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A mixed ordinal location scale model for analysis
of Ecological Momentary Assessment (EMA)

data*

DoONALD HEDEKER', HAKAN DEMIRTAS AND ROBIN J. MERMELSTEIN

Mixed-effects logistic regression models are described for
analysis of longitudinal ordinal outcomes, where observa-
tions are observed clustered within subjects. Random ef-
fects are included in the model to account for the correla-
tion of the clustered observations. Typically, the error vari-
ance and the variance of the random effects are considered
to be homogeneous. These variance terms characterize the
within-subjects (i.e., error variance) and between-subjects
(i.e., random-effects variance) variation in the data. In this
article, we describe how covariates can influence these vari-
ances, and also extend the standard logistic mixed model by
adding a subject-level random effect to the within-subject
variance specification. This permits subjects to have influ-
ence on the mean, or location, and variability, or (square
of the) scale, of their responses. Additionally, we allow the
random effects to be correlated. We illustrate application
of these models for ordinal data using Ecological Momen-
tary Assessment (EMA) data, or intensive longitudinal data,
from an adolescent smoking study. These mixed-effects or-
dinal location scale models have useful applications in men-
tal health research where outcomes are often ordinal and
there is interest in subject heterogeneity, both between- and
within-subjects.

KEYWORDS AND PHRASES: Complex variation, Mood vari-
ation, Heterogeneity, Variance modeling.

1. INTRODUCTION

The ordinal logistic regression model, described as the
proportional odds model by McCullagh (1980), is a pop-
ular model for analyzing ordinal outcomes. For multi-
level data, where observations are nested within clus-
ters (e.g., classes, schools, clinics) or are repeatedly as-
sessed across time, mixed-effects regression models are of-
ten used to account for the dependency inherent in the
data (Hedeker and Gibbons, 2006), and several authors
have developed mixed-effects models for ordinal outcome

*This work was supported by National Cancer Institute grant 5PO1
CA98262. The authors thank Siu Chi Wong for assisting with data
analysis.

fCorresponding author.

data. Ezzet and Whitehead (1991) and Agresti and Lang
(1993) describe random-intercepts proportional odds mod-
els. Hedeker and Gibbons (1994) describe both an ordinal
logistic and probit model with multiple random effects.
Tutz and Hennevogl (1996) propose similar mixed models
that additionally allow the model thresholds to be consid-
ered as random effects. Besides use of the logit link func-
tion, other authors have developed ordinal mixed models
utilizing the probit link (Harville and Mee, 1984; Jansen,
1990; Mehta et al., 2004; Saei et al., 1996) and complemen-
tary log-log link (Ten Have, 1996).

Most of the models for ordinal outcomes referenced above
include the proportional odds assumption (or its equiva-
lent under the probit or complementary log-log link func-
tion) for model covariates. For an ordinal response with C
categories, this assumption states that the effect of an ex-
planatory variable is the same across the C' — 1 cumulative
logits of the model, or proportional across the cumulative
odds. In previous papers (Hedeker and Mermelstein, 1998,
2000), we have described an extension to the mixed pro-
portional odds model to allow for non-proportional odds
for a subset of the explanatory variables. A similar exten-
sion is described in Saei and McGilchrist (1998), who allow
non-proportional time effects in panel studies. These devel-
opments follow the extension due to Peterson and Harrell
(1990) of the fixed-effects proportional odds model. In this
model, explanatory variables are allowed to have varying
effects on the C' — 1 cumulative logits. Thus, for a partic-
ular explanatory variable, C' — 1 regression coefficients are
estimated. These additional parameters reflect different lo-
cation effects of the explanatory variables. This extended
model has recently been applied succesfully in several ar-
ticles (Wakefield et al., 2001; Xie et al., 2001; Freels et al.,
2002; Fielding et al., 2003), and a similar Bayesian multi-
level model is described in Ishwaran (2000). Fielding et al.
(2003) additionally allow the random-effect parameters to
have non-proportional effects.

A somewhat different extension of the proportional odds
model is described by Tosteson and Begg (1988). Here, in
the context of receiver operating characteristic (ROC) anal-
ysis, the scale of the effects of explanatory variables is al-
lowed to vary. In other words, the underlying variance of
the logistic distribution can vary as a function of model
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covariates. McCullagh and Nelder (1989) refer to this ex-
tended model for ordinal data as a generalized “rational”
model. Toledano and Gatsonis (1996) use this extension in
describing generalized estimating equations (GEE) analy-
sis of correlated ROC data, while Ishwaran and Gatsonis
(2000) build upon this approach using Bayesian methods.

For cross-sectional data, Cox (1995) brought together
these extensions of the proportional odds model into
what he termed location-scale cumulative odds models.
Hedeker et al. (2006) built upon this approach within a
mixed model framework for longitudinal ordinal data. The
inclusion of scale parameters within the mixed model is
particularly advantageous because it allows modeling of
both the within-subjects (WS) and between-subjects (BS)
variances. In this regard, Hedeker et al. (2008) described a
mixed model for variance modeling of continuous longitudi-
nal data that also included a random subject effect to the
WS variance model. Here, we extend this to longitudinal or-
dinal data. Specifically, our model will include a log-linear
structure for both the WS and BS variance, allowing co-
variates to influence both sources of variation. Also, as in
Hedeker et al. (2008), a random subject effect is included
in the WS variance specification to allow the WS variance
to vary at the subject level, above and beyond the influ-
ence of covariates on this variance. Data from an adolescent
EMA smoking study are used to illustrate the mixed ordinal
location-scale model.

The article is organized as follows. Section 2 describes
data from Ecological Momentary Assessment (EMA) proce-
dures and lists some pertinent mental health and smoking
studies that have employed this approach to data collection.
Section 3 presents details of the EMA study that we will
use to illustrate our proposed mixed ordinal location-scale
model. Section 4 presents the model in detail. Estimation
aspects are described in Section 5. Application of our model
to the smoking EMA data are presented in Section 6. Fi-
nally, in Section 7, we discuss and summarize features of
the model and our application.

2. ECOLOGICAL MOMENTARY
ASSESSMENT (EMA) DATA

Modern data collection procedures, such as ecological
momentary assessments (EMA, (Stone and Shiffman, 1994;
Smyth and Stone, 2003)), experience sampling (de Vries,
1992; Scollon et al., 2003; Feldman Barrett and Barrett,
2001), and diary methods (Bolger et al., 2003), have been
developed to record the momentary events and experi-
ences of subjects in daily life (Bolger et al., 2003). These
procedures yield relatively large numbers of subjects and
observations per subject, and data from such designs
are sometimes referred to as intensive longitudinal data
(Walls and Schafer, 2006). Such designs are in keeping
with the “bursts of measurement” approach described by
Nesselroade and McCollam (2000), who called for such an
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approach in order to assess intra-individual variability. As
noted by Nesselroade and McCollam (2000), such bursts of
measurement increase the research burden in several ways;
however, they are necessary for studying intra-individual
variation and to explain why subjects differ in variability
rather than solely in mean level (Bolger et al., 2003). In
this article we describe data from a natural history study
of adolescent smoking, using EMA, where interest was on
determinants of the variation in the adolescents’ moods.

In mental health research, EMA methods have been used
in studying pediatric affective disorders (Axelson et al.,
2003), eating disorders (Boseck et al., 2007; le Grange
et al., 2002), drug abuse (Epstein et al., 2009), schizophre-
nia (Granholm et al., 2008; Kimhy et al., 2006), borderline
personality disorder (Trull et al., 2008), stress and anxi-
ety (de Vries et al., 2001; Yoshiuchi et al., 2008), and sex-
ual abuse (Simonich et al., 2004). Similarly, in smoking re-
search, some EMA studies include those studying relapse in
people who are quitting smoking (Shiffman, 2005), relapse
among adolescent smokers (Gwaltney et al., 2008), exam-
ining the urge to smoke (O’Connell et al., 1998), and our
own EMA studies on adolescents (Mermelstein et al., 2002,
2007).

Data from EMA studies are inherently multilevel with,
for example, (level-1) observations nested within (level-2)
subjects. Thus, linear mixed models (LMMs, aka multilevel
or hierarchical linear models) are increasingly used for EMA
data analysis (Walls and Schafer, 2006; Schwartz and Stone,
2007). A basic characteristic of these models is the inclusion
of random subject effects into regression models in order
to account for the influence of subjects on their repeated
observations. The variance of these random effects indicate
the degree of variation that exists in the population of sub-
jects, or the between-subjects variance. Analogously, the er-
ror variance characterizes how much variation exists within a
subject, or the within-subjects variance. These variances are
usually treated as being homogeneous across subject groups
or levels of covariates.

In EMA studies, it is common to have up to thirty or forty
observations per subject, and this allows greater modeling
opportunities than what conventional LMMSs allow. In par-
ticular, one very promising extended approach is the model-
ing of both between-subject (BS) and within-subject (WS)
variances as a function of covariates, in addition to their ef-
fect on overall mean levels. For example, if a smoker’s mood
is the outcome, then one can consider the effect of covari-
ates on their mood level (e.g., how happy/sad are they on
average), as well as on their variation in mood (e.g., how
labile/erratic is their mood). Or, one can examine mood
changes when a person smokes in terms of the mean (does
mood improve?) and variance (does mood stabilize?), and
what variables might be related to those smoking-related
changes of mood level and variation. Thus, by allowing WS
variance to be a function of covariates, we can more di-
rectly examine the hypothesis that smoking helps to regu-
late mood (Russell et al., 1974). Indeed, in a recent review,



Parrott (2006) stated that mood vacillation and its relation-
ship to nicotine dependency is an important topic for future
research.

3. ADOLESCENT SMOKING STUDY

Data from a natural history study of adolescent smok-
ing motivated the application of the mixed effects ordinal
location scale model. Students included in this study were
either in 9th or 10th grade at baseline, 55.1% female, and
self-reported on a screening questionnaire 6-8 weeks prior
to baseline that they had smoked at least one cigarette in
their lifetime. The majority (57.6%) had smoked at least one
cigarette in the past month at baseline. Written parental
consent and student assent were required for participation.
A total of 461 students completed the baseline measurement
wave. The study utilized a multi-method approach to assess
adolescents in terms of self-report questionnaires, a week-
long time/event sampling method via palmtop computers
(EMA), and in-depth interviews.

Here, we focus on the EMA data. Adolescents carried the
hand-held computers with them at all times during a seven
consecutive day data collection period. They were trained to
both respond to random prompts from the computers and
to event record (initiate a data collection interview) smok-
ing episodes. We refer to the former as random prompts and
the latter as smoking events. Questions included ones about
place, activity, companionship, mood, and other subjective
items. The hand-held computers date and time-stamped
each entry. For the analyses reported, we treated the re-
sponses obtained from the random prompts. In all, there
were 14,105 random prompts obtained from the 461 stu-
dents with an approximate average of 30 prompts per stu-
dent (range = 7 to 71). We also used information from the
self-initiated smoking events as covariates (this is described
in Section 6).

The mood outcome we considered was a subject’s as-
sessment of their negative mood before the prompt signal.
Specifically, subjects were asked to rate their pre-prompt
mood response to the item Sad: I felt sad. This was rated
on a 10-point Likert scale with “10” representing very high
levels of the attribute (i.e., sadness). Over all prompts, and
ignoring the clustering of the data, the category frequencies
are listed in Table 1. As can be seen, the distribution is
highly skewed with the first category (i.e., the lowest level
of sadness) as the modal response.

Of interest is the degree of heterogeneity in this mood
measure in terms of both WS and BS variation. Further-
more, it is of interest to examine whether certain covariates
can explain some of the variation in these two sources of
heterogeneity, over and above the influence of these covari-
ates on the mean response. It is also reasonable to allow
random subject effects for both the mean response (to allow
for subjects with different average levels of mood) and for a
subject’s WS variance (to allow for different levels of mood
consistency). These considerations led to the application of
the mixed location scale model.

Table 1. | Felt Sad — marginal response frequencies and

percentages

Sad Frequency Percent
1 6087 43.15
2 2269 16.09
3 1716 12.17
4 813 5.76
5 439 3.11
6 671 4.76
7 773 5.48
8 579 4.10
9 292 2.07
10 466 3.30

4. MIXED ORDINAL LOCATION SCALE

MODEL
Leti=1,..., N denote the subjects, j = 1,...,n; the oc-
casions, ¢ = 1,2,...,C denote the response categories, and

Y;; the ordinal response associated with subject 7 and occa-
sion j. Ordinal regression models are often specified in terms
of the cumulative comparisons of the ordinal outcome. For
this, define the cumulative probabilities for the C' categories
of the ordinal outcome Y as P;j. = Pr(Y;; < ¢) = > 1 _, Pijk,
where p; ;. denote the individual category probabilities. The
mixed-effects logistic regression model for the cumulative
probabilities (Hedeker and Gibbons, 1994) is given in terms
of the cumulative logits Aj;c (c=1,...,C —1) as:

Pi'c
O Age = log [—

where x;; is the p x 1 covariate vector and 3 is the p x 1
vector of regression parameters. The regressors can either be
at the subject level, vary across occasions, or be interactions
of subject-level and occasion-level variables. The random
subject effect v; indicates the influence of individual i on
his/her repeated assessments. The population distribution
of these random effects is usually assumed to be a normal
distribution with zero mean and variance 2. The model
also includes C — 1 strictly increasing model thresholds ~,
(e, 11 <72 < <7c-1)

As written above, a positive coefficient for a regressor in-
dicates that as values of the regressor increase so do the
odds that the response is greater than or equal to c. This
agrees with the formulation in McCullagh (1980), though
it is not the only way to write the ordinal model (e.g., see
Fielding et al. (2003)). Also, note that the relationship be-
tween the regressors  and the cumulative logits does not
depend on ¢ (hence the regression coefficients 3 do not carry
the ¢ subscript). McCullagh (1980) calls this assumption of
identical odds ratios across the C' — 1 cut-offs the propor-
tional odds assumption.

Ordinal regression models are often motivated and de-
scribed using the “threshold concept” (Bock, 1975). This
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is also termed a latent variable model for ordinal variables
(Long, 1997). For this, it is assumed that a continuous la-
tent variable y underlies the observed ordinal response Y.
Typically, the continuous latent variable y is assumed to
follow either a normal or logistic distribution, leading to or-
dinal probit or logistic regression, respectively. Under the
threshold concept, the observed ordinal outcome Y;; = c if
Ye—1 < Yij < 7 for the latent variable (with v = —oo
and y¢o = 00). In this article we will consider the logistic
formulation.

4.1 Variance modeling

In the above model, o2 represents the between-subjects
(BS) variance. To extend the model to also include within-
subject (WS) variance, we note that ordinal regression mod-
els including scaling effects are common in ROC analysis
(Tosteson and Begg, 1988). Here we will add these terms
within the mixed model, namely,

To allow covariates to influence the BS and WS variances, we
can utilize a log-linear representation, as has been described
in the context of heteroscedastic (fixed-effects) regression
models (Harvey, 1976; Aitkin, 1987), namely,

(2) oy, =

., = exp(ujo),

3) o2

€ij

= exp(wj;T).

The variances are subscripted by ¢ and j to indicate that
their values change depending on the values of the covari-
ates u; and w,; (and their coefficients). The number of
parameters associated with these variances does not vary
with 4 or j. u; will usually include a (first) column of ones
for the reference BS variance (agp). Thus, the BS variance
equals exp ag when the subject-level covariates u; equal 0,
and is increased or decreased as a function of these covari-
ates and their coefficients a. Specifically, for a particular
covariate u*, if a® > 0, then the BS variance increases as
u* increases (and vice versa if a* < 0). Note that the expo-
nential function ensures a positive multiplicative factor for
any finite value of o, and so the resulting variance is guar-
anteed to be positive. The WS variance is modeled in the
same way, although, for identification, an intercept cannot
be included as one of the w variables. However, both time-
varying and subject-varying covariates can influence the WS
variance. For this reason, the covariate vector is indicated
as w;; for the WS variance. Thus, this model allows both
subject-varying and time-varying covariates to influence the
WS variance, but only subject-varying variables to influence
the BS variance. The coefficients in & and 7 indicate the de-
gree of influence on the BS and WS variances, respectively,
and the ordinary random intercept model is obtained as a
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special case if o = 7 = 0 for all covariates in u; and w;;
(i.e., excluding the reference variance ag).

We can further allow the WS variance to vary across
subjects, above and beyond the contribution of covariates,
namely,

(4) o?

€ij

= exp(wi;T + wj),

where the random subject (scale) effects w; are distributed
in the population of subjects with mean 0 and variance
o2. The idea for this is akin to the inclusion of the ran-
dom (location) effects in equation (1), namely, covariates
do not account for all of the reasons that subjects differ
from each other. The v; parameters in (1) indicate how
subjects differ in terms of their means and the w; param-
eters in (4) indicate how subjects differ in variation, be-
yond the effect of covariates. Notice that taking logs in
(4) yields log(aij) = wj;T + w;, which indicates that if
the distribution of w; is specified as normal, then the ran-
dom effects serve as log normal subject-specific perturba-
tions of the WS variance. In other words, the WS vari-
ances follow a log normal distribution at the individual level.
The skewed, nonnegative nature of the log normal distri-
bution makes it a reasonable choice for representing vari-
ances, and it has been used in many diverse research ar-
eas for this purpose (Fowler and Whitlock, 1999; Leonard,
1975; Reno and Rizza, 2003; Shenk and Burnhamb, 1998;
Vasseur, 1999).

In this model, v; is a random effect which influences an in-
dividual’s mean, or location, and w; is a random effect which
influences an individual’s variance, or (square of the) scale.
Thus, we dub the model with both types of random effects
as a mixed-effects location scale model. These two random
effects are correlated with covariance parameter o,,. This
covariance parameter indicates the degree to which the ran-
dom location and scale effects are associated.

Visually, Figure 1 presents the pertinent details of the
model. In this figure, the average logit across all subjects is
depicted with the solid horizontal line, and the lines of two
subjects are presented as dotted lines. Data points for these
two subjects are also included in the plot. In a given dataset,
there will be as many dotted lines as there are subjects, but
for simplicity here we only plot two subjects. Also, for sim-
plicity, consider all covariates as subject-varying only. The
effect of covariates & on the logit is represented by 3; this
effect influences the solid line by either raising or lowering it
as a function of the covariates. Each dotted line is indicative
of a person’s random location effect v;, which indicates how
a subject deviates from the average logit response. In Fig-
ure 1, one subject is above and another subject is below the
average line. The heterogeneity in these dotted lines is in-
dicative of BS variance: if the dotted lines are close together
then there is not much subject heterogeneity, conversely if
the dotted lines are spread out then more heterogeneity is
indicated. The effect of covariates w on this heterogeneity
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Figure 1. Location scale model: data from two subjects.

is represented in the model as a. The degree of variation
of a person’s data points around their line is the WS vari-
ance. If the points are quite close to a subject’s line, then
that subject has low WS variance (i.e., the lower subject in
Figure 1). Conversely, if a subject’s data points vary greatly
around that person’s line then more WS variation is indi-
cated (i.e., the upper subject in Figure 1). Covariates w
influence this WS variation through the coefficients 7. Fi-
nally, the model posits that covariates do not explain all of
WS variance by including the random scale effect w;.

5. ESTIMATION

Parameter estimation can be solved using maximum like-
lihood (ML) or variants of ML. Such solutions are iter-
ative ones that can be numerically quite intensive. Here,
the approach is sketched; further details can be found
in Hedeker and Gibbons (1994) and Fahrmeir and Tutz
(2001). Let Y'; denote the vector of responses from subject 4,
and let the vector 6; represent the two random effects (i.e.,
v; and w;). The probability of any response pattern Y; (of
size n;), conditional on the random effects 8, is equal to the
product of the probabilities of the level-1 responses:

n; C
() (Y 10:) =] [IPr(vyy =cl00),
j=1 c=1

Pr(Yi; =c|0:;) = ¥(A\ije) — ¥(Aije—1),

and U (-) represents the logistic cumulative distribution func-
tion (cdf). The assumption that a subject’s responses are
independent given the random effects (and therefore can
be multiplied to yield the conditional probability of the re-
sponse vector) is known as the conditional independence as-
sumption. The marginal density of Y; in the population is
expressed as the following integral of the conditional likeli-
hood £(-)

@ b)) = [ UY160) 7(6) db.

where f(0) represents the distribution of the random ef-
fects, namely a bivariate normal density. Whereas (5) rep-
resents the conditional probability, (7) indicates the uncon-
ditional probability for the response vector of subject i. The
marginal log-likelihood from the sample of N subjects is
then obtained as log L = va log h(Y;). Maximizing this
log-likelihood yields ML estimates, which are sometimes re-
ferred to as maximum marginal likelihood estimates because
they are obtained by maximizing the marginal likelihood.

5.1 Integration over the random-effects
distribution

In order to solve the likelihood solution, integration over
the random-effects distribution must be performed. As a
result, estimation is much more complicated than in mod-
els for continuous normally-distributed outcomes where the
solution can be expressed in closed form. Various approxi-
mations for evaluating the integral over the random-effects
distribution have been proposed in the literature; many of

A mized ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data 395



these are reviewed in Rodriguez and Goldman (1995). Per-
haps the most frequently used methods are based on first- or
second-order Taylor expansions. Marginal quasi-likelihood
(MQL) involves expansion around the fixed part of the
model, whereas penalized or predictive quasi-likelihood
(PQL) additionally includes the random part in its expan-
sion (Goldstein and Rasbash, 1996). Unfortunately, these
procedures yield estimates of the regression coefficients and
random effects variances that are biased towards zero in
certain situations, especially for the first-order expansions
(Breslow and Lin, 1995). To remedy this, Raudenbush et al.
(2000) proposed an approach that uses a combination of a
fully multivariate Taylor expansion and a Laplace approx-
imation. This method yields accurate results and is com-
putationally fast. Also, as opposed to the MQL and PQL
approximations, the deviance obtained from this approxi-
mation can be used for likelihood-ratio tests.

Numerical integration can also be used to perform
the integration over the random-effects distribution
(Bock and Lieberman, 1970). Specifically, if the assumed
distribution is normal, Gauss-Hermite quadrature can ap-
proximate the above integral to any practical degree of ac-
curacy. Additionally, like the Laplace approximation, the
numerical quadrature approach yields a deviance that can
be readily used for likelihood-ratio tests. The integration
is approximated by a summation on a specified number of
quadrature points for each dimension of the integration.
An issue with the quadrature approach is that it can in-
volve summation over a large number of points, especially
as the number of random-effects is increased. To address
this, methods of adaptive quadrature have been developed
that use a few number of points per dimension that are
adapted to the location and dispersion of the distribution
to be integrated (Rabe-Hesketh et al., 2002).

An approach that is often used in econometrics and trans-
portation research uses simulation methods to integrate over
the random-effects distribution (Stern, 1997; Train, 2003).
When used in conjunction with maximum likelihood estima-
tion, it is termed “maximum simulated likelihood” or “sim-
ulated maximum likelihood.” The idea behind this approach
is to draw a number of values from the random-effects dis-
tribution, calculate the likelihood for each of these draws,
and average over the draws to obtain a solution. Thus, this
method maximizes a simulated sample likelihood instead of
an exact likelihood, but can be considerably faster than
quadrature methods, especially as the number of random
effects increases (Haan and Uhlendorff, 2006).

Bayesian approaches, such as the use of Gibbs sampling
(Geman and Geman, 1984) and related methods (Tanner,
1996), can also be used to integrate over the random effects
distribution. For multilevel data, this is described in detail
by Draper (2008) and Gelman and Hill (2006).

5.2 Software

Several computer programs provide maximum likelihood
estimates of the mixed-effects proportional odds model, in-
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cluding SAS PROC NLMIXED, Stata (StataCorp, 1999),
HLM (Raudenbush et al., 2004), MLwiN (Rasbash et al.,
2004), LIMDEP (Greene, 2002), GLLAMM (Rabe-Hesketh
et al., 2001), Mplus (Muthén and Muthén, 2001), and
MIXOR, (Hedeker and Gibbons, 1996). Some of these pro-
grams, however, only allow random-intercepts models, and
few allow the inclusion of the scaling parameters described
here. Also, these programs differ in how the integration
over the random effects is performed. For the analyses pre-
sented in this article, SAS PROC NLMIXED, which utilizes
adaptive quadrature for integration of the random effects,
was used and is detailed in the appendix. In terms of soft-
ware for maximum simulated likelihood, LIMDEP (Greene,
2002) has included this estimation approach for several
types of outcome variables, including nominal and ordinal,
and Haan and Uhlendorff (2006) describe a Stata routine.
For estimation under the Bayesian approach, the freeware
BUGS software program (Spiegelhalter et al., 1995) is popu-
lar; Marshall and Spiegelhalter (2001) provides an example
of multilevel modeling using BUGS, including some syntax
and discussion of the program.

6. RESULTS

To begin, we estimated a random-intercepts proportional
odds model. Namely, a model without any covariates for the
variances (i.e., no u; or w;; variables), but with covariates
in «;;. Subject-level covariates included Smoker (an indi-
cator of whether the student is a current smoker, coded
no=0 or yes=1; this was determined based on whether or
not the subject provided at least one smoking event during
the week-long data collection period), Male (coded O=female
or 1=male), and PropSmk which equaled the proportion of
occasions (both random prompts and smoking events) that
were smoking events. This variable is an indication of the
level of a subject’s smoking. It should be noted that the
mood outcome, Sad, is only from the random prompts and
not from the smoking events. In terms of prompt-level co-
variates, we considered whether the subject was alone or not
(coded O=not alone or 1=alone) at the time of the random
prompt. For this, we created both a between-subjects and
within-subjects version (AloneBS and AloneWS) as described
in Neuhaus and Kalbfleisch (1998), namely,

Xij = Xz + (Xij — Xz)

Notice that AloneBS, the first term on the right-hand side,
equals the proportion of random prompts in which a subject
was alone, and AloneWS, the latter term on the right-hand
side, is the prompt-specific deviation relative to this pro-
portion (i.e., it equals either 0—AloneBS or 1—AloneBS if
the subject was not alone or was alone, respectively, for the
given random prompt).

Table 2 lists the estimates of this model (for space, the
threshold estimates are not listed). As can be seen, sadness



Table 2. Proportional odds mixed model estimates, standard
errors (se), and p-values

Table 3. Mixed location scale model estimates (est), standard
errors (se), and p-values

parameter estimate se p <
Male (1 —.716 161 .0001
Smoker [2 AT 198 .017
PropSmk (33 —1.253 .942 .19
AloneBS (34 1.082 410 .009
AloneWs (s 527 .036 .0001
BS variance ag .965 .074 .0001

is significantly less for males, and increased for smokers, lon-
ers (i.e., subjects with higher levels of AloneBS), and when
subjects are alone. Although smoking level has a negative
effect on sadness, this effect is not significant. In terms of the
BS variance, this is estimated to be 62 = exp(.965) = 2.625.
This can be expressed as an intraclass correlation (ICC) by
noting that the variance for the underlying standard logis-
tic distribution equals 72/3 (Agresti, 2002), namely ICC =
2.625/(2.625 + 72/3) = .44. Thus, the data are correlated
within subjects to a moderate degree.

Next, we added these covariates into the loglinear mod-
els of the BS and WS variances (albeit, the WS variable
AloneWS was not included in the BS variance model). For
this, including the the random location effect (i.e., v;), we
estimated models with and without the additional random
scale effect (i.e., w;). The results for these two models are
listed in Table 3.

In terms of the effects on location (i.e., the 3s), inspec-
tion of Table 3 reveals that the same basic conclusions are
found as in the proportional odds mixed model, although
the estimates are appreciably smaller and p-values larger. In
terms of the variance modeling, first, inspection of the BS
variance effects indicates that males are considerably less
heterogeneous as a group than females. This highly signifi-
cant negative effect on sadness heterogeneity is observed for
both models in Table 3. For the WS variance effects, differ-
ence between the two models of Table 3 emerge. The model
without the random scale effect suggests that all of the co-
variates are significantly related to WS variation in sadness:
smokers are more varied in their sadness responses, while
males, loners, being alone, and smoking level are indicative
of significantly less varied (i.e., more consistent) mood re-
sponses. However, the model that includes the random sub-
ject scale effect yields only a marginally significant result for
smoking level (p < .09) and a non-significant result for the
BS alone effect (p < .14). Additionally, the remaining vari-
ables have less significant effects in the model that includes
random subject scale effects. As can be seen, a primary rea-
son for this is that the standard errors for the WS variance
effects are considerably larger in the model with random
scale effects relative to the model without them. The model
AIC value, in —2log L metric, equals 44814 (without ran-
dom scale effect) and 43322 (with random scale effect), sup-
porting selection of the latter model.

No random scale With random scale

parameter est se p< est se p<
Location

Male 1 —.501 .136 .001 —.498 157 .002
Smoker (2 358 167 .04 370 .183 .05
PropSmk [3 —-.912 775 .24 —.850 .833 .31
AloneBS (4 938 .338 .006 876  .356 .02
AloneWs (s 460 .034 .001 359 .039 .001
WS variance

Male 71 —.318 .043 .001 —.401 .110 .001
Smoker To 325 .052  .001 371 135 .006
Propsmk T3 —.909 .282 .002 —1.116 .659 .09
AloneBS 74 —.562 .108 .001 —.422 281 .14
AloneWS 75 —.117 .044 .008 —.109 .044 .02
BS variance

Intercept ap 772221 .001 936 .251 .001
Male a1 —.586 .155 .001 —.717 .144 .001
Smoker 079 .186 .67 130 173 46
Propsmk a3 —.196  .867 .83 —.499  .759 .52
AloneBS ay 165 .379 .67 288  .348 41
Scale

variance o2 1.001 .084 .001
covariance oy —.506 .099 .001

Because of the focus on smoking in this study, it is partic-
ularly interesting to note that while being a smoker signifi-
cantly increases the WS variance, the effect of smoking level
(Propsmk) on WS variance is negative (though marginally
significant in the random scale model). This suggests that
while, overall, smokers are more varied in their responses,
this variation diminishes to some degree as smoking level
increases. In other words, it is the lower level smokers that
are the most varied in their reported levels of sadness. This
resonates with the hypothesis that smoking helps to regulate
mood (Russell et al., 1974), and also the review of Parrott
(2006), who indicated the need for research on mood vac-
illation and its relationship to nicotine dependency. To get
a better sense of this, based on the WS estimates of these
two variables, one can calculate the value of PropSmk that
would be required to equalize the positive overall Smoker ef-
fect on WS variance. Namely, for the model without random
scale effects, it is .325/.909 = .358, while in the model with
random scale effects it is .371/1.116 = .332. In this dataset
of 461 subjects, 234 subjects were classified as smokers in
terms of the variable Smoker. Of these 234 subjects, the me-
dian value of PropSmk equaled .081, while the 90% percentile
equaled .3, and the 95% percentile equaled .367. Thus, based
on the model estimates and the percentiles of PropSmk, most
smokers elicited more varied responses than non-smokers.

Finally, as can be seen from Table 3, the random scale
variance and covariance parameters are both highly signif-
icant. Thus, there is clear evidence that the WS variance
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varies across individuals, above and beyond the contribu-
tion of the covariates in the WS variance model. In other
words, subjects differ in terms of their variation in sadness.
The covariance parameter ., is estimated to be negative
(and is highly significant). This suggests that subjects who
are relatively high in terms of their mean sadness level are
less varied across prompts in their sad responses.

7. DISCUSSION

This article has illustrated how mixed models can be used
to model differences in variances, and not just means, across
subject covariates. As such, these models can help to iden-
tify predictors of both within-subjects and between-subjects
variation, and to test hypotheses about these variances. Ad-
ditionally, by including a random subject effect on the WS
variance, this model can examine the degree to which sub-
jects are heterogeneous in terms of their variation on the
outcome variable. Our example with sadness clearly shows
that subjects are quite heterogeneous in terms of their mood
variation, as one might expect.

More applications of this class of models clearly exist.
For example, many questions of both normal development
and the development of psychopathology address the issue of
variability or stability in emotional responses to various sit-
uations and/or contexts. Often, a concern is with the range
of responses an individual gives to a variety of stimuli or sit-
uations, and not just with the overall mean level of respon-
sivity. These models also allow us to examine hypotheses
about cross-situational consistency of responses as well.

In this paper, we have only considered the case of a single
random subject effect for location. This could be generalized
to allow multiple location random effects. For example, it
is typical in longitudinal studies in which time is a factor,
to consider a random subject intercept as well as random
time trend parameters. However, for EMA data, there is
not necessarily a notion that a person has some kind of
systematic trend over the random prompts. In any case, the
model could clearly be extended to allow multiple random
location effects, and SAS PROC NLMIXED could still be
used to estimate such a model.

Modern data collection procedures, such as EMA and/or
real-time data captures, usually provide a fair amount of
both WS and BS data, and so give rise to the opportunity
for modeling of both WS and BS variances as a function of
covariates. Clearly, these data from this EMA study, and the
questions of the investigators, motivated the development of
the model presented in this article. One might wonder about
how much WS and BS data are necessary for estimation and
variance modeling purposes. For random coefficient models,
Longford (1993) noted the difficulty with providing general
guidelines about the degree of complexity, for the variation
part of a model, that a given dataset could support. This
would also seem to be true here. Nonetheless, carrying out
some simulations with relatively small sample sizes (e.g., 20

398 D. Hedeker, H. Demirtas and R. J. Mermelstein

subjects with 5 observations each) gives the general impres-
sion that the primary issue is that the estimation algorithm
does not often converge, but instead has estimation difficul-
ties of one sort or another, in small sample situations.

As this is a relatively new modeling technique, certain
limitations and cautions should be mentioned. First, our
model assumes that the random location effects are nor-
mally distributed and that the random scale effects are log-
normally distributed. It is unclear how robust this model is
to violations of these assumptions. To some extent, this can
be examined empirically using the approach of Liu and Yu
(2008) for estimating models with non-normal random ef-
fects. Because of the focus on the variance of the ordinal
outcome, the number of ordinal categories and relative fre-
quencies within the categories might be an aspect that needs
further examination. Finally, attention should be paid to
outliers and influential observations, as these might have
undue effects on estimation of the model parameters, espe-
cially the variance parameters.

APPENDIX A. SAS NLMIXED SYNTAX

Below is a sample of syntax necessary to run the mixed
ordinal location scale model described in this article. In this
syntax, uppercase letters are used for SAS specific syntax
and lowercase letters are used for user defined entities. In
terms of the variables used in this syntax, y denotes the
outcome, x1 denotes a prompt- or time-varying covariate, x2
denotes a subject-level or time-invariant covariate, and id is
a subject identifier. For simplicity, here we consider an ordi-
nal outcome y with only three categories; the two thresholds
are named gammal and gamma2, the two cumulative logits
are clogitl and clogit2, and the two cumulative proba-
bilities are cprobl and cprob2. The random location effect
is named ul and the random scale effect is named u2. The
model for the mean response is summarized by mean, with
the regression coefficients (3) named betal and beta2. The
model for the BS variance is given by bsvar, with alpha0 in-
dicating the reference BS variance (i.e., the between-subjects
variance when the covariate x2 equals 0), in In units, and
alphal characterizing how this variance varies with x2. Sim-
ilarly, for the model of the within-subjects (WS) variance,
wsvar is modeled with coefficients taul and tau2 specified
for the two WS variance influences x1 and x2, respectively.

PROC NLMIXED GCONV=1e-12;

PARMS betal=-.5 beta2=.3 gammal=-1 gamma2=0
alphaO=1 alphal=0 taul=0 tau2=0
scalevar=.05 cov=0;

mean =
bsvar
wsvar =

betal*xl + beta2*x2 + ul;
= EXP(alpha0 + alphal*x2);
EXP(taul*xl + tau2*x2 + u2);

clogitl =
clogit2

(gammal - mean) / SQRT(wsvar);
(gamma2 - mean) / SQRT(wsvar);



cprobl = 1 / (1 + EXP(-clogitl));
cprob2 = 1 / (1 + EXP(-clogit2));
IF (y=1) THEN p = cprobi;

ELSE IF (y=2) THEN p = cprob2 - cprobi;
ELSE IF (y=3) THEN p = 1 - cprob2;

logl = LOG(p);
MODEL y ~ GENERAL(logl);

RANDOM ul u2 ~ NORMAL([0,0], [bsvar,cov,scalevar])
SUBJECT=id;

RUN;

Users must provide starting values for all parameters on
the PARMS statement. To do so, it is beneficial to run the
model in stages using estimates from a prior stage as start-
ing values and setting the additional parameters to zero or
some small value. For example, one can start by estimating
a random-intercepts ordinal model with fixed effects (3),
BS variance (alpha0), and threshold parameters (gammai,
gamma?2). Estimates of these parameters can then be speci-
fied as starting values in a model that adds in the WS vari-
ance parameters 7, and then the BS variance parameters «
(or vice versa). Finally, the full model with the additional
parameters 02 (or scalevar) and o, (or cov) can be es-
timated. In practice, this approach works well with PROC
NLMIXED, which sometimes has difficulties in converging
to a solution for complex models. Also, in our experience,
it seems that specifying a small starting value for the sec-
ond random effect variance (02 or scalevar) helps model
convergence. Furthermore, for complex models, it is some-
times the case that the default convergence criteria is not
strict enough. In the above syntax, the convergence crite-
ria is specified as GCONV=1e-12 on the PROC NLMIXED state-
ment. The results in this article did change a bit as this
stricter criteria was applied, relative to the default specifi-
cation, however the results did not change beyond this level.
It would seem that this level is a reasonable choice, however
it probably should be examined on a case-by-case basis.
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