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Using latent outcome trajectory classes in causal
inference∗
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In longitudinal studies, outcome trajectories can pro-
vide important information about substantively and clini-
cally meaningful underlying subpopulations who may also
respond differently to treatments or interventions. Growth
mixture analysis is an efficient way of identifying heteroge-
neous trajectory classes. However, given its exploratory na-
ture, it is unclear how involvement of latent classes should
be handled in the analysis when estimating causal treatment
effects. In this paper, we propose a 2-step approach, where
formulation of trajectory strata and identification of causal
effects are separated. In Step 1, we stratify individuals in
one of the assignment conditions (reference condition) into
trajectory strata on the basis of growth mixture analysis. In
Step 2, we estimate treatment effects for different trajectory
strata, treating the stratum membership as partly known
(known for individuals assigned to the reference condition
and missing for the rest). The results can be interpreted as
how subpopulations that differ in terms of outcome progno-
sis under one treatment condition would change their prog-
nosis differently when exposed to another treatment condi-
tion. Causal effect estimation in Step 2 is consistent with
that in the principal stratification approach (Frangakis and
Rubin, 2002) in the sense that clarified identifying assump-
tions can be employed and therefore systematic sensitivity
analyses are possible. Longitudinal development of atten-
tion deficit among children from the Johns Hopkins School
Intervention Trial (Ialongo et al., 1999) will be presented as
an example.

Keywords and phrases: Causal inference, Latent trajec-
tory class, Longitudinal outcome prognosis, Growth mixture
modeling, Principal stratification, Reference stratification.

1. INTRODUCTION

Heterogeneity in outcome development or prognosis has
been of great interest both in observational and experimen-
tal studies. To study heterogeneity in terms of repeated
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measures, various modeling strategies have been developed.
A line of methods, widely known as mixed effects modeling
or latent growth modeling (e.g., Diggle, Liang, and Zeger,
1994; Laird and Ware, 1982; Meredith and Tisak, 1990;
Raudenbush and Bryk, 2002), views this heterogeneity as
a continuum. Another line of approach is known as latent
class growth modeling (e.g., Jones, Nagin, and Roeder, 2001;
Nagin, 1999), which focuses on heterogeneity in a discrete
sense. A third approach, often referred to as growth mix-
ture modeling (e.g., Muthén, 2004; Muthén and Shedden,
1999), also focuses on heterogeneity in a discrete sense, but
allows for variation among individuals (i.e., heterogeneity
in the continuous sense) within each trajectory class. The
third approach, which we will focus on in this paper, can
be seen as a combination of the first and the second line
of approaches. Whether we should study heterogeneity as a
continuous or a discret entity is a debatable issue. We take
the discrete perspective in this paper mainly because the
same perspective is usually taken in principal stratification
(Frangakis and Rubin, 2002) models, which we intend to uti-
lize to facilitate causal inference considering heterogeneity
in outcome trajectories.

Growth mixture modeling is an efficient way of identify-
ing distributionally distinct latent trajectory classes on the
basis of longitudinal outcome information. The underlying
subpopulations identified by these latent classes are often
substantively and clinically meaningful especially when ex-
perts’ opinion is incorporated in the model selection process.
The idea of discrete subpopulations is particularly appealing
in the context of studying intervention or treatment effects
because these subpopulations may show different treatment
responses. In this context, the results of growth mixture
analyses may hold important treatment implications and
provide useful information for better strategizing future tri-
als. Once we shift our interest from simply identifying het-
erogeneous trajectory classes to identifying differential treat-
ment effects for these latent classes, whether and under what
conditions we can interpret the results as causal becomes a
critical issue.

The usual practice of growth mixture modeling is mostly
exploratory in the sense that we decide on a particular so-
lution heavily relying on empirical model fitting, where the
role of parametric assumptions such as normality can be
crucial. The exploratory nature of growth mixture model-
ing should be considered an advantage because the result-
ing data-driven, latent trajectory class solutions are likely to
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have better empirical fit compared to the solutions obtained
by imposing external, theory-driven rules that dictate tra-
jectory classes. However, the same exploratory nature cre-
ates a puzzling situation when growth mixture modeling is
used to estimate treatment effects for different latent trajec-
tory classes. In principle, growth mixture analyses can simul-
taneously utilize all available information, including treat-
ment response, to effectively divide individuals into latent
trajectory classes (Muthén et al., 2002; Muthén and Brown,
2009). In this one-step approach, both the treatment effects
and latent trajectory classes are identified on the basis of
empirical fit. Whether we interpret the resulting treatment
effect estimates as causal depends on whether we are will-
ing to rely on empirical fit and parametric assumptions as
a basis for causal inference.

In contrast, in the principal stratification approach (Fran-
gakis and Rubin, 2002), which we intend to combine with
growth mixture modeling, the focus has been given to clar-
ification of assumptions necessary to identify causal effects.
Principal stratification refers to cross-classification of indi-
viduals on the basis of potential values of post-treatment
variables under all treatment conditions that are compared.
Since the resulting categories (principal strata) are unaf-
fected by treatment (just like pre-treatment covariates),
treatment effects conditioning on the principal stratum
membership can be interpreted as causal effects. Consider-
ation of potential outcomes facilitates the use of clear iden-
tifying assumptions as a basis for causal inference, which is
a strong advantage of the principal stratification approach.
Principal stratification is mostly conducted in terms of in-
termediate post-treatment outcome variables. The two key
elements in identifying causal effects in the principal strati-
fication framework are 1) pre-determined (i.e., not based on
empirical fitting) rules that classify individuals into princi-
pal strata and 2) partially observed potential intermediate
variable values. For example, in a classic example of princi-
pal stratification presented in Angrist et al., (1996), four po-
tential compliance types are pre-defined based on the treat-
ment assignment status (0 = control; 1 = treatment) and
the potential treatment receipt status (0 = would not re-
ceive; 1 = would receive). In this framework, we observe the
potential treatment receipt status of individuals in the data
at least under the condition they are actually assigned to. If
an individual assigned to the treatment condition does not
receive the treatment, we know that he or she belongs ei-
ther to the never-taker or to the defier category. Given this
partially observed stratum information and pre-determined
classification rules, explicit assumptions can be established
to make up for missing information and to identify causal
effects. Since principal strata are formulated on the basis of
pre-determined rules and partially observed potential inter-
mediate variable values, empirical model fitting is not nec-
essary. However, for the same reason, the resulting causal
effect estimation models may not conform with the data
well.

Although the principal stratification and the mixture
modeling approaches share their common interest in het-
erogeneous subpopulations and share their discrete perspec-
tive in characterizing heterogeneity, the two approaches have
been developed in parallel and there has been relatively lit-
tle formal discussion of analysis strategies that combine the
strengths of the two. In this paper, we focus on causal in-
ference in the presence of heterogeneity in longitudinal out-
come prognosis, which brings up a motivating setting for the
consideration of the two approaches jointly. In the principal
stratification approach, identification of causal effects hinges
on partially observed stratum membership information. In
contrast, in the growth mixture modeling framework, since
we are not subject to a certain pre-determined stratifica-
tion rule, stratum (latent class) membership cannot be pre-
determined for any individual based on the observed data.
Instead, trajectory strata are determined based on the re-
sults of empirical fitting (substantive theory or experts opin-
ion may play a role here in making a choice among empiri-
cal solutions). Growth mixture modeling is an effective way
of estimating trajectory classes. Further, using trajectory
strata formulated based on empirical fitting is likely to result
in better fitting causal effect estimation models. From the
growth mixture modeling approach’s perspective, adopting
the principle of the principal stratification approach is cru-
cial to gain ability to clarify assumptions necessary to iden-
tify causal effects and to examine sensitivity of the causal
effect estimates to deviations from these identifying assump-
tions.

The two-step approach we propose here can be thought
of as a way of improving causal modeling in the growth
mixture modeling framework by incorporating the principal
stratification approach, or as a way of assisting formulation
of principal strata and improving empirical fit in the prin-
cipal stratification framework by incorporating the growth
mixture modeling approach. In Step 1, heterogeneous la-
tent trajectory classes are identified through growth mixture
analyses in one of the assignment conditions (reference con-
dition). In Step 2, treating the latent classes obtained in Step
1 as known for the reference condition (and missing for the
rest), causal treatment effects are defined and identified. The
main reason for this separation by step-wise analysis is to
not involve exploratory components in the identification of
causal treatment effects. Therefore, the way in which causal
effects are identified in Step 2 is consistent with that in the
standard principal stratification approach. The results can
be interpreted as how subpopulations that differ in terms
of outcome prognosis under one treatment condition would
change their prognosis differently when exposed to another
treatment condition.

This paper is organized as follows. In Section 2, the data
from the Johns Hopkins School Intervention Trial (Ialongo
et al., 1999) will be introduced. The overall intention to treat
(ITT) effect will be estimated using a common linear mixed
effects model. In Section 3, the proposed two-step approach
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will be described and demonstrated using the Johns Hopkins
data. Section 4 provides conclusions.

2. JOHNS HOPKINS PIRC STUDY

The data that motivated our study are from a school in-
tervention trial conducted by the Johns Hopkins University
Preventive Intervention Research Center (hereafter PIRC)
in 1993–1994 (Ialongo et al., 1999). The PIRC study was
designed to improve academic achievement and to reduce
early behavioral problems. Two programs were employed in
the study: the Classroom-Centered (CC) intervention and
the Family-School Partnership intervention. Teachers and
first-grade children were randomly assigned to the control
and intervention conditions. In this paper, we will compare
the control and the CC intervention groups. The CC in-
tervention consisted of components such as curriculum en-
hancements, enhanced behavior management strategies, and
back-up strategies for children not performing adequately.
The intervention was provided over the first-grade school
year, following a baseline assessment in the early fall. The
control condition did not consist of any intervention activi-
ties (i.e., standard curriculum).

We will focus on attention deficit measured by the
TOCA-R (Teacher Observation of Classroom Adaptation-
Revised; Werthamer-Larsson, Kellam, and Wheeler, 1991)
as the outcome. The TOCA-R was designed to assess chil-
dren’s adequacy of performance on core tasks in the class-
room as rated by the teacher. The attention deficit scale
ranges from 1 to 6 and consists of TOCA-R items that
measure hyperactivity, concentration problem, and impul-
siveness. The outcome was measured in the early fall (Y1:
baseline), in the spring of first (Y2: 6 months followup) and
second (Y3: 18 months followup) grades. Among 378 (194 in-
tervention, 184 control) cases analyzed, 95% completed the
assessment in the spring of first grade, and 82% in the spring
of second grade. Our analyses will be conducted under the
missing at random (MAR; Little and Rubin, 2002) assump-
tion using the likelihood of the observed data. However,
more sophiscated modeling of missing data mechanisms con-
sidering the stratum membership is also possible (e.g., Fran-
gakis and Rubin, 1999; Jo, 2008; Mealli et al., 2004). Covari-
ates included in the analyses are child’s gender (1 = male,
0 = female), ethnicity (1 = African-American, 0 = other),
parent’s education (1 = some education beyond high school,
0 = high school or less), marital status (1 = married, 0 =
not married), and employment status (1 = employed, 0 =
not employed).

Table 1 shows the sample statistics of the variables used
for the analyses in this paper. No significant differences be-
tween the control and intervention groups were found in the
baseline covariates. However, the baseline attention deficit
score shows a significant group difference. Given that class-
rooms were randomly assigned to the two groups (9 class-
rooms to the intervention condition, 9 classrooms to the

control condition), there was no apparent reason for the sig-
nificant difference between the groups in attention deficit at
baseline. Assuming that this is an experimental error oc-
curred by chance, we will focus on how attention deficit
changes over time controlling for this baseline difference.
Intervention effects will be assessed by the rate of change in
attention deficit using both mixed effects model and latent
growth mixture model analyses.

2.1 The overall average treatment effect

To estimate the overall intervention effect, we employed a
common growth model, where a single population (i.e., one
latent class) is assumed. We used maximum likelihood (ML)
estimation implemented in Mplus (Muthén and Muthén,
1998–2009). As mentioned earlier, the analysis was con-
ducted assuming that data are missing at random (MAR;
Little and Rubin, 2002) conditional on observed informa-
tion. A quadratic growth model was used given a nonlinear
development of attention deficit on average from the fall of
the first grade to the spring of the second grade, as shown in
the sample statistics in Table 1. According to the likelihood
ratio test, the model fit the data significantly better in the
presence of the quadratic growth parameter. The quadratic
growth model we employed is described below.

The outcome Y for individual i at time point t, where
i = 1, 2, . . . , N , and t = 1, 2, . . . , T (in the PIRC example,
T = 3), can be expressed as

yit = ηIi + ηLi Wt + ηQi W 2
t + εit,(1)

ηIi = αI + λI xi + ζIi,(2)
ηLi = αL + λL xi + γL Zi + ζLi,(3)
ηQi = αQ + λQ xi + γQ Zi + ζQi,(4)

where

εi ∼ MN(0, Σε),
ζi ∼ MN(0, Σζ),

and εi is independent of ζi for all i. Note that this inde-
pendence assumption is necessary for SUTVA (stable unit

Table 1. Hopkins PIRC: Sample means (standard deviations
in parentheses)

Variable Description Control Intervention

Y1 Attention deficit at
baseline

2.16 (1.02) 2.58 (1.06)

Y2 Attention deficit at
6 months

2.18 (1.01) 2.26 (0.92)

Y3 Attention deficit at
18 months

2.50 (1.08) 2.40 (1.06)

X1 Child’s gender (male) 0.51 0.57
X2 Employed 0.62 0.57
X3 Married 0.45 0.36
X4 African-American 0.84 0.84
X5 Higher education 0.38 0.40
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treatment value; Rubin, 1978, 1980, 1990) to hold, which
is explained below. That is, if SUTVA holds, then indepen-
dence among {Yi : i = 1, . . . , n} should not be violated.
Since T = 3, we imposed a restriction that Σε and Σζ are
diagonal to identify all parameters in Σε and Σζ .

The linear mixed effects model described in (1)–(4) in-
clude three random effects: the initial status (ηIi), the lin-
ear growth (ηLi), and the quadratic growth (ηQi). The set
of time scores Wt reflects the linear growth (e.g., 0, 1, 3 for
the baseline, 6 months, 18 months). The set of time scores
W 2

t reflects the quadratic growth (0, 1, 9). The residual εit

is assumed to be normally distributed with mean zero, and
its variance is allowed to vary over time. All five covariates
presented in Table 1 were included in the analysis as predic-
tors of the three random effects. The relationship between
the random effects and the vector of covariates x is captured
by the vectors of regression coefficients λI , λL, and λQ. The
intercepts in (2)–(4) can be interpreted as the mean initial
status (αI), linear growth (αL), and quadratic growth (αQ)
of the control group if the covariates are centered at their
means in the control condition. The additional linear growth
γL and the additional quadratic growth γQ when assigned to
the intervention condition (Z = 1) instead of to the control
condition (Z = 0) are interpreted as the treatment assign-
ment effects. Under the assumption of random assignment
to the treatment conditions, there is no effect of treatment
assignment on the initial status. The residuals ζIi, ζLi, and
ζQi are assumed to be normally distributed.

To be able to interpret the estimates of γL and γQ in (3)–
(4) as the overall causal effect (i.e., ITT effect) estimates,
a couple of identifying assumptions are necessary. These as-
sumptions make it possible to model potential outcomes us-
ing observed variables, and therefore make it possible to
causally interpret the results. The following two assump-
tions are widely used basic assumptions in the potential
outcomes approach (e.g., Angrist, Imbnes, and Rubin, 1996;
Frangakis and Rubin, 2002; Holland, 1986; Neyman, 1923;
Rubin, 1974, 1978, 1980, 2005) and are slightly modified
here to accommodate the longitudinal setting we consider.

• Ignorable treatment assignment: It assumes that treat-
ment assignment is independent of the potential outcomes.
That is, (Yit(1), Yit(0)) ⊥ Zi, where Yit(1) is the potential
outcome for individual i at time t when assigned to the treat-
ment condition (Z = 1) and Yit(0) when assigned to the
control condition (Z = 0). This assumption is satisfied in
randomized experiments, such as PIRC, when covariates x
are balanced among all treatment conditions. This assump-
tion can be relaxed to (Yit(1), Yit(0)) ⊥ Zi|xi.

• Stable unit treatment value (SUTVA): It is assumed
that the potential outcomes for each person are unaffected
by the treatment assignment of other individuals (Rubin,
1978, 1980, 1990). In the PIRC example, the unit of ran-
domization was a classroom. Therefore, it seems reason-
able to assume that the level of interaction among individu-
als across different treatment conditions remains about the

Table 2. Hopkins PIRC: ITT effect estimates from the mixed
effects model approach (γL stands for the treatment effect on

the linear slope and γQ on the quadratic slope)

Parameter Estimate SE

γL −0.229 0.101
γQ 0.034 0.033

same as that observed when the unit of randomization is an
individual (Sobel, 2006). However, interaction in the same
classroom is likely. Therefore, standard errors of causal ef-
fect estimates could be underestimated in our analyses. In
principle, it is possble to take into account this interaction
within each treatment assignment arm in the principal strat-
ification context (Frangakis, Rubin, and Zhou, 2002; Jo, As-
parouhov, and Muthén, 2008), although the quality of stan-
dard error estimates tend to decline with small numbers of
clusters (e.g., 9 classrooms in each arm in PIRC). In terms
of the repeatedly measured outcome, we assume indepen-
dence among subjects, but allow for the dependence across
measures within subjects.

Table 2 shows the overall intervention effect estimates
based on the linear mixed effects model described in (1)–(4).
These estimates can be interpreted as the average causal ef-
fect estimates under the random assignment of treatment
and SUTVA. The effect of intervention assignment on the
linear growth (γL) is significant, although the size of the
effect is moderate considering the outcome standard devi-
ation of around one (see Table 1). No significant effect of
intervention assignment on the quadratic growth (γQ) was
found, implying similar rates of acceleration in growth be-
tween the intervention and control groups. Marital status
was a significant predictor of initial status. Children of sin-
gle parents showed a higher level of initial attention deficit.
None of the covariates were significant predictors of either
the linear or the quadratic growth rate.

The estimation results are also presented in Figure 1 in
terms of average outcome trajectories. These estimated tra-
jectories show that the difference in outcome prognosis be-
tween the intervention and control groups is quite small, al-
though significant. Note that these results are based on an
analysis assuming a single population. However, in line with
the Simpson’s paradox argument, the overall intervention
effect estimates based on the standard linear mixed effects
model could be misleading or not too informative. One of
the main questions in the PIRC trial was if the interven-
tion program had a concentrated effect on certain subpop-
ulations, in particular subpopulations with developmentally
problematic trajectory patterns. In the following section, we
will examine whether the data indicate the existence of sub-
populations with distinct outcome trajectory types, and if
so, whether the intervention would work differently for these
different trajectory classes.
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Figure 1. Estimated overall average growth trajectories
(entire sample).

3. TWO-STEP GROWTH MIXTURE
APPROACH

In this study, we propose a 2-step approach, where formu-
lation of trajectory strata and identification of causal effects
are separated. The first step utilizes the exploratory nature
of growth mixture modeling to formulate trajectory strata
that will result in well-fitting causal effect estimation models
for the second step. However, exploratory components are
eliminated from the second step to avoid identification of
causal treatment effects relying on empirical model fitting.

In most principal stratification models, strata are for-
mulated based on partially observed potential intermediate
variable values. Hinging on this observed information, as-
sumptions necessary to identify principal causal effects can
be established considering potential outcome values under
all treatment conditions that are compared. However, this
approach does not directly apply to a situation where out-
come trajectory types are the strata of interest because tra-
jectory strata are not readily observable. Growth mixture
modeling is an effective way of generating strata information
in this situation. In principle, formulating trajectory strata
and estimating treatment effects for these strata can be car-
ried out in one step, which is convenient and computation-
ally parsimonious. The drawback of this one-step approach
is that identification of treatment effects relies on empiri-
cal model fitting and parametric assumptions, which is not
desirable from the perspective of causal inference. To avoid
this situation, it is critical to exclude estimation of treat-
ment effects from the exploratory analysis process, which
can be done by handling each treatment assignment arm
data separately when formulating trajectory strata. For this
reason, the proposed 2-step approach is based on a strati-
fication scheme that considers the potential values of the
outcome under only one assignment condition. We use ref-
erence stratification to refer to this stratification strategy.

3.1 Reference stratification

In this paper, we will employ a stratification strategy
called reference stratification, where individuals are strati-
fied according to their potential post-treatment variable val-
ues under a particular treatment condition of interest (i.e.,
reference condition). The resulting reference strata are not
affected by treatment assignment, and therefore the differ-
ences in the outcome across treatment groups within refer-
ence strata can be interpreted as causal effects. Given that
principal stratification (Frangakis and Rubin, 2002) refers
to cross-classification of individuals on the basis of poten-
tial values of post-treatment variables under all treatment
conditions that are compared, reference stratification can be
thought of as a special case of principal stratification.

The idea of stratifying individuals on the basis of poten-
tial outcome values under only one treatment condition has
been utilized previously in the context of principal stratifica-
tion modeling (Jin and Rubin, 2008; Joffe, Small, and Hsu,
2007; Roy, Hogan, and Marcus, 2008). The common moti-
vation for using reference stratification in these applications
was that the potential intermediate variable values (there-
fore, principal strata or coarse forms of principal strata)
are partly observed. Reference stratification in this context
simply means grouping of theoretically agreed-upon princi-
pal strata into coarser strata that are observed in one of the
assignment conditions. While trajectory strata are of inter-
est as in this study, we do not have pre-determined rules
for defining principal strata. Instead, we need to empiri-
cally identify reference strata under each treatment condi-
tion first, and if necessary, construct principal strata using
a pair or multiple sets of reference strata. In other words,
reference stratification in this context works as a basis for
deriving principal strata, not as a way of regrouping already
defined principal strata. In this paper, we focus on causal
inference based on a single set of reference strata. Although
cross-classification using multiple sets of reference strata is
more in line with the idea of principal stratification, it is un-
clear in practice how this method performs and how the esti-
mation results should be interpreted, especially when there
are no pre-determined rules that classify individuals into
reference or principal strata.

3.2 Step 1: Exploratory growth mixture
analysis to identify reference strata

In Step 1, heterogeneous trajectory classes are identified
using growth mixture analyses in one of the assignment con-
ditions (reference condition). Step 1 is an exploratory pro-
cedure utilizing empirical model fitting, and therefore the
resulting trajectory strata solutions are more likely to fit
the data well than the solutions determined by external (or
ad hoc) rules. In principle, it is possible to classify individu-
als without involving latent class type analyses, for example,
by dividing individuals into low and high groups based on
the median baseline score. However, this strategy can be
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arbitrary and inefficient, in particular when classifying indi-
viduals based on longitudinal outcome data.

One of the main questions in the PIRC trial was whether
there are developmentally distinct subpopulations, and if so,
whether the intervention would work differently for these
different trajectory classes. To examine this, we first con-
ducted a series of exploratory analyses separately for the
control group and the treatment group to see whether the
data indicate the existence of subpopulations with distinct
outcome trajectory types. Let C(0) denote the potential tra-
jectory strata (i.e., reference strata) membership under the
control condition, and C(1) under the intervention condi-
tion.

The observed outcome Y for individual i in the control
condition (i = 1, 2, . . . , N0 with N0 = 184 in PIRC) and
stratum j at time point t (t = 1, 2, . . . , T with T = 3 in
PIRC) is now expressed as

yit = ηI0ij + ηL0ij Wt + ηQ0ij W 2
t + ε0ijt,(5)

ηI0ij = αI0j + λI0 xi + ζI0i,(6)
ηL0ij = αL0j + λL0 xi + ζL0i,(7)
ηQ0ij = αQ0j + λQ0 xi + ζQ0i,(8)

where there are J0 possible trajectory strata (j = 1, 2,
. . . , J0) and (ε0ij1, . . . , ε0ijT ) ∼ N(0, Σj). The three random
effects (ηI0ij , ηL0ij , ηQ0ij) that capture outcome trajectories
under the Z = 0 condition (i.e, control) are allowed to vary
across J0 classes.

The probability π0i of belonging to a certain latent class j
varies depending on the influence of covariates. The multi-
nomial logit model of π0i with a vector of covariates x is
described as

logit(π0i|xi) = β00 + β10 xi,(9)

where π0i is a J0 − 1 dimensional vector of (π0i1, π0i2, . . . ,
π0i(J0−1))′, π0ij = Pr(Ci(0) = j|xi), and logit(π0i) = (log×
[π0i1/π0iJ0 ], log[π0i2/π0iJ0 ], . . . , log[π0i,J0−1/π0iJ0 ])

′. The
vector β00 is a J0 − 1 dimensional vector of logit intercepts,
and β10 is a J0 − 1 dimensional vector of multinomial logit
regression coefficients.

To obtain the maximum likelihood estimates (MLE’s)
for the growth mixture model described in (5)–(9) using
subjects in the control group, we employed the EM algo-
rithm (Dempster, Laird, and Rubin, 1977; Little and Rubin,
2002; McLachlan and Krishnan, 1997; Tanner, 1996) imple-
mented in the Mplus program (Muthén and Muthén, 1998–
2009). From (5)–(9), the log-likelihood for the observed data
{yi : i = 1, . . . , N0} is

N0∑
i=1

log

{
J0∑

j=1

π0ij(βj)f(yi | xi, αj , λj , Σj)

}
,(10)

where π0ij(βj) = Pr(Ci(0) = j|xi, βj) denotes the likeli-
hood that yi arising from mixture component j given xi, and

∑J0
j=1 π0ij(βj) = 1. And the log-likelihood of the complete-

data (i.e., {yi, Ci(0) : i = 1, . . . , N0}) can be written as

LogLC =
N0∑
i=1

LogLCi(11)

=
N0∑
i=1

J0∑
j=1

∑
Ci(0)=j

[(log[f(yi | xi, αj , λj , Σj)]

+ log[π0ij(βj)]).

To maximize (10), the E step computes the expected
values of the log-likelihood (11) given observed data and
(β∗, α∗, λ∗, Σ∗), the current current parameter estimates.
Latent trajectory class C(0) is considered as missing data
in this step. That is, the E step computes

N0∑
i=1

J0∑
j=1

log[π0ij(β∗j)f(yi | xi, α∗j , λ∗j , Σ∗j)]p0ij(β∗j),

where p0ij(β∗j) = π0ij(β∗j)/[
∑J0

j′=1 π0ij′(β∗′j)f(yi | xi,
α∗j′ , λ∗j′ , Σ∗j′) being the posterior class probability. The
M step computes the parameter estimates that maximize
the quantity obtained from the E step. This maximization
procedure continues until it reaches the optimal status.

The number of latent classes and the specific model choice
can be be decided based on two sources of information.
First, we may utilize model fit indices such as Bayesian In-
formation Criteria (BIC; Schwarz, 1978). Second, we may
incorporate experts’ opinion (theory) to decide on substan-
tively meaningful classes in the sense that it is of substan-
tive/clinical interest to find out differential effects of the
treatment for these outcome trajectory types.

From the exploratory growth mixture analyses using the
control condition data, a 2-class solution was chosen as the
most parsimonious solution in the PIRC trial according to
model fit and expert’s opinion (BIC: 1-class = 1265; 2-class
= 1240; 3-class = 1241). Figure 2 shows the results of the
2-class growth mixture analysis (N0 = 184). The 2-class so-
lution presented in Figure 2 showed a pronounced division of
the two classes with 96% classified with the estimated poste-
rior class probability (p0ij) of over 0.9 or below 0.1. We are
particularly interested in this solution from the substantive
point of view because the two trajectories well represent a
normative development of attention deficit among the ma-
jority of children at this age range (class 2: normative), and
a more problematic development among much fewer chil-
dren (class 1: problematic). This solution may also carry an
important treatment implication if we can find out how the
intervention would alter these two trajectory classes.

We also conducted growth mixture analyses for the inter-
vention group. Unlike in the control condition, no clear divi-
sion of heterogeneous trajectory classes was detected (BIC:
1-class = 1453; 2-class = 1461; 3-class = 1465). Further, in
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Figure 2. Estimated mean outcome trajectories from Step 1
(control group only).

comparing the standard curriculum and the proposed in-
tervention program, what is practically meaningful to find
out is how subpopulations that differ in terms of outcome
prognosis under the control condition would change their
prognosis differently when exposed to the intervention con-
dition (instead of how subpopulations that differ under the
intervention condition would change their prognosis in the
absence of the intervention). On the basis of empirical fit
and possible treatment implications, the control condition
was chosen as reference condition. Further analyses in this
paper are conducted focusing on the latent trajectory types
under the control condition.

3.3 Step 2: Identification of differential
average causal effects

Once we determine the latent class solution under each
treatment condition, we can formulate theoretical reference
strata based on the estimated posterior class probabilities.
In the analyses of the PIRC trial, two reference strata were
identified under the control condition, and a sigle reference
stratum was identified under the treatment condition. Note
that, in Step 1, the latent trajectory class membership C(0)
is estimated only for individuals assigned to the control con-
dition, while C(1) is estimated only for individuals assigned
to the intervention condition. Since our interest is in the
reference strata under the control condition, and the poste-
rior probabilities of C(0) were already obtained from Step
1 among individuals assigned to the control condition (still
unknown among those assigned to the intervention condi-
tion), causal effect estimation in Step 2 is conducted under
a relatively simple missing data situation.

The outcome Y for individual i in the entire sample (i =
1, 2, . . . , N with N = 378 in PIRC) at time point t (t = 1, 2,
. . . , T with T = 3 in PIRC) is expressed as

yit = ηI0ij + ηL0ij Wt + ηQ0ij W 2
t + ε0it,(12)

ηI0ij = αI0j + λI0 xi + ζI0i,(13)
ηL0ij = αL0j + λL0 xi + γL0j Zi + ζL0i,(14)
ηQ0ij = αQ0j + λQ0 xi + γQ0j Zi + ζQ0i,(15)

where J0 is now the number of reference strata that are fixed
at 2 (i.e., j = 1, 2) based on the results from Step 1.

The probability π0i of belonging to a certain reference
stratum j varies depending on the influence of covariates.
The multinomial logit model of π0i with a vector of covari-
ates x is described as

logit(π0i) = β00 + β10 xi,(16)

where π0i is now known among individuals assigned to the
control condition (from Step 1), although is still unknown
among individuals assigned to the intervention condition.

The model described in (12)–(16) is different from the
model described in (5)–(9) only in terms of the additional
treatment effect parameters γL0j and γQ0j . In this model,
not only the three random effects (ηI0ij , ηL0ij , ηQ0ij), but
also the treatment effects (γL0j , γQ0j) are allowed to vary
across J0 strata. Note that the growth mixture model de-
scribed in (12)–(16) is applied to the combined sample (con-
trol + treatment) whereas the model described in (5)–(9) in
Step 1 is applied only to the control condition sample.

To causally interpret estimates of treatment assignment
effects conditional on the potential outcome trajectory
strata (i.e., γL0j and γQ0j), the assumptions of ignorable
treatment assignment and SUTVA are slightly modified as
follows.

• Ignorable treatment assignment: It is assumed that
treatment assignment is independent of the potential out-
comes and potential outcome trajectory types. That is,
(Yit(1), Yit(0), Ci(1), Ci(0)) ⊥ Zi. This assumption can be
relaxed to (Yit(1), Yit(0), Ci(1), Ci(0)) ⊥ Zi|xi, which is
more practical for randomized studies in general (see Lin,
Ten Have, and Elliott, 2008).

• Stable unit treatment value (SUTVA): It is assumed
that the potential outcomes and potential outcome trajec-
tory types for each person are unaffected by the treatment
assignment of other individuals.

The assumptions of ignorable treatment assignment and
SUTVA are not sufficient to identify average causal treat-
ment effects that vary across trajectory strata even with
observed stratum membership among individuals assigned
to the control condition. To achieve identifiability without
relying on parametric assumptions, we considered two iden-
tifying assumptions described below. We considered both as-
sumptions to check sensitivity of the results, although only
one assumption is necessary.

• Exclusion restriction (ER): It is assumed that there is
no effect of treatment assignment for those who would fol-
low the normative outcome trajectory when assigned to the
control condition (i.e., units with Ci(0) = 2). In the PIRC
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example, the level of attention deficit for this class is already
very low and increases very slowly over time. Therefore, it
is unlikely that the intervention will have any considerable
effect on this trend. This assumption imposes restrictions
that γL02 = 0 and γQ02 = 0 in (14) and (15).

• Additive treatment assignment effect: It is assumed that
the effect of treatment assignment does not vary across dif-
ferent values of covariates (e.g., Jo, 2002). In the PIRC ex-
ample with two trajectory strata, this assumption allows us
to estimate main effects of treatment assignment for both
reference strata (i.e., ER can be relaxed). However, the as-
sumption may be violated in terms of some of the covariates.

With the help of identifying assumptions such as the ex-
clusion restriction and additivity, causal treatment effects
are identified treating the latent classes estimated in Step 1
as known for individuals assigned to the reference condition
(i.e., control condition) and unknown for the rest. The same
ML-EM procedure used in Step 1 is used treating the un-
known stratum membership as missing data. One problem
here is that, from the estimation in Step 1, most individuals
are likely to have posterior class probability estimates that
are not exactly 0 or 1. Another problem in using these poste-
rior class probabilities is that, by ignoring their uncertainty,
standard errors of the causal effect estimates may be under-
estimated in the subsequent causal effect estimation. As a
simple solution to both problems, we employed pseudo class
draws (Bandeen-Roche et al., 1997; Wang, Bandeen-Roche,
and Brown, 2005). For each pseudo class draw, control con-
dition individuals are stratified into two reference strata. On
the basis of each stratification, causal treatment effects are
identified and estimated. Point estimates and standard error
estimates are averaged over 20 pseudo class draws.

Table 3 shows the results of causal effect estimation from
Step 2. The results can be interpreted as how subpopula-
tions that differ in terms of outcome prognosis under the
control condition would differently change their prognosis
when exposed to the intervention condition. The results re-
ported in Table 3 were obtained relying on good predictors
of stratum membership and the additivity assumption. The
analysis assuming ER yielded very similar results (not re-
ported here). For those who would maintain a quite high
level of attention deficit from grade 1 to grade 2 under the
control condition (class 1), assignment to the intervention
condition had considerable and significant effects on their
outcome trajectory, both in terms of the linear (γL01) and
the quadratic growth (γQ01). As expected, for those who
would develop a normative growth (class 2) under the con-
trol condition, the intervention had little impact both on
the linear (γL02) and the quadratic growth (γQ02). Marital
status was a significant predictor of initial status. Children
of single parents showed a higher level of initial attention
deficit. Child’s gender was a significant predictor of the tra-
jectory strata. Boys were significantly more likely to develop
a problematic outcome trajectory (odds ratio = 3.84).

Table 3. Hopkins PIRC: Differential Causal Effect Estimates
From the Two-Step Gowth Mixture Approach (01 stands for
the problematic and 02 stands for the normative trajectory

stratum under the control condition)

Parameter Estimate SE

γL01 −1.065 0.371
γQ01 0.295 0.116
γL02 −0.032 0.099
γQ02 −0.022 0.035

Figure 3. Estimated mean outcome trajectories from Step 2
(entire sample).

Figure 3 shows estimated average outcome trajectories
from Step 2. The estimated trajectories show that individu-
als in the problematic trajectory stratum (14% of the sam-
ple) benefited the most from the PIRC intervention during
the first six months of the study. Although the level of atten-
tion deficit did not decrease any further, at least it stayed at
the same level for an additional year after the intervention.
In contrast, being assigned to the intervention condition had
little impact on the outcome development of individuals in
the normative trajectory stratum throughout the study.

3.4 Comparison of the one and two-step
approaches

To compare the results from one- and two-step ap-
proaches, we conducted a one-step growth mixture analy-
sis with the entire sample. As discussed earlier, in the one-
step approach, both the treatment effects and latent trajec-
tory classes are identified on the basis of empirical fit and
parametric assumptions (Muthén et al., 2002; Muthén and
Brown, 2009). The same model employed for Step 2 in the 2-
step approach described in (12)–(16) was employed for the
one-step approach. The same ML-EM estimation method
was used. The difference from Step 2 in the two-step ap-
proach is that the estimation is now conducted neither with
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Figure 4. Estimated mean outcome trajectories using the
one-step approach (entire sample).

partly known class membership nor with clear identifying as-
sumptions. Given that, the one-step approach is exploratory,
and therefore, the model choice was made by comparing em-
pirical fit across a few different solutions. A 2-class solution
was chosen based on the fact that increasing the number
of classes no longer improved the fit (BIC: 1-class = 2678;
2-class = 2641; 3-class = 2642).

Figure 4 shows estimated average outcome trajectories
from the one-step growth mixture analysis. According to
this analysis, the problematic trajectory class (Class 1) had
a somewhat higher proportion (19%) compared to the pro-
portion estimated in the 2-step approach (14%). Overall,
the 2-class exploratory solution is strikingly similar to that
of the 2-step analysis solution (see Figure 3). We find this
consistency quite remarkable given that trajectory strata
and treatment effects for these strata are identified follow-
ing considerably different principles in the two approaches.
We interpret these results as that both solutions conform
well with the empirical data. One explanation for this sim-
ilar empirical fit would be that only one reference stratum
is empirically identified under the treatment condition, and
therefore the two trajectory strata identified from the con-
trol condition is sufficient to capture heterogeneity in the
entire sample. Further investigation is necessary to clarify
the connection between the two approaches and to clarify
how causal modeling can benefit from that connection.

4. CONCLUSIONS

By combining the strengths of growth mixture model-
ing and principal stratification in the 2-step approach, this
study showed that it is possible to consider both empirical
fit and causal interpretability when studying heterogeneity
in outcome prognosis. We employed reference stratification
to formulate outcome trajectory strata based on empirical
fitting without involving treatment response. In particular,

we focused on causal inference based on a single set of refer-
ence strata, which may be the main interest in some studies.
For example, in the JHU PIRC example, it was considered
very beneficial to understand how subpopulations that differ
in terms of outcome prognosis under the control condition
would differently change their prognosis when exposed to
the treatment. In other studies, it may be critical to cross-
classify individuals based on potential prognosis under both
conditions. In principle, each treatment condition can have
its own reference strata, and therefore it is possible to cross-
classify individuals based on multiple sets of reference strata.
However, little is known about how this method performs
and how the estimation results should be interpreted un-
der various conditions. It is also unclear how one should
evaluate the performance of the method when we do not
even have pre-determined classification rules and therefore
we do not have any clear picture of the true principal strata.
Extensive research is needed to establish well-structured in-
ferential and analytical framework that can accommodate
subpopulations derived from empirical model fitting.

In the current paper, we focused on situations where the
same longitudinal variable is used both as the basis for strat-
ification and as the outcome, and therefore the resulting
strata are likely to well reflect distinct outcome distribu-
tions. However, in most principal stratification applications,
the intermediate variable on which stratification is based is
not the same as the outcome. For example, when principal
stratification is conducted in terms of treatment compliance
(e.g., Angrist et al., 1996), the resulting principal strata so-
lution may not agree well with the outcome data, resulting
in ill-fitting causal effect estimation models. Considering la-
tent class type analyses and empirical fit focusing on one
of the two (the outcome or the intermediate outcome) may
somewhat improve this situation. For example, in Jo and
Muthén (2003), mixture analyses were conducted in terms
of the longitudinal outcome to locate cut-points that dis-
cretize the compliance variable (which was originally con-
tinuous). In Lin, Ten Have, and Elliot (2008), latent class
analyses were conducted to summarize longitudinal trends
of compliance patterns. In these studies, however, principal
strata solutions may not optimally reflect distinct subpop-
ulations in terms of outcome distributions because formu-
lation of strata does not fully consider both the outcomes
and intermediate outcomes. Further investigation is neces-
sary to extend the proposed method to handle heterogeneity
in both.
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