful when the event indicator is subject to large
measurement errors. For progressive diseases, an event onset
time defined through a latent model can incorporate mea-
surement errors from both patients and examiners, and thus
provide a more clinically meaningful measure. Because a la-
tent model can borrow strength from different subjects and
repeated measures, and can adjust for effects from other
confounding risk factors, it is nature to expect that the new
onset time defined through a latent mode will be more ac-
curate provided the model is reasonable.

The use of η and d makes it flexible in defining an event
onset time. The time interval width d relates to the robust-
ness of the new event onset measure, and threshold value
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η relates to the severity of the disease condition. When
d = η = 0, our new onset time reduces to the traditional
onset time. The algorithm in Section 3 makes the new on-
set time computation feasible. This paper only illustrates its
application in PI process for Parkinson’s disease, the same
methodology can be applied to develop other event onset
time measures with similar features. For example, the time
to certain stage of glomerular filtration rate in end-stage
renal disease, and the time to dementia in many neurode-
generated diseases.
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APPENDIX: PROOFS OF THEOREMS

Proof of Theorem 1. Let A be a mi×mi matrix whose (i, j)-
element aij satisfies aii = 1, ai,i−1 = −1, aij = 0 for all
j < i − 1 and j > i, i.e.,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
...

. . . . . . · · ·
...

...
...

...
. . . . . .

...
...

0 0 · · · −1 1 0
0 0 · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then AViA
′ = Di = diag(ti1, ti2 − ti1, ti3 − ti2, . . . ,

tim − ti,mi−1) and V −1
i = A′D−1

i A. For any vector x =
(x1, . . . , xm)T , we have

x′V −1
i x = (Ax)′V −1

i (Ax) =
x2

1

ti1
+

mi∑
j=2

(xj − xj−1)2

tij − ti,j−1
.

Proof of Theorem 2. We note that

(A.1)
P

(
min(c≤t≤c+d) Y (t) = 0 | W (c) = w

)
= P

(
ε(t) up crossing a(t, c, w) , 0 ≤ t ≤ d

)
.

Define stopping time T = inf{t : t ≥ 0, ε(t) = a(t, c, w)}.

Applying Durbin’s formula (1985), we obtain

P ( min
(c≤t≤c+d)

Y (t) = 0 | Y (c) = 1)P (W (c) > 0)

=
∫ +∞

0

P ( min
(c≤t≤c+d)

W (t) ≤ 0 | W (c) = w)f(c, w)dw

=
∫ +∞

0

P
(
ε(t) up crossing a(t, c, w) , 0 ≤ t ≤ d

)
f(c, w)dw,

=
∫ +∞

0

f(c, w)dw

∫ d

0

1√
t

φ

(
a(t, c, w)√

t

)
×

lim
s↑t

1
t − s

E
{

1(T>s)(a(t, c, w) − ε(s))
∣∣∣ ε(t)

= (t, c, w)
}

dt.

Proof of Theorem 3. Claim in (i) is obvious.
(ii). Based on the identity (A.1) derived in the proof of

Theorem 2 and the fact that the boundary function a(t, c, w)
is continuous in t ≥ 0 with a(0, c, w) = w

√
c > 0, it suf-

fices to show that a(t, c, w) is monotone increasing in c. In
fact, that a0(t + c)

√
g(t + c) − a0(c)

√
g(c) is monotone in-

creasing in c implies that a(t, c, w) = a0(t + c)
√

g(t + c) −
a0(c)

√
g(c) + w

√
g(c) is also monotone increasing in c for

any w > 0.
(iii). When a0(t) = γ0 + γ1t, we have

∂a(t, c, w)
∂c

=
1
2
(
√

t + c −
√

c )
3γ1

√
c(t + c) − γ0√
c(t + c)

+
w

2
√

c

≥ 1
2
(
√

t + c −
√

c )
3c0γ1 − γ0√

c(t + c)
+

w

2
√

c
> 0.

This implies that a(t, c, w) is monotone increasing in c for
any fixed t ≥ 0.
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