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Partitioning of functional data for understanding
heterogeneity in psychiatric conditions∗
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An important goal in medical research is to identify
groups of subjects characterized with a particular trait or
quality and to distinguish them from other subjects in a
clinically relevant way. Measures of biological phenomena,
in general, and of psychiatric conditions, in particular, of-
ten exhibit symmetric shapes resembling a normal distribu-
tion; yet, the statistical approaches predominantly applied
have been based on an assumption of underlying categories,
whether observed or latent. It is well known that members
of homogeneous populations with symmetric (multivariate)
unimodal distributions can exhibit very distinct character-
istics. Tarpey (2007a) and Tarpey et al. (2008) notice that
partitioning of such homogeneous distributions is of impor-
tance even if distinct underlying categories are not assumed
to underlie the measured phenomenon. For example, guide-
lines for treatment for depression would require the identi-
fication of a cut off on a given depression measure, whether
or not the measure exhibits evidence for distinct clusters or
mixtures.

The first goal of this paper is to introduce a principled
statistical method for studying variation within homoge-
neous distributions of psychiatric data without the assump-
tion of existing mixtures. The second goal is to obtain clini-
cally relevant partition of the distribution of the trajectories
of depressive symptoms during treatment with antidepres-
sants. The method of (Tarpey et al., 2009) based on princi-
pal points characterization is applied to partition curves of
symptoms of depression over time for the purpose of iden-
tifying responders to specific and non-specific treatment ef-
fects. Data from one study is used for determining a useful
partitioning and an external validation of this partitioning
is performed using a second study.

Keywords and phrases: Principal points, Specific and
non-specific treatment effects, Longitudinal data, Discon-
tinuation clinical trials.

1. INTRODUCTION

The issue of “specific” and “non-specific” effects in
pharmacotherapy for mental disorders has been a long-
standing problem in psychiatry (Quitkin et al., 1987b,a,
∗This work was presented at the IBS Conference in Dublin 2008.
†Corresponding author.

2000; Stewart et al., 1998; Ross et al., 2002), and we briefly
state it below. Pharmacologic agents are tested in placebo
controlled treatment trials and their efficacy is estimated
by subtracting the proportion of responders in the placebo
group from the proportion of responders in the active drug
group. Behind this procedure is the idea that some of the
responders in the drug group would have responded to non-
specific aspects of the treatment and that the proportion
of such subjects is equal to the proportion of responders
in the placebo group. Responders in the placebo group are
called “non-specific” responders and the reasons for their
response have been postulated to include spontaneous re-
mission, life events, the non-specific effect of contact with
clinical staff and the non-specific effect of taking a pill. In
addition, the responders in the drug group include “specific”
responders, those who respond to the specific active chem-
ical component in the drug that is not in the placebo pill.
This suggests that the responders in the drug group are a
mixture of (at least) two types of individuals: “non-specific”
and “specific” responders to the medication. It would be im-
portant to be able to distinguish between such responders
to drug treatment, since the type of response (“specific” or
“non-specific”) might have meaningful implications for the
treatment plan and maintenance of the clinical condition.
For example, if a patient is not benefiting from the active
chemical component in a drug, it is more likely that s/he
would relapse while taking the medication than would a sub-
jects who actually benefits from the active chemical in the
medication. Conversely, a patient who discontinues the drug
too soon after improving might be more likely to relapse if
s/he was a specific responder than if s/he was a non-specific
responder.

Attempts to identify the non-specific responders to phar-
macotherapy by examining the baseline characteristics of
responders in the placebo arm and contrasting them to the
characteristics of the responders in the drug arm of treat-
ment trials have yielded limited results. Such an approach
does not account for the fact that there might be non-
specific responders among subjects treated with the drug
and therefore it does not allow sufficiently precise differ-
entiation between the specific and non-specific responders
among subjects treated with the drug. In psychiatry, in addi-
tion to treatment trials for establishing drug efficacy, studies
are performed to investigate the necessary duration of drug
treatment after response to initial acute treatment for de-
pression. These studies are called discontinuation trials and
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they offer an opportunity for the development of algorithms
for identification of different type of responses to treatment.
Discontinuation trials use the following two-phases design:
Acute treatment phase: patients are openly treated with
the antidepressant under investigation for a specific stan-
dard duration of time (say, 12 weeks); and Discontinuation
phase: responders to the acute treatment are randomized to
double blind continuation on the medication or a switch to
placebo. In the discontinuation phase subjects are followed
until relapse or end of the study. A variation of this design is
to randomize the responders to the acute treatment to more
than two groups allowing discontinuation of medication af-
ter different durations of the treatment. With respect to the
outcome during the discontinuation phase one would hy-
pothesize the following: (I) subjects with “specific” response
should relapse when switched to placebo; and (II) subjects
with “non-specific” response would relapse with equal fre-
quency whether they remain on the drug or are switched to
placebo. Data from such studies, including course of symp-
toms during acute treatment and baseline covariates, can
be used for development and validation of algorithms for
identifying specific and non-specific responders.

In the manner this problem has been described so far,
it appears that the goal is to identify two different classes
of subjects: “specific” and “non-specific” responders. Clus-
ter analysis and finite mixture models for cross sectional
data (Titterington et al., 1985) and growth mixture mod-
els for longitudinal data are typically used for this pur-
pose (Muthén and Shedden, 1999; James and Sugar, 2003;
Elliot et al., 2005). All of those methods presume the pres-
ence of distinct groups and attempt to find them using differ-
ent approaches. If the distribution is homogeneous, however,
they all fail in one way or another, e.g. lack of convergence,
lack of unique solution, interpretability (for example, when
three clusters are postulated by the theory, but only one is
identified by clustering technique). Perhaps the biggest fail-
ing though is that the methods may converge to a solution
with two or more latent groups that are artificial manifes-
tations of the algorithm because the distribution is homo-
geneous (e.g. Tarpey et al., 2008).

Yet, even when the (multivariate) distribution of clini-
cal and biological characteristics appears perfectly homo-
geneous, symmetric and even normal, individuals in the
population can still exhibit widely different characteristics.
For example, even though the distribution of blood pressure
may be perfectly homogeneous symmetric and normal, the
blood pressures of hypertensive subjects differ from those
of normo-tensive individuals and, what is more important,
these differences correspond to differences in a variety of
other health outcomes. As another example, consider a bi-
variate normal distribution with mean (0, 0) and some vari-
ance S. Suppose this distribution represents the slope and
concavity of curves with the same intercept. In this distri-
bution there will be curves with an overall increasing or
decreasing trend, with a concave up or concave down shape,

depending on the values of the slope, and curvature. Thus,
there are clearly distinct shapes in this distribution, which
is perfectly homogeneous symmetric and normal. While it
doesn’t make sense to look for distinct clusters or mixtures
in this case, a coherent question would be to identify shapes
that are representative of the distribution.

Symptomathology measures used for identification of
types of treatment response (e.g. specific vs. non-specific)
such as the longitudinal course of symptoms during acute
treatment and baseline characteristics are typically homoge-
neous and lacking evidence for distinct categories or latent
groups. Even though methods such as discriminant analy-
sis, clustering, finite mixture models and latent class mod-
els and their variants for longitudinal data, such as growth
mixture models, can still be applied to such data, here we
take a different approach. We acknowledge explicitly that
the distribution of symptom measures can be homogeneous
and that distinct clusters may not exist. Never the less, we
aim to find a partitioning of this (possibly) homogeneous
distribution such that the characteristics of individuals are
distinct between partitions.

Recently, cluster analysis methods have been proposed
for data consisting of curves (e.g. Heckman and Zamar,
2000; Abraham et al., 2003; Tarpey and Kinateder, 2003;
Tarpey, 2007a). Tarpey et al. (2003) used principal points
(Flury, 1990, 1993), which are cluster means for theoreti-
cal distributions, to identify representative curve profiles in
a longitudinal depression study. These cluster and princi-
pal point methods can be applied to homogenous distribu-
tion. Tarpey et al. (2009) proposed a simple method for esti-
mating principal points for longitudinal mixed effect models
that directly models the random effects, can handle missing
data and covariates, and can also be applied to growth mix-
ture models. The partitioning based on this approach is a
principled statistical method, optimizing criteria appropri-
ate for the data at hand. We apply this method here for the
purpose of identifying profiles of symptoms change during
treatment that might be associated with type of treatment
effect. Two studies are utilized in this investigation. Data
from the Study A, serving as training data, is used to de-
scribe the distribution of drug-treated individuals with re-
spect to the course of their symptoms severity during acute
treatment (phase 1 data) and the partitioning method based
on principal points for longitudinal mixed effects model is
applied. Data from phase 2 is used for internally validat-
ing the clinical importance of the partitioning by examin-
ing outcomes during the randomized discontinuation phase
of patients within a given section of the selected partition.
As test data for external validation we use the data from
Study B.

The rest of this paper is organized as follows. Sec-
tion 2 summarizes the partitioning method developed in
Tarpey et al. (2009); Section 3 describes two discontinua-
tion studies. The selected partition and the validation re-
sults are reported in Section 4. In Section 5 we discuss why
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the approach taken here might be preferable to classical ap-
proaches for clustering in the context of mental health. We
discuss limitations and extensions as well as implications for
psychiatric research.

2. PARTITIONING OF LONGITUDINAL
DATA

An underlying principle of statistics is to extract the rel-
evant information available in the data, typically through
some summarization process, such as fitting a model. Given
a random variable X, Tarpey and Flury (1996) defined a
random variable Y to be a self-consistent approximation to
X if Y is a measurable function of X and

E[X|Y ] = Y a.s.

Examples of self-consistency are principal components, prin-
cipal curves (Hastie and Stuetzle, 1989), principal variables
(McCabe, 2005), and principal points (Flury, 1990, 1993).
Our focus will be on principal points. Let X denote a ran-
dom vector. Given a set of k points ξ1, . . . , ξk, define Y = ξj

if ‖X − ξj‖ < ‖X − ξh‖, for h �= j. If Y is self-consistent
for X, then the points ξ1, . . . , ξk, are called k self-consistent
points of X (Flury, 1993). If E‖X − Y ‖2 ≤ E‖X − Y ∗‖2

for any other k point approximation Y ∗ to X, then the k
points ξ1, . . . , ξk are called k principal points of X (Flury,
1990). Principal points can be regarded as cluster means for
theoretical distributions and can be nonparametrically es-
timated using the k-means algorithm (Hartigan and Wong,
1979).

Let x denote a vector of outcomes for an individual ob-
served over a period of time. Then the standard linear mixed
effects model is expressed as:

(1) x = Sβ + Zb + ε,

where β is a vector of fixed effects, b is a vector of random
effects assumed to have mean zero and covariance matrix
D, ε is a mean zero vector of random errors with covariance
matrix σ2R assumed to be independent of b. S and Z are
design matrices.

The shapes of the functional data profiles are determined
by the regression relation Sβ + Zb in (1). Here we consider
the case of S = Z. The more general case and the case with
covariates is examined in (Tarpey et al., 2009). The goal is
to find a self-consistent approximation to Z(β +b) in terms
of k principal points, which will be self-consistent for x.
The principal “points” in this case correspond to points in
function space L2 and are actually curves.

Because the regression curves in (1) are determined by
β+b, a self-consistent approximation to x by k curves can be
obtained by estimating the k principal points of the N(β,D)
distribution, assuming the random effects are normally dis-
tributed. The method described here can be adapted to non-
normal random effect distributions as well. Maximum like-
lihood estimators of k principal points of the linear mixed

effects model are obtained by first fitting a linear mixed ef-
fects model to obtain β̂ and D̂, the maximum likelihood
estimates of β and D in (1), and then determining the k
principal points of the distribution

(2) N(β̂, D̂).

Analytical solutions for the k principal points of the dis-
tribution in (2) do not exist except in very simple cases (e.g.
small values of k in low dimensions). A very simple computer
intensive solution to finding principal points called the para-
metric k-means algorithm (Tarpey, 2007b) is to apply the
k-means algorithm on a very large sample simulated from (2)
after the parameters in the linear mixed effects models have
been estimated via maximum likelihood estimation (MLE).
It then follows that the cluster means from the simulated
sample are approximately MLE of the principal points of
the linear mixed effects model (Tarpey, 2007b, Section 3).

The parametric k-means algorithm is quite flexible
and can be implemented for non-normal random ef-
fect distribution such as the skew-normal distribution
(Arellano-Valle et al., 2005). The only requirement is to be
able to simulate from the given distribution. In addition,
even if a growth mixture model is needed to account for
latent categorical predictors, the parametric k-means algo-
rithm can be applied to the estimated finite mixture as
well (Tarpey, 2007b, Section 5) to identify different profiles
within a mixture.

To associate an observed outcome xi with a particular
principal point ξj , (Tarpey et al., 2009) define a posterior
probability πij as the probability that the ith observation is
associated with the jth principal point, j = 1, . . . , k. De-
fine an indicator variable dij which equals one if xi lies
in the area defined by the jth principal point function (or
curve) and zero otherwise. That is, dij = 1 if xi(t) is clos-
est to ξj(t) using an L2 metric. Let β + bi ∈ �q denote
the q-dimensional regression coefficients (fixed effects plus
random effects) for the ith individual. Define a “domain of
attraction” Dj for the jth principal point as the subset of
the sample space closest to the jth principal point. Then
dij = 1 if ‖(β+bi)−ξj‖2 is less than the squared Euclidean
distance between β+bi and any other principal point coeffi-
cient vector ξh, h �= j. Analogous to the posterior probabili-
ties for finite mixture models, we can classify an observation
xi based on the largest values of E[dij |xi] for j = 1, . . . , k.
From well-known results on the multivariate normal distri-
bution, the conditional distribution of (β + bi) given xi is

(3) (β + bi)|xi ∼ N(μi, Σi)

μi = β + (S′
iSi + σ2D−1)−1S′

i(xi − Siβ),
Σi = (σ−2S′

iSi + D−1)−1.

Therefore the posterior probability πij that the ith observa-
tion is associated with the jth principal point can be defined
as
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πij = E[dij |xi]
= Pr[(β + bi) ∈ Dj |xi]

=
∫

Dj

N(w; μi, Σi)dw,

where w is the integration variable. Typically the q-
dimensional regions Dj will be complicated convex subsets
of �q and analytical evaluations of this integral are not pos-
sible. However, the posterior probabilities can be estimated
via a Monte Carlo simulation. For each observed outcome
xi, simulate a large sample from the conditional distribu-
tion (3) with maximum likelihood estimates plugged in for
the parameters in (3). Then the estimated posterior prob-
ability π̂ij is computed as the proportion of the simulated
sample that is closer to ξ̂j than to ξ̂h, h �= j. Posterior prob-
abilities can be used to classify new observations.

If the distribution is a finite mixture, the number of
mixtures, even if not known, is a fixed number that we
determine either correctly or incorrectly. The situation
with principal points is different: continuous distributions
have k principal points for any k > 0 and these principal
points can be estimated. Therefore, k is chosen to produce
interpretable results. In a functional data analysis setting,
the value of k should be chosen so that the distinct curve
shapes in the data are captured by the k principal points.
If k is too large, several of the principal point curve profiles
might have similar shapes. A value of k can often be chosen
that is meaningful for the particular application at hand.
In examining the profiles of symptoms change during acute
treatment we will use information about subjects’ relapse
during the double blind discontinuation phase to guide the
selection of number of strata in the partition. In addition we
will consider the choice of k that explains a high percentage
of variability in the underlying distribution. The percentage
of variability explained can be based on the usual ANOVA
sum of squares: the within group sum of squares is com-
puted by squaring the distance between an observation
and the principal point to which it is classified; the total
sum of squares is computed by squaring the distance
between each observation and the overall mean (which is
the principal point for k = 1). Thus, the proportion of
variability explained by the k principal points is

(4) R2 = 1 − [SS(within group)/SS(total)].

The within and between sum of squares can be computed
from the simulation sample used for the parametric k-means
algorithm. As k → ∞, R2 → 1. Often values of k as small
as 4 or 5 can explain up to 70-80% of the total variability.

3. TWO DISCONTINUATION STUDIES

Here we describe two studies performed with the goal
of determining the optimal duration of treatment with flu-
oxetine for patients with major depression McGrath et al.
(2000, 2006). Depressed patients were treated openly for 12

weeks with a fixed dose of fluoxetine. Symptoms severity
was assessed with the Hamilton Depression Rating Scale
(HAMD) and Clinicians’ Global Impression of improvement
scale (CGI) at baseline and at weeks 1, 2, 3, 4, 6, 8, 10, 11
and 12. The HAMD scores are the sum of the severity rating
of a number of depression related behaviors and symp-
toms (such as feeling hopeless, loss of interests, difficulty
sleeping) rated on a scale 0 to 3, with high HAMD scores
indicating more severe depression. The CGI (improvement)
is a scale from 1 to 7 with 1 indicating that the patient
has improved very much since baseline, 4 denoting no
change, and 7 indicating that the patient has gotten very
much worse. At the end of the acute open treatment phase,
patients were judged by clinicians to be either responders
or non-responders based on CGI: responders were subjects
who had scores of 1 (very much improved) or 2 (much
improved) at both of the last two assessments (weeks 11
and 12). Responders entered the double blind phase of the
study and were randomized to either continue on fluoxetine
or to switch to placebo. Subjects were observed for relapse
at bi-weekly visits and were called for assessment again in
a week if symptoms worsened. Relapse was defined as CGI
scores of 3 or more at two consecutive weeks. Study A and
Study B had exactly the same inclusion/exclusion criteria
and same definition for response to the acute treatment and
for relapse in randomized discontinuation phase. Study A
enrolled 839 subjects in the acute open label phase; of the
responders to acute treatment 395 agreed to be randomized
in the double blind discontinuation phase of the study.
Study B enrolled 627 subjects in the acute open label phase
and 262 of the responders to the acute treatment were
randomized in the second phase of the study.

The second phases of these studies and how we use the
data to help identify specific and non-specific responders to
acute treatment are described below.

3.1 Study A

In the double blind phase of this study responders to
the acute treatment were randomized to four discontinua-
tion arms: (i) switch to placebo at randomization (after 12
weeks of active treatment); (ii) switch to placebo 14 weeks
after randomization (after 26 weeks of active treatment);
(iii) switch to placebo 26 weeks after randomization (af-
ter 9 months of active treatment); and (iv) stay on active
treatment to the end of the study, which was 52 weeks after
randomization (64 weeks of active treatment). Subjects who
relapse at any time are taken out of the study and treated
openly as appropriate.

The purpose of the study was to establish the opti-
mal treatment duration (McGrath et al., 2000). To this end
three comparisons were made. First, subjects on placebo
(arm (i)) are compared to subjects on fluoxetine (arms (ii),
(iii) and (iv)) with respect to 14 weeks survival without re-
lapse. This comparison addresses the question whether sub-
jects who are treated for depression with standard course
of 12 weeks of antidepressant (here fluoxetine) and respond
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to the treatment, can safely be taken off the medication.
Higher relapse among subjects randomized to placebo than
among those randomized to drug after the 12 weeks acute
treatment will indicate that patients should continue taking
antidepressant. If there is no difference between the relapse
rates on drug and placebo, the conclusion would be that
when subjects respond to standard acute treatment for de-
pression, continued treatment is not necessary. The second
comparison we make addresses the question whether after
responding to a standard 12 weeks course for treatment of
depression and maintaining remission during an additional
14 weeks of active treatment (i.e. a total of 6 months of treat-
ment), subjects can safely be taken off the medication. For
this comparison we use data from subjects in arms (ii), (iii)
and (iv), who are still in remission at week 14 after random-
ization. Twelve weeks survival without relapse is compared
between subjects in arm (ii), who were switched to placebo,
against subjects in arms (iii) and (iv), who were maintained
on drug. The third comparison is between subjects in arm
(iii) vs. arm (iv) who are still in remission at the time when
subjects in arm (iii) were switched to placebo. This com-
parison addresses the question whether subjects who have
been treated continuously for nine months with an antide-
pressant and are still in remission can safely be taken off the
drug without increased risk for relapse.

Conceptualizing treatment response as “specific” or
“non-specific” is relevant to clinical practice — some indi-
viduals may require continuous treatment with medication
(specific responders), while for others continued drug might
not be needed (non-specific responders). In addition, indi-
viduals who achieved spontaneous remission might have a
low relapse rate both on drug and placebo; such subjects
will be different from a group of patients who are equally
likely to relapse on placebo and drug, but at a higher rate.
The later might be non-specific responders who have tem-
porarily benefited from the pill and/or clinicians attention,
but do not have sustained benefit to these effects. These are
the subjects properly called “placebo responders” as they
respond to non-specific aspects of the treatment; they are
distinct from those who experience spontaneous remission
irrespective from treatment and are also distinct from those
who benefit specifically from the active chemical in the pill.

We use Study A to establish a partitioning of the respon-
ders to the acute phase that allows us to identify groups
of subjects who might be experiencing specific treatment
effect. Using the principal point methodology, we describe
these subjects in terms of their course of symptoms decline
during the acute treatment.

3.2 Study B

In Study B responders to the acute treatment were ran-
domized to either switching to placebo at randomization, or
to continuing the drug until the study’s end, which was one
year after randomization McGrath et al. (2006). We use this
study to validate the partitioning proposed based on analy-
sis of Study A.

4. RESULTS

The principal points for mixed effects models approach
is taken to partition the trajectories of symptoms change
during acute treatment. The HAMD ratings at weeks 0, 1,
2, 3, 4, 6, 8, 10, 11, and 12 of acute treatment were modeled
with a polynomial of 3rd degree using the following mixed
effect model for longitudinal data:

(5)
Yij = β0 +β1tj +β2t

2
j +β3t

3
j + b0i + b1itj + b2it

2
j + b3it

3
j + εij ,

where Yij is the HAMD score for the ith patient at the jth

assessment occasion; tj = (1, tj , t
2
j , t

3
j ) and tj is the time of

the jth assessment; and εij are independent error terms as-
sumed N (0, σ2

ε ). The distribution of the random coefficients
bi = (b0i, b1i, b2i, b3i) is assumed N (0, D), where D a 4 × 4
covariance matrix. We transformed the time measurements
tj to be centered at 0 to avoid colinearity problems. Data
from subjects with at least 3 data points are used which
reduced the sample size from 839 to 804. Covariates were
also considered allowing interaction between the covariates
and time. The results presented here are based on the model
without the covariate. The covariates effects on partitioning
is examined in Tarpey et al. (2009).

The trajectories of symptoms decline during acute
treatment for each subject are now represented by a 4-
dimensional parameter β + bi. We find the principal points
for the distribution of these trajectories by utilizing the
parametric k-means algorithm from Section 2. Specifically,
the classic k-means algorithm (as implemented in R, func-
tion kmeans) is applied to 1,000,000 data points sampled
from N (β̂, D̂).

The posterior probability for classifying individual pro-
files to the closest representative principal point profile is
computed as explained in Section 2. Ten thousand data
points are simulated from the conditional distribution of the
coefficients β + bi, given the observed outcomes of subject i
shown in equation (3). We assign a subject to the principal
point corresponding to the largest posterior probability.

4.1 Selecting partitioning based on Study A

4.1.1. Partitioning of acute treatment trajectories

Principal points for mixed effects models approach is used
to partition the distribution of the trajectories of symptoms
during acute treatment of all subjects in the acute treatment
phase. Baseline covariates were examined for significant ef-
fect in model (5). The only baseline characteristic associated
with the course of symptoms change during acute treatment
was type of depressive features. Subjects with atypical fea-
tures had on average a slower rate of change and higher over-
all levels of depressive symptoms. However, this covariate
did not make the distribution of the symptom trajectories
appear bi-modal. The distribution of the random coefficients
obtained from a mixed effect model without covariates was
not meaningfully different from the distribution of coeffi-

Partitioning of functional data 417



Figure 1. Study A: k = 7 principal points for the trajectories of symptoms severity during acute treatment. The top panels
shows the profiles corresponding to the estimated principal points. The bottom panel shows individual trajectories for the
patients in the acute treatment phase represented by their random coefficients from model (5); in red are those who were

responders to acute treatment and randomized in the discontinuation phase. For the purposes of graphing, the 4-dimensional
vectors of random coefficients are projected onto the first two principal components. The large numbered circles present the

estimated principal points.

Figure 2. Study A: Like Figure 1 for k = 6.

cients obtained from the model with “type of depression”
included as a predictor.

Using the parametric k-means algorithm, the distribution
is partitioned into 4, 5, 6, and 7 parts. The percent variabil-
ity explained by the partitioning, assessed as R2 from (4) is
reported in Table 1.

We show the partitioning based on k = 7 and k = 6
principal points on Figures 1 and 2. The trajectories cor-
responding to the estimated k principal points profiles are

Table 1. Study A: Per cent explained variation (R2) in the
trajectories of symptoms severity during the acute treatment

using different number of principal points k

k 7 6 5 4

R2 0.78 0.76 0.72 0.67

in the panels on the top. The bottom panel of each figure
shows the individual trajectories for all patients in the acute
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Table 2. Survival without relapse on drug and placebo for subjects in remission after (a) 12 weeks acute treatment for
depression with drug; and (b) 12 weeks acute treatment plus 14 weeks of maintenance with drug, total of 6 months

(a) 14 weeks survival after (b) 12 weeks survival after
12 weeks of acute treatment 6 months of treatment

pp1 Randomized Randomized Log-Rank Randomized Randomized Log-Rank
to Drug to Placebo test to Drug to Placebo test

Total Relapse Total Relapse p Total Relapse Total Relapse p

k = 7

1 65 11 12 7 .0007 20 5 13 5 .2912
2 4 1 2 0 .6171 1 0 1 0 1
3 101 29 45 21 .0020 38 5 17 9 .0009
4 69 5 21 9 .0333 24 5 12 2 .9597
5 34 9 9 4 .1385 14 4 4 0 .3614
6 23 5 7 1 .6487 7 2 5 2 .6693
7 3 1 0 0 1 1 0 0

k = 6

1 56 10 10 4 .0325 16 3 12 5 .1108
2 109 31 44 22 .0007 41 8 18 8 .0312
3 56 12 22 8 .1510 19 3 11 2 .8149
4 64 16 15 6 .0779 25 6 10 3 .2843
5 4 1 1 0 1 1 0 1 0 1
6 10 3 4 2 .2924 3 2 0 0

k = 5

1 82 24 32 14 .0524 27 5 14 5 .1741
2 13 2 2 0 .6889 6 1 3 0 .4795
3 18 5 3 2 .0753 5 2 2 2 .3459
4 104 22 36 14 .0138 35 7 17 5 .3892
5 82 19 23 12 .0004 32 7 16 7 .0204

k = 4

1 73 18 18 8 .0286 27 7 13 5 .1514
2 8 1 2 0 .7237 4 1 1 0 .6171
3 71 14 15 8 .0032 20 6 14 5 .6212
4 147 40 61 26 .0021 54 8 24 8 .0239

treatment phase (n=804) represented by their random co-
efficients from model (5). On this panel for the purposes of
graphing, the 4-dimensional vectors of random coefficients
are projected onto their first two principal components. Sub-
jects randomized in phase 2 of the study, i.e. the respon-
ders to the acute treatment, are plotted in red. The center
of the distribution estimated by β is marked with a cross.
The large numbered circles indicate the locations of the es-
timated principal points.

Notice that the principal points of the homogeneous sym-
metric and normal distribution postulated for the random
coefficients from model (5) exhibit quite distinct shapes.

4.1.2. Relapse during treatment discontinuation

Subjects randomized in Phase 2 were categorized as be-
longing to one of the partitions associated with the principle
points based on the largest posterior probability as described
in Section 2. Within a partition, a Log-rank test was used to
compare the rate of relapse of subjects randomized to drug
vs. those randomized to placebo.

First we looked at 14 weeks survival without relapse after
standard acute treatment for depression. Of the 395 subjects

who entered the double blind discontinuation Phase 2, 96
were in arm (i) and switched to placebo at randomization.

Table 2 summarizes the results for k = 7, 6, 5 and 4. The
columns labeled “14 weeks survival after 12 weeks of acute
treatment” address the question whether subjects who have
been treated acutely for depression and have responded to
the treatment can be taken off the drug, or discontinuing the
drug after acute response (12 weeks of treatment) would in-
crease their risk for relapse as compared with the continued
drug maintenance. For example, when k = 7 of the 395 sub-
jects who responded to acute treatment and entered Phase
2, 77 are in the partition associated with principal point #1
(see Figure 1): 65 of them were randomized to continue on
the drug and 12 were switched to placebo. Of those contin-
uing on the drug, 11 relapsed in the first 14 weeks and the
remaining either remained in remission or dropped out be-
fore week 14 while still in remission and were censored in the
survival analysis; of the 12 switched to placebo 7, relapsed in
the following 14 weeks. The Log-rank test comparing drug
vs. placebo with respect to relapse in the 14 weeks after 12
weeks of acute treatment has p = .0007. Responders to 12
weeks of acute treatment who are associated with this prin-
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cipal point and who are switched to placebo are much more
likely to relapse than those who are maintained on the drug
for another 14 weeks. Thus, subjects with outcome profiles
similar to the one depicted in the first box on the top panel
of Figure 1 appear to have experienced the specific effect of
the drug. An analogous observation can be made for sub-
jects associated with principal point profile #3.

For k = 6, profiles #1 and #2 are very similar to profile
#1 and #3 for k = 7 (compare Figures 1 and 2). Conse-
quently, in Table 2 the Log-rank tests for these partitions
indicate a strong difference between drug and placebo. Fig-
ure 3 presents the results for k = 6 principal points. The top
panels show the profiles of the principal points (same as on
Figures 2 and the number of subjects from each partition
entering phase 2 of the study. Below them are the estimated
Kaplan-Meyer survival curves and the p-values from the
Log-rank test to compare relapse between continued drug
vs. switching to placebo. The bottom panel shows the tra-
jectory coefficients of the 395 subjects who entered phase 2
of the study, i.e. responders to acute treatment only. In con-
trast, the bottom panel of Figure 2 presents the trajectories
of all 804 subjects in the acute treatment phase. Subjects
are plotted based on their estimated random coefficients in
Phase 1 from model (5) projected onto the 2-dimensional
space of the first 2 principal components. Profiles #5 and
#6 are clearly not typical for responders to acute treat-
ment, i.e. they are characteristic of non-responders to acute
treatment for depression with fluoxetine. Profiles #1 and
#2 seem to represent a specific effect of the drug. Profile
#3 is associated with a relatively low relapse on placebo,
which might indicate a non-specific effect or a spontaneous
remission.

Next we looked at subjects who have been on the drug
for a total of 6 months: 12 weeks acute treatment and 14
weeks of maintenance — these are responders to acute treat-
ment who were randomized to arms (ii), (iii) and (iv) (see
Section 3.1) and were still in remission at 6 months when
subjects randomized to arm (ii) were switched to placebo.
There were 157 such subjects of whom 72 were in arm (ii)
and switched to placebo. We compared 12 weeks survival
without relapse between those who continued on drug vs.
those who switched to placebo. This comparison answers
the question whether subjects who have been on an antide-
pressant for 6 months and are still in remission can be taken
off the drug without increasing their risk for relapse. Alter-
natively, the question is whether there is a group of sub-
jects who still need the drug after 6 months of treatment?
The columns labeled “12 weeks survival after 6 months of
treatment” in Table 2 summarize the results. For example,
for k = 6 subjects with profile #2 who are switched to
placebo after being successfully treated for 6 months seem
to relapse more than those who are maintained on medi-
cation. The conclusion about this profile is confirmed by
the results for k = 7 profile #3. Subjects with trajecto-
ries of symptoms decline similar to the other profiles ap-

pear to not require continuous drug treatment since the re-
lapse rates in the other five partitions are close for drug and
placebo.

We also looked at subjects who have been on the drug for
a total of 9 months: 12 weeks acute treatment and 26 weeks
of maintenance — these are responders to acute treatment
who were randomized to arms (iii) and (iv) and were still
in remission at 9 months when subjects in arm (iii) were
switched to placebo. However, there were only 62 such sub-
jects of whom 34 were in arm (iii) and were switched to
placebo. There are too few subjects in each of the partitions
to conduct meaningful analyses.

These analyses indicate that steady decline over the
course of acute treatment, similar to curves #1 and #2 for
k = 6, is associated with increased risk for relapse if the
drug is discontinued before 6 months of continuous treat-
ment with antidepressants. Additionally subjects with pro-
files similar to #2 might even need longer treatment, i.e.
9 months before drug discontinuation. Subjects with non-
persistent decline are more likely to have similar probability
for relapse whether the drug is discontinued or not at any
time after response to acute treatment, indicating a response
to non-specific aspects of the treatment.

4.2 Applying partitioning results from
Study A to Study B

To validate the partitioning of the trajectories of symp-
toms change during acute treatment, we applied the parti-
tioning that was selected based on clinical consideration us-
ing Study A (training data), to the trajectories from Study B
(test data). Based on the results in Table 2 and figures sim-
ilar to Figure 3 for k = 7, 5 and 4 we selected k = 6.

We estimated the conditional density of all subjects in
Study B using the regression parameters and the distribu-
tion of the random effects from Study A using (3). Based
on these conditional distributions we estimated the poste-
rior probability for being in each of the k = 6 partitions
and assigned subjects to the partition with highest poste-
rior probability. Figure 4 shows the profiles corresponding
to the principal points determined from Study A. The top
panels are identical to the top panels of Figure 2. The bot-
tom panel plots the trajectory coefficients of n = 530 of the
total 626 in Study B, who had at least 3 assessments during
the open phase. The figure shows their trajectories of symp-
toms change in Phase 1 projected onto the space spanned by
the first two principal components of the coefficients from
Study A. The locations of the principal points are the same
in both figures, but the dots are different (compare with
Figure 2). Notice how the distribution of symptom profiles
in Study B is shifted towards lower values of the first and
second principal components (lower left corner on Figure 4),
i.e. the corner of non-responders to acute treatment. How-
ever, even though the profiles of non-responders in Study B
are not represented very well by the k = 6 partitioning se-
lected from Study A, these six principal points represent the
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Figure 3. Study A: Survival without relapse in the first 14 weeks after response to acute treatment for subjects in k = 6
partitions. The top panels show profiles of the principal points for the distribution of the trajectories of symptoms change

during acute treatment, Phase 1 of the study. The bottom panel shows the Phase 1 trajectories of symptoms decline only for
the responders to acute treatment. The large numbered circles present the estimated principal points. The middle panels show

Kaplan-Meyer survival curves during the 14 weeks after randomization into Phase 2 and p-values for Log-rank tests.

Figure 4. Study B: k = 6 principal points estimated from Study A. The bottom panel shows individual trajectories for
patients in the acute treatment phase of Study B projected onto the plane span by the first two principal components of the

coefficients from Study A. In red are indicated the trajectories of responders to acute treatment.
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Figure 5. Study B: 52 weeks survival without relapse for subjects in remission after 6 months of active treatment. k = 6
partitions. The top panels show profiles of the principal points estimated from Study A. Shown also are the numbers of
Study B subjects that were classified to belong to each partition. The bottom panel shows the Phase 1 trajectories of

symptoms decline of Study B patients who were in remission after 12 weeks of acute treatment. The large numbered circles
present the estimated principal points from Study A. The middle panels show Kaplan-Meyer survival curves in 52 weeks after
12 weeks of acute treatment and p-values for Log-rank tests to compare relapse on continued drug vs. switching to placebo.

responders adequately. Thus we continue with the k = 6 par-
tition. Alternatively, we could have selected a partition with
larger number of strata, k > 6.

Relapse rates on a drug and placebo are compared within
each partition, similarly to the analysis for Study A. Figure
5 shows the Kaplan-Meyer curves and the p-value of the
Log-rank test. The bottom panel of the figure shows the
trajectories of symptoms change during acute treatment for
the Study B responders who were randomized in phase 2
(n=262). The results should be compared to those on Fig-
ure 3. Note, however, that Figure 3 shows results for 14
weeks survival (time given in days) without relapse after
the acute treatment, where as Figure 5 shows 52 weeks
survival (time given in weeks). Profiles similar to princi-
pal points 2 are associated with a differential relapse be-
tween continuation on drug vs. switching to placebo, as ob-

served in Study A. In other words, with a partitioning based
on one sample, we identified individuals from another sam-
ple who showed similar clinical characteristics, i.e. higher
rate of relapse when switched to placebo after response to
acute treatment as compared to relapse when continuing
drug treatment. Such characteristics are consistent with re-
sponse to specific drug affect. Principal point #4 in Study A
was associated with higher relapse on placebo (although not
statistically significant); in Study B this point shows a dra-
matic differentiation. As in Study A, profiles similar to #3
seem to be consistent with mainly non-specific treatment
effect, since the relapse rates on drug and placebo are sim-
ilar. However, unlike in Study A, here the relapse rate is
very high, suggesting a transient placebo effect that wears
off. Notice here that there are some differences: subjects
in Study A with trajectories similar to principal point #1
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have high relapse rates on drug, which was not the case in
Study B.

5. DISCUSSION

Understanding heterogeneity in phenotypical characteris-
tics, symptoms manifestations and response to treatment of
subjects with psychiatric illnesses continues to be a a chal-
lenge in mental health research. As with other questions in
psychiatry, the evidence for existence of different types or
classes of responders to antidepressant treatment is not em-
pirically evident immediately. Despite decades of research
and debate, none of the currently accepted psychiatric disor-
ders or conditions has been conclusively demonstrated to be
a discrete entity. For example, many investigators have ar-
gued that the boundaries between mild to moderate unipo-
lar depression and the anxiety disorders are arbitrary and
that these conditions should be subsumed under the broader
rubric of a “general neurotic syndrome”, which is on a con-
tinuum with normal functioning. The inability to resolve
these fundamental nosological issues is due in large part
to the difficulty of demonstrating the existence of distinct
boundaries between psychopathalogical conditions.

A number of statistical approaches have been used in an
attempt to address this problem. Some of the most fre-
quently used approaches have been discriminant analysis
(and examining the distribution of scores derived from it
for evidence of bi-modality), cluster analysis, finite mixture
models and latent class models. These techniques can be
used to test the hypothesis that symptomathology (e.g. clin-
ical and biological features, or family history) in a given
sample is best characterized by two or more clusters, classes
or distributions. However, the presence or absence of dis-
creteness at the clinical or pathophisiological level does not
necessarily correspond to discreteness at the level of etiology.
Moreover, numerous factors can contribute to obscuring bi-
modality when present (e.g. large variances compared with
the difference between the means, or small prevalence of one
of the populations). In addition, factors can contribute to
the appearance of bi-modality when the distribution is not
bi-modal (e.g. biased sampling). To fully resolve the ques-
tion of discreteness in an etiological sense, it is necessary
to have indicators of the underlying causal processes. Be-
cause etiology remains unknown for most psychopathologi-
cal conditions, it is unlikely that any of these techniques, in
and of themselves, can produce conclusive results regarding
whether particular psychopathological conditions are dis-
crete entities.

In the absence of such causal knowledge, it is not clear
if distinct latent classes exist in most cases in psychiatry.
Such is the case, considered in this paper: it is conceivable
that there exist well-defined sub-populations corresponding
to subjects responding to non-specific aspects of the treat-
ment, those that respond to specific aspects of the treatment
and those who do not respond to the treatment at all. Al-
ternatively, it is possible that distinct sub-populations do

not exist and instead the degree of specific and non-specific
response might vary over a continuum with each subject
falling along this continuum. Whether or not etiologically
distinct classes exist, if the symptomathology data exhibit
presence of distinct categories it would be useful to charac-
terize these distinct distributions.

In our experience, most often the real question that men-
tal health researchers have is what cut off points on various
(usually) continuous clinical and biological characteristics
should they use to help them guide treatment decisions and
inform study designs. By tradition, these questions are for-
mulated in terms of identifying distinct clusters. Familiarity
with statistical methods for cluster analysis and the lack
of widely known methods for describing heterogeneity with-
out assuming different underlying clusters, have lead to the
following consequences. On the one hand, questions are for-
mulated in terms of discovering distinct underlying classes
and on the other hand, the results from applying cluster-
analytic methods, such as latent class, mixture and latent
growth models are interpreted as ascertaining the presence
of distinct conditions or medical diagnoses. The principal
points methodology illustrated here is an alternative to these
popular approaches, that might be better suited to the un-
derstanding of heterogeneity in some situation.

The principal points methodology is an approach
to describing heterogeneity in any distribution includ-
ing uni-modal symmetric distributions like the Gaussian.
Tarpey et al. (2009) further developed this methodology to
describe the heterogeneity and to partition functions (or
curves). In this paper we have shown how their methods can
be used to formulate and answer an important question of
clinical practice and research. In applications it would be de-
sirable to be able to apply the methodology with more com-
plex models for the sample curves than the cubic polynomial
used here as well as to incorporate covariates. Tarpey et al.
(2009) show how this can be done using different basis func-
tions, for example B-splines and how covariates can be used
to the partitioning.
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