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Search for the smallest random forest
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∗
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Random forests have emerged as one of the most com-
monly used nonparametric statistical methods in many sci-
entific areas, particularly in analysis of high throughput ge-
nomic data. A general practice in using random forests is
to generate a sufficiently large number of trees, although it
is subjective as to how large is sufficient. Furthermore, ran-
dom forests are viewed as “black-box” because of its sheer
size. In this work, we address a fundamental issue in the
use of random forests: how large does a random forest have
to be? To this end, we propose a specific method to find a
sub-forest (e.g., in a single digit number of trees) that can
achieve the prediction accuracy of a large random forest (in
the order of thousands of trees). We tested it on extensive
simulation studies and a real study on prognosis of breast
cancer. The results show that such sub-forests usually exist
and most of them are very small, suggesting they are actu-
ally the “representatives” of the whole random forests. We
conclude that the sub-forests are indeed the core of a ran-
dom forest. Thus it is not necessary to use the whole forest
for satisfying prediction performance. Also, by reducing the
size of a random forest to a manageable size, the random
forest is no longer a black-box.

Keywords and phrases: Random forest, Classification,
Smallest forest.

1. INTRODUCTION

Breiman et al. (1984) popularized classification and re-
gression trees (CART). Besides being a flexible nonparamet-
ric classification and regression method, tree structures pro-
duced from CART are intuitive to interpret and thus prac-
tically appealing (Breiman 1984; Zhang and Singer 1999).
However, tree-based methods have two major limitations.
First, a resulting tree can be unstable even with minor data
perturbations, although this weakness is not unique, because
other stepwise model and variable selection procedures have
a similar limitation. Second, thanks to the advancement of
genomics and informatics, high dimensional data are very
common. As a result, a single tree cannot model the rich
information in the data. For example, many studies (Zhang
and Singer 2003; Ye et al. 2005; Chen et al. 2007) use tens of
thousands of gene expressions to predict an outcome using
several tens or hundreds of subjects. This is commonly re-
ferred to as the “large p (the number of genes) and small n
∗Corresponding author.

(the number of subjects)” problem (Kosorok and Ma 2007;
Zhang et al. 2008). The classic statistical view of “one opti-
mal model” to a given data set may need to be broadened,
because there may not be a parsimonious model that can
summarize the richness of a data set of a massive size.

To overcome these two weaknesses, the method of forests
has emerged as an ideal solution. Here, a forest refers to a
constellation of many tree models. Because a forest consists
of many trees, it is more stable and less prone to predic-
tion errors as a result of data perturbations (Brieman 1996;
2001). For the same reason, i.e., having many trees, we have
an opportunity to utilize more information (i.e., more vari-
ables) in the data set, and hence we can seek more insights
into and have a deeper understanding of the data. In some
applications, different trees may unravel alternative path-
ways to disease prognosis or development.

Although the method of forests addresses the two chal-
lenges that the tree-based methods face, it also loses some of
the advantages that the tree-based methods possess. Most
importantly, because of so many trees in a forest, it is im-
practical to present a forest or interpret a forest. This is
what Breiman referred to as a “black-box” in his 2002 Wald
lectures presented at the annual meeting of the Institute of
Mathematical Statistics. Our goal is to explore whether it
is possible to find a common ground between a forest and a
single tree so that we retain the easy interpretability of the
tree-based methods and avoid the problems that the tree-
based methods suffer from. In other words, does a forest
have to be large, or how small can a forest be? To answer
this fundamental question, our key idea is to shrink the for-
est with two objectives: (a) to maintain a similar (or even
better) level of prediction accuracy; and (b) to reduce the
number of the trees in the forest to a manageable level.

2. METHODS

To shrink the size of a forest while maintaining the pre-
diction accuracy, we need to consider methods that facilitate
the process of selecting trees for removal. To this end, we
consider three measures to determine the importance of a
tree in a forest in terms of prediction performance in order
to find the minimal size of the forest.

The first measure focuses on the prediction: a tree can
be removed if its removal from the forest has the minimal
impact on the overall prediction accuracy. This is done as
follows. First, calculate the prediction accuracy of forest F ,
denoted by pF . Second, for every tree, denoted by T , in
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forest F , calculate the prediction accuracy of forest F−T that
excludes T , denoted by pF−T

. Let Δ−T be the difference in
prediction accuracy between F and F−T .

(1) Δ−T = pF − pF−T

The tree T p with the smallest ΔT is the least important one
and hence subject to removal.

(2) T p = arg min
T∈F

(Δ−T )

This method will be referred to as “by prediction.”
The other two deletion methods are based on the sim-

ilarity between two trees. The idea is that we can afford
to remove a tree if it is “similar” to other trees in the for-
est. The measure of similarity is defined as follows. For each
data point, we have a predicted outcome from any tree T ,
denoted by PT . Given two trees Ti and Tj , the correlation
of the predicted outcomes by the two trees are defined as:

(3) cori,j = cor(PTi , PTj ), i, j = 1, 2, . . . , NF

where NF represents the size of the original random forest
F . cori,j gives rise to a similarity between the two trees. For
tree T , the average of its similarities with all trees, denoted
by ρT , in F−T reflects the overall similarity between T and
F−T .

(4) ρT =
1

NF − 1

∑
t∈F,t�=T

cort,T

Then, the tree T s with the highest rhoT is the most similar
to the trees in F−T and hence subject to removal.

(5) T s = arg max
T∈F

(ρT )

This method will be referred to as “by similarity.”
We can also modify this method as follows. Assign the

initial weight of each tree T in forest F to 1.

(6) wT = 1, T ∈ F

Then, we use equation (3) to evaluate the pairwise similarity
cori,j of two trees Ti and Tj in forest F , according to their
predicted outcomes PTi and PTj . Next, we select the pair of
trees being most similar, named Ts1 and Ts2. Also, calculate
the average of similarity ρs1 and ρs2 for the two trees. The
tree T rs with higher ρT rs is subject to removal.

(7) T rs = arg max(ρs1, ρs2)

Finally, considering the pairwise similarity, we calculate the
new weights by distributing wT rs to all other trees in F−T rs ,
proportional to the pairwise similarity in.

(8) w′
t = wt +

cor(T rs, t)
ρT rs

∗ (Nf − 1), t ∈ F−Trs

This method will be referred to as “by restricted similarity.”
To select the optimal size sub-forest, we need to track the

performance of the sub-forests. Let h(i), i = 1, . . . , Nf − 1
denote the performance trajectory of a sub-forest of i trees,
where Nf is the size of the original random forest. Note that
h(i) is specific to the method measuring the performance,
because there are many sub-forests with the same number
of trees. If we have only one realization of h(i), we select the
optimal size iopt of the sub-forest by maximizing h(i) over
i = 1, . . . , Nf − 1.

(9) iopt = arg max
i=1,...,Nf−1

(h(i))

If we have M multiple realizations of h(i), we select the
optimal size sub-forest by using the 1-se rule as described by
Breiman et al. (1984). That is, we first compute the average
h(i) and its standard error σ(i). As discussed by Breiman et
al. (1984) and Zhang and Singer (1999), the 1-se rule tends
to yield a more robust and parsimonious model.

(10) h(i) =
1
M

∑
j=1,...,M

hj(i), i = 1, . . . , Nf − 1

(11) σ(i) = var(h1(i), . . . , hM (i)), i = 1, . . . , Nf − 1

Then, find the im that maximizes the average h(i) over i =
1, . . . , Nf − 1.

(12) im = arg max
i=1,...,Nf−1

(h(i))

Finally, we choose the smallest sub-forest such that its
corresponding h is within one standard error (se) of h(im)
as the optimal sub-forest size iopt.

(13) iopt = min
i=1,...,M

(h(i) > (h(im) − σ(im)))

We call iopt the critical point of the performance trajectory.

3. RESULTS AND DISCUSSION

3.1 Simulation designs

For each data set, we generated 500 observations, each
of which has one response variable and 30 predictors from
Bernoulli distribution with success probability of 0.5. We
randomly chose ν of the 30 variables to determine the re-
sponse variable. For convenience, these ν predictors are la-
beled as, X1, . . . , Xν . Then, the response variable is defined
as follows:

y =

{
1, if 1

ν

∑ν
i=1 Xi + ε > 0.5,

0, otherwise

where ε is a random variable following the normal distri-
bution with mean zero and variance σ2. We considered two
choices for ε (5 and 10) and two choices of σ (0.1 and 0.3).
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Figure 1. Prediction performance of sub-forests produced from different datasets and methods.

To perform an unbiased comparison of the three tree
removal measures introduced in the Methods section be-
low, we simulated independent data sets to train the ini-
tial random forest, to delete trees from the initial forest to
produce sub-forests, and to evaluate the prediction perfor-
mance of the sub-forests. These three data sets are referred
to as the training set, the execution set, and the evalua-
tion set. The generation and use of these three data sets
constituted one run of simulation, and we replicated 100
times.

In practice, however, we generally have one data set
only. That is, we may not have the execution and eval-
uation data sets as in our simulation. A practical ques-
tion is: how do we select the optimal sub-forest with only
one data set? To answer this question, we considered four
bootstrap-based approaches and examined them in sim-
ulated data sets, leveraging the fact that we have the
“golden” standard to be compared with in the simulated
data set.

We begin with the construction of an initial forest using
the whole data set as the training data set. In the first ap-
proach, we use one bootstrap data set for execution and the
out-of-bag (oob) samples for evaluation. In the second ap-
proach, we use the oob samples for both execution and eval-
uation. In the third approach, we use the bootstrap samples
for both execution and evaluation. Lastly, we re-draw boot-
strap samples for execution and again re-draw bootstrap
samples for evaluation.

3.2 Simulation results

To decide the size of the original random forest, we began
with a random forest with a size of 100 trees. Then we in-
creased the size gradually by step of 100 until the oob error
rate was stable. We repeated the procedure on every dataset
and ended up with selecting the size of 2000.

First, to gain insight into tree removal in a forest, in
Fig. 1, we randomly selected one run of simulation and pre-
sented the stepwise change in the prediction performance as
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Figure 2. Performance trajectory of the “by prediction” method using the results in five randomly selected runs for four data
sets.

a result of removing one least “favorable” tree at a time.
Based on Fig. 1, the “by prediction” method is preferable
because it can identify a critical point during the tree re-
moval process in which the performance of the sub-forest
deteriorates very rapidly. Figure 1 indicates that the per-
formance of the sub-forests may begin to improve before
the critical point. Therefore, the “by prediction” method
can reduce the size of the forest to a manageable level
while maintaining (or even improving) the prediction ac-
curacy.

All of the simulations suggest consistently that the “by
prediction” method is the preferable choice in achieving our
goal. Thus, we will focus on the “by prediction” method
from now on, even though we performed our simulations for
all methods.

Second, Fig. 2 displays a summary plot of prediction per-
formance using the results in five randomly selected runs.
This figure provides some insights into how the prediction

Table 1. The medians of the numbers of trees in the optimal
sub-forests in 100 replications. The 1st quartile and 3rd

quartile are provided in the parentheses
�����σ

ν
5 10

0.1 20(13,29) 31(20,40)
0.3 22(15,32) 18(11,37)

trajectories vary from one simulation run to another. Al-
though the variation of the trajectories is notable, the sizes
of the optimal sub-forests are within a reasonable range (11–
36) for the “by prediction” method.

Lastly, Table 1 provides a summary from the 100 simula-
tion runs. For a lower noise level (σ = 0.1), the performance
of the sub-forests shows a kick-back before the critical point,
and is better than that of the initial forest. When the noise
level is relatively high (σ = 0.3), the performance of all
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Figure 3. A performance summary plot of the “by prediction” method.

sub-forests remains stable until after the critical point is
passed.

Figure 3 compares the performance of the four bootstrap-
based approaches in the four simulation data sets. The com-
parison is based on the average performance in 100 runs.

It is expected that the performance trajectories of the
four bootstrap-based approaches may not overlap with the
“golden” standard. However, for the selection of the op-
timal sub-forest, the similarity among the trajectories is
most relevant, because it could lead to the same or sim-
ilar sub-forest. For this consideration, in Fig. 4, we ex-
amined the correlation between the original (the “golden”
standard) trajectory and each of the four bootstrap ap-
proaches.

Figures 3 and 4 indicate that the first approach, i.e., using
the bootstrap samples for execution and the oob samples for
evaluation, is an effective sample-reuse approach to selecting
the optimal sub-forest, when there is only one data set, i.e.,
in the real data application.

3.3 Prediction for breast cancer prognosis

It is documented that adjuvant systemic therapy substan-
tially improves disease-free and overall survival in women
with breast cancer up to the age of 70 years (Early
Breast Cancer Trialists’ Collaborative Group 1998), es-
pecially in patients with poor prognostic features bene-
fit (National Institutes of Health Consensus Development
Panel 2001). The main prognostic factors in breast cancer
are age, tumor size, status of axillary lymph nodes, histo-
logic type of the tumor, pathological grade, and hormone-
receptor status (van de Vijver 2002). More recently, mi-
croarrays have been used to analyze breast-cancer tis-
sues (Perou et al. 2000), to distinguish cancers associ-
ated with BRCA1 or BRCA2 mutations (Hedenfalk 2001;
van’t Veer 2002; Zhang 2002) and to determine estrogen-
receptor status (van’t Veer 2002) and lymph-node status
(West 2001).

To provide a more accurate estimate of the risks of metas-
tases associated with the two gene-expression signatures and
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Figure 4. The correlation between the performance trend by each of the four bootstrap strategies and the “standard” curve.

to substantiate that the gene-expression profile of breast
cancer is a clinically meaningful tool, van de Vijver et al.
(2002) studied a cohort of 295 young patients with breast
cancer, some of whom were lymph-node-negative and some
of whom were lymph-node-positive. Using expression pro-
files from 70 previously selected genes, they concluded that
the gene-expression profile in their study is a more powerful
predictor of the outcome of disease in young patients with
breast cancer than standard systems based on clinical and
histologic criteria (van de Vijver 2002).

In this study we used the microarray data of that cohort
to evaluate the performance of our method. The responses
of all patients are defined by whether the patients remained
disease-free five years after their initial diagnoses or not, as
described in van’t Veer et al. (2002). Seven patients in the
cohort stopped follow-ups in less than 5 years and developed
no metastases during this period. As in van’t Veer et al.
(2002), we removed those subjects from the cohort in the
present analysis for consistency.

We used the “by prediction” measure as the optimization
criterion for sub-forest, and then the original data set to con-
struct an initial forest, a bootstrap data set for execution,
and the oob samples for evaluation. We replicated the pro-
cedure for a total of 100 times. In each run, we used the oob
samples to compare the performance of the initial random
forest and the optimal sub-forest. The sizes of the optimal
sub-forests fall in a relatively narrow range, of which the 1st
quartile, the median, and the 3rd quartile are 13, 26 and 61,
respectively.

Since our main goal is to shrink the initial random forest
as small as possible to enable us to examine and understand
the tree structures in the forest, we chose the smallest opti-
mal sub-forest in the 100 repetitions with the size of 7.

To compare the performance of the initial random for-
est with this optimal sub-forest, we used the two forests as
classifiers in the original data set. Table 2 presents the mis-
classification rates based on the oob samples. It should be
noted that 19 out of the 288 samples were in the training
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Figure 5. The top three layers of the optimal sub-forest consisting of seven trees.

Table 2. Comparison of prediction performance of the initial
random forest, the optimal sub-forest, and a previously

established 70-gene classifier

Method Error rate
���������True

Predicted
Good Poor

Random 26.0% Good 141 17
Forest Poor 53 58
Sub 26.0% Good 146 22
forest Poor 48 53
70-gene 35.3% Good 103 4
classifier Poor 91 71

data sets of all trees in the optimal sub-forest, and hence
were not considered in the calculation of the oob misclassifi-
cation rate for the optimal sub-forest in order to avoid bias.
The initial forest and the optimal sub-forest achieve almost
the same level of performance accuracy.

As a benchmark, we used the classifier proposed by Vijver
et al. (2002), which was based on the 70-gene profile selected
by van’t Veer et al. (2002) with 78 samples. In our analysis,
the number of samples (288 patients) is larger. As shown in
Table 2, the 70-gene classifier has an out-of-bag error rate
of 35.3%. Thus, its accuracy is much lower than those of the
forests.

The results above demonstrate that performance of the
optimal sub-forest is consistent with the initial random for-

est, and may offer a better approach than the classifier pro-
posed by van de Veer et al. (2002). Thus, we effectively re-
duced the forest size and maintained the prediction accuracy
of the initially large forest.

As we discussed earlier, a main motivation for us to seek
the smallest possible forest is to enable us to examine the
forest. To illustrate this, Fig. 5 displays the most critical part
(the top three layers) of the optimal sub-forest consisting of
the seven trees. It is interesting to note that the selected
genes are quite diverse and unique.

4. CONCLUSIONS

Random forest has become a very useful tool for analyz-
ing high dimensional data, particularly high-throughput ge-
nomic data including single nucleotide polymorphisms and
gene expression profiling. While random forests tend to pro-
duce classifiers that are more accurate than many existing
methods, as is also demonstrated in our analysis of breast
cancer prognosis, they generally consist of so many trees
that they are regarded as a “black-box” by its own inven-
tor. The objective of this work is to reduce the forest size to
the minimal level while maintaining the prediction accuracy
at the comparable level with the initially large forest. We
observed from our simulation studies and real data analysis
that the size of the optimal sub-forest is in the range of tens
and that some sub-forests can even over-perform the original
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forest in terms of prediction accuracy, likely due to their par-
simonious property. Therefore, we have demonstrated that
it is possible to construct a highly accurate random forest
consisting of a manageable number of trees to allow in-depth
examination of the trees and splits in the forests.

The key advantage of our proposed sub-forest is the abil-
ity to examine and present the forests. In the existing work
(Zhang 2003), the examination of the forests is possible only
at the descriptive level, namely, the frequency of the genes
that are selected to split nodes. As demonstrated in Fig. 5, it
is possible to present a sub-forest succinctly. We have noted
above that the selected genes in Fig. 5 are quite diverse and
unique. This may not be accidental because the sub-forest
is selected to be very efficient in representing all genes con-
sidered. However, further studies are warranted to examine
this efficiency.

The limitation of this work is that while we may have
improved the existing classifier, future samples and studies
are needed to evaluate the performance of the forest-based
classifiers as highlighted in Fig. 5. In addition, even though
the genes displayed in Fig. 5 are selected for the prediction
purpose, it is also possible some of those genes are in the
pathways to the breast cancer. This can only be confirmed
through independent studies.

ACKNOWLEDGEMENTS

This research was supported in part by grants
K02DA017713, R01DA016750, and U01HD050062 from the
National Institutes of Health.

Received 19 July 2008

REFERENCES
[1] Breiman, L. (1996). Bagging predictors. Machine Learning 26

123–140.
[2] Breiman, L. (2001). Random forests. Machine Learning 45 5–32.
[3] Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984).

Classification and Regression Trees. Chapman and Hall, New
York. MR0726392

[4] Chen, X., Liu, C., Zhang, M., and Zhang, H. (2007). A forest-
based approach to identifying gene and gene-gene interactions.
PNAS 104 19199–19203.

[5] Early Breast Cancer Trialists’ Collaborative Group

(1998). Polychemotherapy for early breast cancer: an overview
of the randomised trials. Lancet 352 930–942.

[6] Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bit-

tner, M. et al. (2001). Gene-expression profiles in he-reditary
breast cancer. N Engl J Med 344 539–548.

[7] Kosorok, M. R. and Ma, S. (2007). Marginal asymptotics for
the “large p, small n” paradigm: With applications to microarray
data. Ann Statist 35 1456–1486. MR2351093

[8] National Institutes of Health Consensus Development

Panel (2001). National Institutes of Health Consensus Develop-
ment Conference Statement: adjuvant therapy for breast cancer,
November 1–3, 2000. J Natl Cancer Inst 93 979–989.

[9] Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jef-

frey, S. S. et al. (2000). Molecular portraits of human breast
tumours. Nature 406 747–752.

[10] van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H.,
Hart, A. A. M. et al. (2002). A Gene-Expression Signature as a
Predictor of Survival in Breast Cancer. N Engl J Med 347 1999–
2009.

[11] van’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D.,
Hart, A. A. M. et al. (2002). Gene expression profiling predicts
clinical outcome of breast cancer. Nature 415 530–536.

[12] West, M., Blanchette, C., Dressman, H., Huang, E., Ishida,

S. et al. (2001). Predicting the clinical status of human breast
cancer by using gene expression profiles. PNAS 98 11462–11467.

[13] Ye, Y., Zhong, X., and Zhang, H. (2005). A genome-wide tree-
and forest-based association analysis of comorbidity of alcoholism
and smoking. BMC genetics 6(Suppl1) S135.

[14] Zhang, H. and Singer, B. (1999). Recursive Partitioning in the
Health Sciences. Springer, New York. MR1683316

[15] Zhang, H. and Yu, C. (2002). Tree-based analysis of microarray
data for classifying breast cancer. Frontiers in Bioscience 7 c63–
67.

[16] Zhang, H., Yu, C., and Singer, B. (2003). Cell and tumor classi-
fication using gene expression data: Construction of forests. PNAS
100 4168–4172.

[17] Zhang, M., Zhang, D., and Wells, M. (2008). Variable selec-
tion for large p small n regression models with incomplete data:
Mapping QTL with epistases. BMC Bioinformatics 9 251.

Heping Zhang
Department of Epidemiology and Public Health
Yale University School of Medicine
New Haven, CT 06520-8034, USA
E-mail address: heping.zhang@yale.edu

Minghui Wang
Department of Epidemiology and Public Health
Yale University School of Medicine
New Haven, CT 06520-8034, USA
E-mail address: minghui.wang@yale.edu

388 H. Zhang and M. Wang

http://www.ams.org/mathscinet-getitem?mr=0726392
http://www.ams.org/mathscinet-getitem?mr=2351093
http://www.ams.org/mathscinet-getitem?mr=1683316
mailto:heping.zhang@yale.edu
mailto:minghui.wang@yale.edu

	Introduction
	Methods
	Results and discussion
	Simulation designs
	Simulation results
	Prediction for breast cancer prognosis

	Conclusions
	Acknowledgements
	References
	Authors' addresses

