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Boosting on the functional ANOVA
decomposition
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A boosting algorithm on the functional ANOVA decom-
position, called ANOVA boosting, is proposed. The main
idea of ANOVA boosting is to estimate each component in
the functional ANOVA decomposition by combining many
base (weak) learners. A regularization procedure based on
the L1 penalty is proposed to give a componentwise sparse
solution and an efficient computing algorithm is developed.
Simulated as well as bench mark data sets are analyzed to
compare ANOVA boosting and standard boosting. ANOVA
boosting improves prediction accuracy as well as inter-
pretability by estimating the components directly and pro-
viding componentwisely sparser models.
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1. INTRODUCTION

Given an output y ∈ Y and its corresponding input
x = (x(1), . . . , x(p)) ∈ X , suppose we are interested in a
functional relationship f : X → Y between x and y. When
the dimension of the input (i.e. p) is high, one has a lot
of difficulties in estimating and interpreting f . One of the
most important learning methods for high dimensional data
is a boosting method, which constructs a strong learner by
combining many base (weak) learners. The boosting method
has shown great success in statistics and machine learning
areas for their significant improvement in prediction accu-
racy. Since [1] introduced the first boosting algorithm – Ad-
aBoost, various extensions have been proposed by [2] and
[3].

In this paper, we develop a way of using a boosting algo-
rithm to estimate the components in the functional ANOVA
decomposition, which is given as

(1) f(x) = f1(x) + f2(x) + · · · + fK(x)

where the components fk(x) depend only on low dimen-
sional elements of an input vector x. The main idea of the
proposed boosting algorithm is to estimate each component
fj , j = 1, . . . , K by combining base learners. We call the
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proposed boosting method “ANOVA boosting.” First, we
propose sets of base learners for the components in the func-
tional ANOVA decomposition to make the model identifi-
able. In particular, we use stumps (decision trees with only
two terminal nodes) as base learners for main effect terms
and their tensor products as base learners for interaction
effect terms. Second, we develop a regularization procedure
which gives a componentwisely sparse solution. Finally, we
implement an efficient computational algorithm.

An advantage of ANOVA boosting over standard boost-
ing methods is that ANOVA boosting can estimate and iden-
tify important components and their influence to the out-
put simultaneously. In contrast, as [3] explained, standard
boosting methods estimate only the highest order interac-
tion components, and so estimating lower order components
requires additional post-processing procedures. See, also, [4].
This advantage of ANOVA boosting makes it possible to se-
lect (or delete) relevant (or irrelevant) input variables. When
the dimension of input is high, the final estimated model of
a standard boosting method includes many noisy compo-
nents and we need to identify which components are real
signals and which are noises. Since ANOVA boosting can
estimate each component simultaneously, we can easily de-
velop a method which can identify signal and noisy compo-
nents in the estimated model. For this purpose, we develop
a componentwise sparse regularization procedure called the
componentwisely adaptive L1 penalty, which is motivated by
the adaptive lasso by [5].

There are several modified boosting algorithms which
give sparser solutions than standard boosting. [6] devel-
oped a similar boosting algorithm for the generalized ad-
ditive model, and [7] proposed a boosting method called
sparser boosting which yields a sparser solution than stan-
dard boosting. ANOVA boosting can estimate higher order
interaction terms while the algorithm of [6] can estimate
only main effect terms. Also, ANOVA boosting also gives a
componentwisely sparser solution in contrast to the sparser
boosting of [7] which only gives a sparser solution in terms
of base learners. That is, important components can be se-
lected by ANOVA boosting but not by sparser boosting.

ANOVA boosting has several advantages over the kernel
based method for the functional ANOVA decomposition. [8]
used the kernel machine for the functional ANOVA decom-
position to improve the interpretability, and their idea has
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been studied and extended by [9], [10] and [11]. However,
the kernel machine has a problem with categorical inputs
since the Gram matrix can be singular and so the algorithm
fails to converge. Also, when the dimension of the input is
high, the computational cost for inverting the Gram matrix
is expensive. In contrast, categorical inputs can be processed
easily and computation is simpler since no matrix inversion
is required in ANOVA boosting.

The paper is organized as follows. Section 2 presents var-
ious ingredients of ANOVA boosting such as model, the
choice of base learners and regularization procedure. In Sec-
tion 3, a computational algorithm is presented. Simulated as
well as real datasets are analyzed in Section 4. Concluding
remarks follow in Section 5.

2. ANOVA BOOSTING

2.1 Model

Let (x1, y1), . . . , (xn, yn) be n input-output pairs of a
training dataset where xi ∈ X ⊂ Rp and yi ∈ Y, which are
assumed to be a random sample from a probability measure
P on X × Y . Let xi = (x(1)

i , . . . , x
(p)
i ) where x

(j)
i ∈ Xj ⊂ R

and X = X1 ×· · ·×Xp. Let F be a given set of functions on
Rp and let l : Y × R → R be a loss function. The objective
of statistical learning is to find a function f∗ ∈ F which
minimizes EP (l(Y, f(X))) among f ∈ F .

The functional ANOVA decomposition of f is

f(x) = β0 +
p∑

j=1

fj(x(j)) +
∑
j<k

fjk(x(j), x(k)) + · · ·

where β0 is a constant, fj are the main effect components,
fjk are second order interaction components and so on. For
simplicity, we consider the model truncated up to the second
order interaction components for f . That is, F consists of
functions having the form

f(x) = β0 +
p∑

j=1

fj(x(j)) +
∑
j<k

fjk(x(j), x(k)).

Given predefined probability measures μj on Xj , let Fj

be the set of functions fj in L2(μj) satisfying
∫
Xj

fj(x(j))μj(dx(j)) = 0 for fj ∈ Fj ,(2)

and let Fjk be the set of functions fjk in L2(μj × μk) satis-
fying

∫
Xj

fjk(x(j), x(k))μj(dx(j)) = 0,

∫
Xk

fjk(x(j), x(k))μk(dx(k)) = 0.(3)

Then, we can write

F = {1} ⊕

⎡
⎣ p⊕

j=1

Fj

⎤
⎦ ⊕

⎡
⎣⊕

j<k

Fjk

⎤
⎦

where all subspaces {1}, Fj , Fjk, j = 1, . . . , p, j < k are
orthogonal on L2(μ) where μ =

∏p
j=1 μj , and hence all com-

ponents are identifiable.

2.2 Choice of base learners

The basic idea of ANOVA boosting is to estimate each
component (i.e. fjs and fjks) by a linear combination of base
learners. For this, we have to choose sets of base learners Gj

and Gjk for the components fj and fjk, respectively.
For Gj , we use the set of decision trees with only two ter-

minal nodes split by the variable x(j). For the side condition,
we enforce

(4)
∫
Xj

gj(x(j))μj(dx(j)) = 0

for gj ∈ Gj , and hence the resulting fj satisfies (2). For a
continuous input variable, let gj(x(j)) = θLI(x(j) ≤ s) +
θRI(x(j) > s). To satisfy the side condition (4), we should
have

(5) μj(x(j) ≤ s)θL + μj(x(j) > s)θR = 0.

That is, we can choose the split value s freely, but the pre-
dictive values θL and θR should be selected to satisfy (5).
Categorical inputs can be treated similarly.

For Gjk, we use the tensor products of the base learners
in Gj and Gk. That is, we let Gjk = Gj ⊗ Gk. That is, for
any gjk ∈ Gjk, there exist gj ∈ Gj and gk ∈ Gk such that
gjk(x(j), x(k)) = gj(x(j))gk(x(k)). With Gjk, the resulting fjk

automatically satisfies the identifiability condition (3). Note
that gjk have the form of

gjk(x(j), x(k)) = θLLI(x(j) ≤ sj , x
(k) ≤ sk)

+ θLRI(x(j) ≤ sj , x
(k) > sk)

+ θRLI(x(j) > sj , x
(k) ≤ sk)

+ θRRI(x(j) > sj , x
(k) > sk)

with the identifiability condition

μj(x(j) ≤ sj)θLL + μj(x(j) > sj)θRL = 0,

μj(x(j) ≤ sj)θLR + μj(x(j) > sj)θRR = 0,

μk(x(k) ≤ sk)θLL + μk(x(k) > sk)θLR = 0,

μk(x(k) ≤ sk)θRL + μk(x(k) > sk)θRR = 0.(6)

It is easy to see that one of θLL, θLR, θRL and θRR uniquely
defines the other three values. In this view, we may say that
the degree of freedom of gjk is the same as that of gj and gk.
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For the choice of μj , the most natural one is Pj , the
marginal probability measure of x(j), which are unknown.
We estimate Pj(x(j) ≤ s) by their empirical counterparts∑n

i=1 I(x(j)
i ≤ s)/n.

2.3 Regularization

In ANOVA boosting, the final model has the form

(7) f(x) = β0 + f0(x)

where

(8) f0(x) =
p∑

j=1

∑
g∈Gj

βgg(x(j)) +
∑
j<k

∑
g∈Gjk

βgg(x(j), x(k)).

First, we need to control the norm of base learners to
make βs estimable. For this, we let

sup
x(j)∈Xj

|g(x(j))| ≤ 1 for all g ∈ Gj ,

and

sup
(x(j),x(k))∈Xj×Xk

|g(x(j), x(k))| ≤ 1 for all g ∈ Gjk,

for all j, k.
Second, we need a regularization procedure for βs to avoid

overfitting and ensure componentwise sparsity. For this, we
propose to use the componentwisely adaptive L1 constraint
given as follows. Let β

(0)
g be the initial estimates obtained

by a standard boosting method, and let

(9) wj =

⎛
⎝ ∑

g∈Gj

|β(0)
g |

⎞
⎠

γ

and wjk =

⎛
⎝ ∑

g∈Gjk

|β(0)
g |

⎞
⎠

γ

for some γ ≥ 0. Then, the componentwisely adaptive L1

constraint is defined by

(10)
p∑

j=1

∑
g∈Gj

|βg|
wj

+
∑
j<k

∑
g∈Gjk

|βg|
wjk

≤ λ

where γ and λ are regularization parameters which can be
selected by using test samples or cross-validation. The pro-
posed constraint (10) is motivated by the adaptive Lasso by
[5]. Finally, we propose to estimate the βs by minimizing
the empirical risk Cn(β0, f0) =

∑n
i=1 l(yi, f(xi)) with the

constraint (10).

Remark. It would be possible to use different regular-
ization parameters for the components. That is, we let∑

g∈Gj
|βg|

wj
≤ λj and

∑
g∈Gjk

|βg|

wjk
≤ λjk. This is useful when

we have prior information about the importance of the com-
ponents. For example, to incorporate the prior information
that the main effect components are more important than
higher order interaction component, we let λjk ≤ λj . The al-
gorithm developed in the next section can be modified easily
for this case.

3. COMPUTATIONAL ALGORITHM

Given g in G = ∪jGj

⋃
∪j<kGjk, let hg(x) = λwgg(x)

where wg = wk if g ∈ Gk and wg = wjk if g ∈ Gjk. Then, we
can rewrite (8) by

(11) f0(x) =
p∑

j=1

∑
g∈Gj

θghg(x(j))+
∑
j<k

∑
g∈Gjk

θghg(x(j), x(k))

and the constraint (10) becomes
∑

g∈G |θg| ≤ 1 where
θg = βg/(λwg). Hence, for fixed β0, we can use of the
MarginBoost.L1 algorithm of [12]. However, there is a room
to improve the MarginBoost.L1 algorithm. The final esti-
mated model from the algorithm may be less sparse than it
should be. This is because the MarginBoost.L1 algorithm
keeps adding base learners to update the model. Hence,
when unnecessary base learners are added in the early stage
of iteration, they are never deleted from the estimated
model. This may not be a serious problem for prediction
accuracy, but it affects largely to the sparsity of the esti-
mated model. For resolving this problem, we employ a dele-
tion step after each iteration. In the deletion step, some base
learners in the model are deleted. By doing so, we improve
the convergence speed and ensure the sparsity of the final
estimated model.

The idea of the deletion step is as follows. After m it-
erations, there are at most m many base learners whose
coefficients are not zero. Then, we move the non-zero co-
efficients to the their gradient direction until either a non-
zero coefficient becomes zero or the optimization criterion
is satisfied. To explaining more details, given a current es-
timated model f0, let G+ = {g ∈ G : θg > 0}. That
is, f0(x) =

∑
g∈G+ θghg(x). Since the set of base learn-

ers is negation closed (i.e. if g ∈ G, then −g ∈ G) we as-
sume that all the non-zero coefficients θg are positive and∑

g∈G+ θg ≤ 1. Let ∇g = ∂Cn(β0, f0)/∂θg for g ∈ G+, and
let ∇∗

g = ∇g −
∑

g∈G+ ∇g/#G+ where #G+ is the cardinal-
ity of G+. Consider new coefficients θg(v) = θg − v∇∗

g for
some v ≥ 0. Since

∑
g∈G+ ∇∗

g = 0, we have θg(v) ≥ 0 for all
g ∈ G+ and

∑
g∈G+ θg(v) ≤ 1 as long as 0 ≤ v ≤ η where

η = min{θg/∇∗
g : ∇∗

g > 0}. We update θg by θg(v̂) where v̂ =
argminv∈[0,η]Cn(β0, f0v) where f0v(x) =

∑
g∈G+ θg(v)hg(x).

When v̂ = η, at least one of θg, g ∈ G+ becomes 0 and hence
the corresponding base learner is deleted from the estimated
model. Note that the deletion step always reduces the em-
pirical risk, and hence the algorithm also converges to the
global optimum as the MarginBoost.L1 algorithm does un-
der regularity conditions.

The MarginBoost.L1 algorithm and deletion step, which
we call the ANOVA boosting algorithm, is presented in
Fig. 1. Figure 2 compares the convergence speeds of the
ANOVA boosting and MarginBoost.L1 algorithms with a
simulated data set from the model 1 in Section 4.1. It is
clear that the ANOVA boosting algorithm converges much
faster than the MarginBoost.L1 algorithm. The training er-
ror measured by the empirical risk (the average loss over
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1. Let β0 and f0 be the initial estimates from a standard boosting algorithm.

2. Let λj = |fj |γ and λjk = |fjk|γ where

|fj | =
∑
g∈Gj

|βg| and |fjk| =
∑

g∈Gjk

|βg|.

3. Repeat until convergence

• Addition step: MarginBoost.L1 algorithm

(a) Find ĝ in G which minimizes
∑n

i=1
hg(xi)zi where

zi =
∂l(yi, a)

∂a

∣∣∣∣
a=f(xi)

.

(b) Find α̂ by
α̂ = argminα∈[0,1]Cn(β0, (1 − α)f0 + αhĝ).

(c) Update f0 = (1 − α̂)f0 + α̂hĝ.

• Deletion step

(a) Let f0(x) =
∑

g∈G+ θghg(x) where G+ = {g : θg > 0}.
(b) Let ∇g =

∑n

i=1
hg(xi)zi for g ∈ G+ and let ∇∗

g = ∇g −
∑

g∈G+ ∇g/#G+

(c) Find v̂ by
v̂ = argminv∈[0,η]Cn(β0, f0v)

where f0v(x) =
∑

g∈G+(θg − v∇∗
g)hg(x) and η = min{θg/∇∗

g : ∇∗
g > 0}.

(d) Update f0 = f0v̂.

• Update β0

(a) Update β0 = argminγ∈RC(γ, f0).

Figure 1. The ANOVA boosting algorithm.

Figure 2. Training error (empirical risk) curves on the number
of iterations for the MarginBoost.L1 (dashed line) and

ANOVA boosting algorithms (solid line).

the training samples) achieves its minimum after around
25 iterations of the ANOVA boosting algorithm while the
training error keeps decreasing even after 200 iterations of
the MarginBoost.L1 algorithm.

The ANOVA boosting algorithm always converges since
the empirical risk Cn(β0, f0) always decreases after each
iteration. The ANOVA boosting algorithm differs from

standard boosting algorithms such as AdaBoost [1] and
gradient boosting [3] which need a stopping rule to avoid
overfitting. This is an another advantage of the ANOVA
boosting algorithm.

4. EXPERIMENTS

We compare empirical performance of ANOVA boosting
with a standard boosting method in terms of prediction
accuracy and variable selectivity. For a standard boosting
method, we use the MarginBoost.L1 of Mason et al. (2000).
For variable selectivity, we compute the relative frequen-
cies of components selected. The regularization parameters
γ and λ are selected by 5-fold cross validation. We search the
optimal value of γ only on {0, 0.5, 1} to save computing time.

4.1 Simulation

We consider the following four models for simulation. The
first two models are regression problems and the last two
models are logistic regression.

Model 1: The input vector x is generated from a 10 di-
mensional uniform distribution on [0, 1]10. For given x, y is
generated from the model y = f(x) + ε, where

f(x) = 5g1(x(1)) + 3g2(x(2)) + 4g3(x(3)) + 6g4(x(4))
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Table 1. Estimates of the error rate and sparsity (standard errors) in 100 simulations

Method MIS-rate NNZ

Model 1 Boosting 1.2881 (0.0210) 9.94 (0.0239)
ANOVA boosting 1.1155 (0.0146) 4.58 (0.0768)

Model 2 Boosting 0.1908 (0.0007) 49.81 (0.0466)
ANOVA boosting 0.1641 (0.0015) 11.15 (0.2556)

Model 3 Boosting 0.2397 (0.0010) 9.78 (0.0628)
ANOVA boosting 0.2253 (0.0011) 7.42 (0.1646)

Model 4 Boosting 0.1781 (0.0012) 12.61 (0.2755)
ANOVA boosting 0.1606 (0.0007) 3.92 (0.1468)

and ε is a normal variate with mean 0 variance σ2 which is
selected to give the signal to noise ratio 3:1. Here,

g1(t) = t; g2(t) = (2t − 1)2; g3(t) =
sin(2πt)

2 − sin(2πt)

g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt)

+ 0.4 cos3(2πt) + 0.5 sin3(2πt).

This model is used by [9]. The model has only main ef-
fect components, and x5, . . . , x10 are noisy input variables.
We apply the boosting algorithms with the square error
loss.

Model 2: Model 2 is the same as Model 1 except

f(x) = g1(x(1)) + g2(x(2)) + g3(x(3)) + g4(x(4))

+ g1(x(3)x(4)) + g2

(
x(1) + x(3)

2

)
+ g3(x(1)x(2)).

That is, there are three interaction terms in the true
model.

Model 3: The input vector x is generated from 10 dimen-
sional multivariate norm distribution with mean 0 and vari-
ance matrix Σ, the off-diagonals of which are 0.2 and the di-
agonals are 1. For given x, y is generated from the Bernoulli
distribution with Pr(Y = 1|x) = exp(f(x))/(1 + exp(f(x)))
where

f(x) =
4
3
x1 + π sin(πx2) +

1
10

x5
3 + 3e−x2

4/2 − 1.5.

The model has only main effect components, and x5, . . . , x10

are noisy input variables. We apply the boosting algorithms
with the negative log-likelihood loss.

Model 4: The input vector x is generated from 5 dimen-
sional multivariate norm distribution with mean 0 and vari-
ance matrix Σ, the off-diagonals of which are 0.2 and the di-
agonals are 1. For given x, y is generated from the Bernoulli
distribution with Pr(Y = 1|x) = exp(f(x))/(1 + exp(f(x)))
where

f(x) = 2x1 + π sin(πx1) + x2 − 2x3
2 + 4 exp(−2|x1 − x2|).

The model has 2 main effect components and one second
order interaction component, and x3, x4, x5 are noisy input
variables.

Table 1 compares the prediction accuracy and sparsity.
Sparsity is measured by the number of non-zero components.
We simulate 100 data sets of size 250. The error rate is eval-
uated on 10,000 testing points. In the table, the MIS-rate is
the average misclassification error rate on the test samples
and the NNZ is the average number of non-zero components.
From Table 1, we can see ANOVA boosting is more accu-
rate and selects less components than the standard boosting.
That is, ANOVA Boosting has superior prediction power as
well as interpretability compared to the standard boosting.
Better performance of ANOVA boosting is expected since
the true models are sparse.

Table 2 shows the relative frequency of each variable
appearing in the 100 estimated models, which shows that
ANOVA boosting successively deletes many noisy compo-
nents compared to the standard boosting.

4.2 Analysis of real data sets

We analyze the four real data sets which are available
on the UCI machine learning repository. The description
of the four data sets is presented in Table 3. In the table,
Type represents if the data set is either a regression problem
(R) or a classification problem (C). N.obs is the number
of observations, Cont. means continuous type inputs and
Categ. represents categorical inputs.

The main effect model as well as the second order inter-
action model are fitted. Table 4 summarizes the prediction
accuracy as well as the sparsity of ANOVA boosting and the
standard boosting on the six data sets. The error rates are
calculated by the 10-fold cross-validation.

The results show that ANOVA boosting is consistently
more accurate than the standard boosting in most cases (one
exception for “Bupa” and main effect model). Also, ANOVA
Boosting produces more sparse models than the standard
boosting. In particular, for the data set “Sonar” with the
second order interaction model, the ANOVA boosting model
consists of only 25.7 components while the standard boost-
ing model has 111 components (i.e. 75% reduction).
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Table 2. The relative frequencies of appearance of components in the models chosen in 100 runs

Model 1 Method X1 X2 X3 X4 Others

Boosting 1.00 1.00 1.00 0.96
ANOVA Boosting 1.00 1.00 0.90 0.93 0.59

Model 2 Method X1 X2 X1X2 Others

Boosting 1.00 1.00 0.80
ANOVA Boosting 1.00 1.00 0.41 0.12

Model 3 Method X1 X2 X3 X4 Others

Boosting 1.00 1.00 1.00 0.99
ANOVA Boosting 1.00 1.00 1.00 1.00 0.10

Model 4 Method X1 ∼ X4 X1X2 X1X3 X3X4 Others

Boosting 1.00 1.00 1.00 0.69
ANOVA Boosting 1.00 1.00 0.78 0.11 0.05

Table 3. Description of the six data sets

Inputs
Name Type N.obs Cont. Categ.
Bupa C 345 6 0
Breast C 286 3 6
Sonar C 210 60 0

Housing R 506 12 1

4.3 Illustration on the data set “Breast”

We investigate more about the components selected in
the breast cancer data set. This data set includes 201 in-
stances of one class (no-recurrence-events) and 85 instances
of another class (recurrence-events). The instances are de-
scribed by 9 attributes – X1: age, X2: menopause (lt40,
he40, premeno), X3: tumor-size, X4: invasion node, X5:
node-caps (yes or no), X6: degree of malignance, X7:breast

location (left or right), X8: breast quad (left-up, left-
low, right-up, right-low, central), X9: irradiated (yes or
no).

Since the second order interaction model is better in pre-
diction accuracy than the main effect model in Table 4, we
present the results from the second order interaction model.
Figure 3 gives the L1 norms of the 12 selected components
out of 45 candidate components. Among these, Fig. 4 shows
the estimated functional forms of the first 6 components hav-
ing the largest L1 norms. There are three main effects and
three second order interaction components. The risk of the
recurrence of breast tumor increases as the deg-mailg, inv-
nodes and tumor-size increase. Also, the three interaction
components show that the location of the cancer are inter-
acted with the status of menopause and age. These suggest
that different treatments would be applied according to the
age of a patient, status of menopause and location of the
cancer.

Table 4. Estimates of the accuracies and number of non-zero components (standard errors) in the four data sets

Data Model Method MIS-rate NNZ

Bupa
Main effect

Boosting 0.2868 (0.0247) 6.0 (0.0000)
ANOVA Boosting 0.2926 (0.0237) 6.0 (0.0000)

Second order
Boosting 0.3362 (0.0223) 20.3 (0.3000)

ANOVA Boosting 0.3187 (0.0175) 12.7 (1.0333)

Sonar
Main effect

Boosting 0.1583 (0.0235) 40.8 (1.7048)
ANOVA Boosting 0.1529 (0.0193) 24.7 (1.0005)

Second order
Boosting 0.1631 (0.0225) 111 (10.8443)

ANOVA Boosting 0.1575 (0.0225) 25.7 (1.6401)

Breast
Main effect

Boosting 0.2494 (0.0130) 7.1 (0.5467)
ANOVA Boosting 0.2449 (0.0094) 4.8 (0.5537)

Second order
Boosting 0.2462 (0.0186) 21.2 (2.5638)

ANOVA Boosting 0.2421 (0.0156) 14.7 (3.0112)

Housing
Main effect

Boosting 15.8973 (1.8412) 11.8 (0.1334)
ANOVA Boosting 14.6608 (1.7641) 9.4 (0.4760)

Second order
Boosting 14.6569 (1.8556) 39.1 (0.6904)

ANOVA Boosting 13.4980 (1.4603) 23.3 (0.8171)
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Figure 3. L1 norms of the 12 selected components.

5. CONCLUDING REMARKS

By simulations and analysis of real data sets, we have il-
lustrated that ANOVA boosting improves the interpretabil-
ity of the standard boosting significantly by estimating the
components directly and providing componentwisely sparser
models without sacrificing prediction accuracy. Also, the
newly proposed computational algorithm converges faster
and can be applied to high dimensional data.

The final estimated components of ANOVA boosting are
not smooth. This is because decision trees are used as base
learners. If one wants smooth estimates, one can use smooth
base learners such as the radial basis functions and smooth
splines. As long as we have base learners for main effect
components, base learners for higher order interactions can
be constructed via the tensor product operation. See [13] for
this approach. However, there is an advantage of using de-
cision trees as base learners. ANOVA boosting is expected

Figure 4. Estimated functional forms of the 6 components having the largest L1 norm for the Breast Cancer data.
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to be robust to input noise since decision trees are so. This
is because decision trees are invariant to a monotone trans-
formation of an input. So, in practice, we can use ANOVA
boosting without preprocessing input variables.
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