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FIRST: Combining forward iterative selection and
shrinkage in high dimensional sparse linear
regression
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We propose a new class of variable selection techniques
for regression in high dimensional linear models based on a
forward selection version of the LASSO, adaptive LASSO or
elastic net, respectively to be called as forward iterative re-
gression and shrinkage technique (FIRST), adaptive FIRST
and elastic FIRST. These methods seem to work effectively
for extremely sparse high dimensional linear models. We ex-
ploit the fact that the LASSO, adaptive LASSO and elastic
net have closed form solutions when the predictor is one-
dimensional. The explicit formula is then repeatedly used
in an iterative fashion to build the model until convergence
occurs. By carefully considering the relationship between es-
timators at successive stages, we develop fast algorithms to
compute our estimators. The performance of our new es-
timators are compared with commonly used estimators in
terms of predictive accuracy and errors in variable selection.
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1. INTRODUCTION

Variable selection in linear models is a major statistical
issue in contemporary data analysis because modern data
typically involve a lot of predictors, many of which are nearly
irrelevant. Such a sparse structure of the regression function
actually allows us to estimate the regression function fairly
accurately even when the number of predictors far exceeds
the number of available observations. Removing irrelevant
variables from the predictive model is essential since the
presence of too many variables may cause overfitting and
multicollinearity, which lead to poor prediction of future
outcomes. Moreover, the presence of too many variables in
the regression function makes the relation hard to inter-
pret. Since we are typically interested in situations where
the number of predictors p is much larger than the size of
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the available sample n (large p, small n or LPSN problems),
we simply restrict ourselves to a linear model. Note that
predictors are necessarily correlated when p > n.

Traditional variable selection methods for linear models
include forward selection where variables are added to the ef-
fective subset of predictors sequentially, backward selection
where variables are gradually removed from the collection,
and stepwise selection where variables may be either added
or removed depending on predictive performance. Typically,
to assess performance and effectiveness in variable selection,
the mean squared error (MSE), adjusted R2 [14], Mallow’s
Cp [14], prediction sum of squares (PRESS) [14], Akaike in-
formation criterion (AIC) [1], Bayesian information criterion
(BIC) [15] and so on are used. However, methods based on
such criteria generally runs into difficulty in LPSN prob-
lems. Nowadays, regularized linear regression methods such
as the ridge regression [12], nonnegative garrote [3, 17], least
absolute selection and shrinkage operator (LASSO) [16, 21],
adaptive LASSO [20] and elastic net [19] are widely used for
variable selection in linear models.

We consider the linear regression model Y = Xβ + ε
where Y = (Y1, . . . , Yn)T ∈ Rn is a vector of responses, X
is an n×p matrix for predictors, β = (β1, . . . , βp)T ∈ Rp is a
vector for parameters, ε = (ε1, . . . , εn)T is an n-dimensional
random error, whose components are uncorrelated random
variables having mean zero and common variance σ2. With-
out loss of generality we assume the data are centered, so the
intercept is not included in the regression model. Through-
out this paper, we also assume the columns of X are stan-
dardized to length 1. Let XT

1 , . . . ,XT
n stand for the rows

of X, so that the ith observation may be decomposed as
Yi = XT

i β + εi, i = 1, . . . , n. The model parameter β is
traditionally estimated by the method of least squares min-
imizing (Y −Xβ)T (Y −Xβ), which leads to the best linear
unbiased estimator β̂ = (XT X)−1XT Y , provided that the
model is of full rank, that is, rank(XT X) = rank(X) =
p. However, the variance-covariance matrix of β̂ given by
σ2(XT X)−1 becomes very unstable when components of
the predictors are nearly linearly related. In particular, if
the number of observations n is less than the number of
predictors p, XT X is necessarily singular so that a general-
ized inverse matrix should be considered for XT X. In such
cases, the least square estimator is not unique and may be
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biased, and only certain linear combinations of β can be
unbiasedly estimated.

To stabilize the variability of β̂, [12] proposed the ridge
estimator which minimizes a penalized sum of squares
(Y − Xβ)T (Y − Xβ) + λ‖β‖2 and is given by β̂

R
=

(XT X +λIp)−1XT Y . The estimator essentially introduces
a shrinkage on β̂ towards zero, and may be viewed as a Bayes
estimator with a normal prior on β.

In LPSN problems, typically many variables are insignif-
icant, that is, they have regression coefficient exactly or ap-
proximately equal to zero. It is essential to filter out insignif-
icant variables in order to reduce the model to manageable
level and reduce prediction errors while estimating the re-
gression coefficients. Thus it is desirable to shrink an in-
significant regression coefficient to exactly zero, so that the
corresponding variable will be automatically eliminated. [3]
suggested the non-negative garrote estimator defined by

(1) β̂
G

= arg min
c≥0

⎧⎨
⎩‖Y − X(β̂ ◦ c)‖2 + λ

p∑
j=1

cj

⎫⎬
⎭ ,

where ◦ stands for componentwise (Hadamard) multiplica-
tion of vectors and λ is a Lagrangian multiplier. Under the
non-negativity restriction, the second term in the expression
above stands for the �1-norm of the vector c. Thus the non-
negative garrote essentially looks for a minimizer of sum of
squares within a weighted �1-ball intersected with the cone
defined by the least square estimator. The crispy nature of
the boundary of �1-balls implies that the solution will often
be located on the boundary where many of the components
are exactly zero. Thus the non-negative garrote shrinks the
least square estimator towards zero and sets small coeffi-
cients to exactly zero.

The non-negative garrote still depends on the least-square
estimator in its formulation, which is an inconvenience in
LPSN problems. [16] proposed the LASSO, where an �1-
penalty is imposed, but the vector β̂ ◦ c is replaced by an
arbitrary vector β without any non-negativity constraint. In
other words, the LASSO estimate is obtained by solving the
non-linear optimization problem

(2) β̂
L

= arg min
β

⎧⎨
⎩‖Y − Xβ‖2 + λ

p∑
j=1

|βj |

⎫⎬
⎭ ,

where λ > 0 is a Lagrangian multiplier which is used to
regulate the penalty level.

When the regressors are highly correlated, the LASSO
sometimes shows some erratic behavior in selecting vari-
ables arbitrarily from a group of correlated variables, and
in reversing the sign of the estimate of a regression coef-
ficient as the smoothing parameter varies. To avoid these
shortcomings, [19] suggested imposing a quadratic penalty
in addition to LASSO’s �1-penalty and called the resulting

procedure an elastic net (EN). Thus the elastic net estima-
tor with smoothing parameter λ1 > 0 and λ2 > 0 is defined
as β̂

EN
= (1 + λ2)β̃, where

(3)

β̃ = arg min
β

⎧⎨
⎩‖Y − Xβ‖2 + λ1

p∑
j=1

|βj | + λ2

p∑
j=1

β2
j

⎫⎬
⎭ .

Intuitively, it is preferable to penalize different components
differently in LASSO in tune with the size of some esti-
mate of their regression coefficients, leading to the concept
of adaptive LASSO [20]. Indeed, it can be shown that such
estimators can possess an important oracle property [8, 20].
The adaptive LASSO can be described as the solution of the
non-linear optimization problem

(4)

β̂
AL

= arg min
β

⎧⎨
⎩‖Y − Xβ‖2 + λ

p∑
j=1

|βj |
|β̃j |γ

⎫⎬
⎭, λ > 0, γ > 0,

where β̃j is an initial consistent estimator of βj , j = 1, . . . , p.
The least square estimator of β is a natural choice for β̃, but
the choice suffers from LPSN problems where it is not unique
because of singularity. The ridge regression estimator is a
more sensible choice for β̃ [14]. Usually, one chooses γ = 1
in (4) where it was proven that the adaptive LASSO is the
same as the non-negative garrote [17, 20].

While the LASSO and its variants are very useful for
variable selection, the LASSO estimator does not have a
closed form expression in general. For the non-negative gar-
rote, the non-linear optimization problem (1) is a quadratic
programming problem with a linear inequality constraint
and can be solved by the technique of Lagrangian multipli-
ers [2]. For the LASSO, the non-linear optimization problem
(2) is a quadratic programming problem with linear inequal-
ity constraints. [16] described an algorithm based on ordi-
nary least squares problem with 2p inequality constraints. A
faster algorithm for computation of the LASSO is given by
the least angle regression (LARS) algorithm recently intro-
duced by [7], which is available in R. A slight modification of
the LARS algorithm can compute the elastic net estimator
[19]. However, in typical applications where both p and n are
large, the LARS solution may take a long time to compute.

The goal of the present paper is to construct LASSO-type
estimators through sequential inclusion of variables in the
model with a one-dimensional absolute value penalty. Thus
our procedure is essentially a forward regression method
with an absolute value penalty term, which we call the for-
ward iterative regression and shrinkage technique (FIRST).
However, unlike the LARS, our method does not give an-
other computing algorithm for the LASSO, but actually
gives a new estimator. In one dimension, our estimator
agrees with the LASSO, but the two estimators are gen-
erally different in higher dimensional cases.
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2. METHODOLOGY

2.1 Motivation

In the special case of orthogonal regressor variables, the
nonnegative garrote, the LASSO and the elastic net estima-
tor have closed-form expressions. Indeed, the non-negative
garrote is given by

(5) β̂G
j =

⎧⎪⎨
⎪⎩

β̂j − λ
2|β̂j |

, if β̂j ≥
√

λ/2,

0, if |β̂j | <
√

λ/2,

β̂j + λ
2|β̂j |

, if β̂j ≤ −
√

λ/2.

Similarly, for the LASSO, the corresponding expression is

(6) β̂L
j =

⎧⎨
⎩

β̂j − λ
2 , if β̂j ≥ λ/2,

0, if |β̂j | < λ/2,

β̂j + λ
2 , if β̂j ≤ −λ/2,

while for the elastic net, the corresponding expression is

(7) β̂EN
j =

⎧⎪⎨
⎪⎩

β̂j−λ1/2
1+λ2

, if β̂j ≥ λ1/2,

0, if |β̂j | < λ1/2,
β̂j+λ1/2

1+λ2
, if β̂j ≤ −λ1/2.

In particular, since orthogonality trivially holds in one-
dimension, the LASSO and the elastic net can be explic-
itly calculated if only one predictor is present. Therefore,
if predictors are considered one at a time as in a forward
selection procedure, the formulae (6) and (7) can be applied
iteratively on the residual of the regression in the previous
step. This leads to a new procedure, which we call the for-
ward iterative regression and shrinkage technique (FIRST)

and denote the resulting estimator by β̂
F

.

2.2 Description

Fix a maximum number of iteration steps, say M . Set
initial Yi,1 = Yi for i = 1, . . . , n and initial prediction vector
f̂1 = 0. For m = 1, . . . , M , repeat

1. Standardization step: Replace Xij by (Xij −
X̄j)/{

∑n
l=1(Xlj − X̄j)2}1/2 for i = 1, . . . , n and

j = 1, . . . , p, where X̄j = n−1
∑n

i=1 Xij . Thus from
now onwards, we shall assume that X̄j = 0 and∑n

i=1 X2
ij = 1 for all j = 1, . . . , p.

2. Regression step: Calculate the ordinary least square es-

timates, β̂1,m, . . . , β̂p,m, by β̂j,m =
∑n

i=1
Yi,mXij∑n

i=1
X2

ij

, j =

1, . . . , p.
3. Shrinkage step: Calculate the LASSO estimates,

(8) β̂L
j,m =

⎧⎨
⎩

β̂j,m − λ/2, if β̂j,m ≥ λ/2,

0, if |β̂j,m| < λ/2,

β̂j,m + λ/2, if β̂j,m ≤ −λ/2.

4. Selection step: Select Xj∗m as the most effective
variable in the mth iteration step, where j∗m =
argj min

∑n
i=1(Yi,m − Xij β̂

L
j,m)2, j = 1, . . . , p.

5. Updating stage: Update m to m + 1, Yi,m to Yi,m+1 =
Yi,m−Xij∗m β̂L

j∗m,m, and f̂m to f̂m+1 = f̂m+Xj∗m β̂L
j∗m,m.

6. Stopping rule: Stop and get out of the loop after m steps
if ‖Y − f̂m‖2 − ‖Y − f̂m+1‖2 < ε, where ε > 0 is
predetermined.

The final estimator is denoted by β̂
F

. In practice, unless
λ is very small, the estimator may have significant bias and
hence its predictive ability may suffer. Letting the procedure
to determine the subset of predictors that are finally used
in regression but determining the coefficients by an ordi-
nary least square method using only selected predictors may
significantly improve the predictive ability of the estimator
while utilizing sparsity in the same way. In other words, the
final estimator is given by β̂

FS
= (XT

SXS)−1XT
SY , where

S ⊂ {1, . . . , p} is the subset of predictors selected by FIRST
and XS = ((Xij))1≤i≤n,j∈S . In Section 3, we consider the

performance of β̂
FS

along with that of β̂
F

.
In a similar manner, we may consider the forward selec-

tion version of the one-dimensional adaptive LASSO (with
γ = 1). The method, which will be called the adaptive
FIRST, is obtained by modifying the shrinkage step in the
description of FIRST as follows:

(9) β̂AL
j,m =

⎧⎪⎪⎨
⎪⎪⎩

β̂j,m − λ
2|β̃j |

, if β̂j,m ≥ λ
2|β̃j |

,

0, if |β̂j,m| < λ
2|β̃j |

,

β̂j,m + λ
2|β̃j |

, if β̂j,m ≤ − λ
2|β̃j |

,

where β̃ is an initial consistent estimator of β. The final
estimator is denoted by β̂

AF
. Also, we can perform an or-

dinary least square (OLS) analysis after variable selection
in the same way as before. Then the final estimator is given
by β̂

AFS
= (XT

SXS)−1XT
SY , where S ⊂ {1, . . . , p} is the

subset of predictors selected by the adaptive FIRST and
XS = ((Xij))1≤i≤n,j∈S .

If we incorporate an additional square of the coefficient
penalty term in addition to the absolute value term in our
objective function so as to minimize

∑n
i=1(Yi − Xijβj)2 +

λ1|βj |+λ2β
2
j with respect to βj and j = 1, . . . , p, we obtain

a forward selection analog of the elastic net. The estima-
tor, which we shall call the elastic FIRST, is obtained by
modifying the shrinkage step in the algorithm for FIRST as
follows:

(10) β̂EN
j,m =

⎧⎪⎨
⎪⎩

β̂j,m−λ1/2
1+λ2

, if β̂j,m ≥ λ1/2,

0, if |β̂j,m| < λ1/2,
β̂j,m+λ1/2

1+λ2
, if β̂j,m ≤ −λ1/2.

The final estimator is denoted by β̂
EF

. Naturally, one can
perform an ordinary least square analysis after the variable
selection stage as before.

FIRST method 343



2.3 Basic properties

Our method FIRST (and its adaptive and elastic vari-
ants) satisfy the following simple properties:

1. The residual sum of squares in every iteration decreases.
This happens since choosing the coefficient equal to zero
is equivalent to sticking with the estimate obtained in
the previous stage. Since the objective criterion is mini-
mized, one always improves the residual sum of squares
using the optimizing value instead of zero.

2. The algorithm converges (even when no artificial bound
on the maximum number of steps is imposed). Since
zero is a lower bound for residual sum of squares
which decreases with every iteration, the amount of
decrease must be eventually small prompting the al-
gorithm to stop. Indeed, the maximum number of steps
are bounded above by (

∑n
i=1 Y 2

i )/ε, where ε is the ac-
curacy level chosen in the stopping rule.

3. If the regressor variables are orthogonal, no variables
can be included more than one time in the selection
steps. This happens because if one variable were added
to the model for the second time, the residual variable
will be uncorrelated with that variable, and so the es-
timated coefficient is zero, prompting the algorithm to
terminate.

4. In the orthogonal case, the maximum number of steps
cannot be more than the number of variables considered
for regression. Since no variables are repeated in the
iterations, it is clear that there can be no more than p
steps.

5. In the orthogonal case, the FIRST solution coincides
with the LASSO solution and the adaptive FIRST so-
lution coincides with the adaptive LASSO solution. In
this special case, the ordinary least squares solution is
β̂j =

∑n
i=1 YiXij , j = 1, . . . , p. The FIRST selects the

variables one by one in the order of |β̂j |’s: the larger |β̂j |,
the larger the reduction in estimation error by including
the corresponding variable, the earlier the correspond-
ing variable is added to the model. If |β̂j | > λ

2 , then
the variable j is selected by the FIRST at some stage
and its effect is estimated as (|β̂j | − λ

2 )+sign(β̂j) pro-
vided the set precision level ε is sufficiently small. Fur-
thermore, those variables associated with |β̂j | < λ

2 are
never added to the model by the FIRST. Thus the algo-
rithm will stop as soon as all variables j with |β̂j | > λ

2
are exhausted, and the remaining coefficients are esti-
mated as zero. Similarly, we can show that the adaptive
FIRST gives the same solution as the adaptive LASSO.

Based on the model selection result of the LASSO [18],
the orthogonal design satisfies the irrepresentable condition,
therefore the FIRST is consistent for model selection under
the orthogonal design when λn is chosen properly. Also, it
is known that the adaptive LASSO has the oracle property
when the model is tuned properly [20]. Therefore we have
the following theorem:

Theorem 2.1. Assume that the design is orthogonal with
p fixed. The FIRST can select the model consistently if
λn/n → 0 and λn/

√
n → ∞ as n → ∞. If the initial estima-

tor β̃ is
√

n-consistent, then the adaptive FIRST performs
like an oracle if λn → ∞ and λn/

√
n → 0 as n → ∞.

2.4 Recursive algorithm for FIRST

A substantial savings in computing time of the FIRST
is possible by utilizing the following recursive relations be-
tween the least square estimates β̂j,m for different levels m:

(11) β̂j,m+1 = β̂j,m − β̂L
j∗m,mCj∗m,j ,

where Cj∗m,j is the jth element of the j∗mth row of the cor-
relation matrix C, and the (j, k)th element of C is given by
the sample correlation

cj,k =
n∑

i=1

XijXik

between the jth and kth predictor. This follows by observ-
ing that Yi,m+1 = Yi,m − β̂L

j∗m,mXij∗m and computing inner
products with Xj ’s. This leads to the following efficient al-
gorithm for the computation of the FIRST.

Standardize the data first. Then for m = 1, . . . ,M , repeat

1. Regression step: Calculate the ordinary least square es-
timates, β̂1,m, . . . , β̂p,m, by (11).

2. Shrinkage step: Calculate the LASSO estimates as in
(8).

3. Selection step: Select Xj∗m as the most effective
variable in the mth iteration step, where j∗m =
argj min{(β̂L

j,m)2 − 2β̂L
j,mβ̂j,m}, j = 1, . . . , p.

4. Updating stage: Update m to m+1 and f̂m to f̂m+1 =
f̂m+Xj∗m β̂L

j∗m,m. Note that we have eliminated the need
to compute the residuals.

5. Stopping rule: As before.

To see why the selection step 3 is the same as the selection
step before, observe that

n∑
i=1

(Yi,m − Xij β̂
L
j,m)2

=
n∑

i=1

Y 2
i,m − 2β̂L

j,m

n∑
i=1

XijYi,m + (β̂L
j,m)2

n∑
i=1

X2
ij

=
n∑

i=1

Y 2
i,m − 2β̂L

j,mβ̂j,m + (β̂L
j,m)2.

The assertion follows since the first term does not depend
on j. In a similar manner, an efficient algorithm for the
adaptive FIRST (or the elastic FIRST) can be obtained by
replacing β̂L

j∗m,m in (11) by β̂AL
j∗m,m (or β̂EN

j∗m,m) and replacing
(8) in the shrinkage step by (9) (or (10)).
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2.5 Connections to other methods

Boosting is another iterative approach for building sparse
models for high dimensional data. [9] gave a nice interpre-
tation of boosting as a gradient tree boosting for multi-
ple additive regression trees. [4] considered boosting with
the squared error loss, called L2Boosting, and showed
that L2Boosting for linear models produces consistent esti-
mates. The L2Boosting is a very attractive procedure in the
LPSN context, since it just solves a series of simple least
squares regression problems. [5] pointed out the link be-
tween L2Boosting and the LASSO. Both boosting and the
FIRST are algorithm-based methods which build the model
iteratively, however, they work differently in several ways.
Firstly, the L2Boosting repeatedly fits ordinary least squares
for residuals to update the model, while the FIRST uses the
LASSO fitting to update the model. Secondly, these two pro-
cedures use different schemes to update the model between
iterations. At each step, the L2Boosting updates the model
by adding the new term multiplying a small step size, say
0.1, which works as a shrinkage parameter to scale down
the contribution of the newly added term. By contrast, the
FIRST added a new term with the constant step size one,
where the new term is subject to a soft-thresholding penalty
via LASSO before being added to the model. Thirdly, the
number of boosting iterations is an important tuning pa-
rameter for the L2Boosting, which determines the size of
the final model and needs to be selected properly to avoid
overfitting [4–6]. In the FIRST, λ is the tuning parameter
which automatically incorporates the amount of shrinkage
at each step and hence controls the goodness of fit for the
final model. Consequently, λ also controls the stopping rule.

It is well-known that the LARS procedure provides a
state-of-the-art algorithm to compute the entire solution
path for LASSO-type problems. Recently, [10] proposed an-
other fast algorithm, the coordinate-wise descent algorithm
(CDA), for solving the regularized regression problems such
as the nonnegative garrote, LASSO and EN. The main idea
of the CDA is to successively minimize the objective func-
tion with respect to one parameter at a time, while holding
the remaining parameters at their current values. We use
the LASSO to describe the algorithm. At each step, the
coordinate-wise descent algorithm solves

(12)

arg min
βj

{
n∑

i=1

(Yi −
∑
k �=j

Xikβ̂k − Xijβj)
2 + λ

∑
k �=j

|β̂k| + λ|βj |

}
,

where the minimization is with respect to βj and all the re-
maining parameters βk for k �= j are fixed at their current
values β̂k. [10] point out that the CDA converges to the op-
timal solution and gives very competitive performance with
the LARS procedure especially when p is large. Though the
FIRST is not an algorithm for computing the LASSO solu-
tion, it selects important variables and updates the model
iteratively based on one-dimensional LASSO fitting, so it

would be interesting to compare the FIRST with both LARS
and the coordinate-wise descent algorithm.

3. SIMULATION

We now demonstrate performance of the FIRST methods
under various settings. We focus on large p small n data
generated from a high-dimensional sparse linear model

Yi = XT
i β + σεi, i = 1, . . . , n,

where Xi ∈ Rp, p > n, and εi’s are iid errors from N(0, 1).
For each method, we generate a training set to fit the model,
a validation set to select the tuning parameter, and an in-
dependent test set to evaluate prediction accuracy of the
resulting estimator. Both the training and tuning sets are of
size n, and the test set is of size 1,000. We run 100 simula-
tions for each experiment and report the average results.

We implement six variations of the FIRST methods,
including the FIRST, adaptive FIRST (aFIRST), elastic
FIRST (eFIRST), FIRST followed by OLS (FIRST+OLS),
adaptive FIRST followed by the OLS (aFIRST+OLS), and
elastic FIRST followed by the OLS (eFIRST+OLS). For
comparison, we also include the LASSO and elastic net
(ENET) results. Two algorithms are used to implement the
LASSO and ENET: the LARS and the CDA, both available
in R. The optimal tuning parameter for each method is cho-
sen by a grid search using the validation set. All simulations
are run on Dell Xeon Dual Core 3.6 GHz with 4096 MB
RAM.

3.1 Simulation settings

We consider four experiment settings by allowing differ-
ent sample sizes, error variances (or signal strength), and
correlation scenarios among the covariates. Below is the de-
tailed description for the examples.

(a) In Example 1, we have p = 1, 000 and n = 100 or
500. The covariates X1, . . . , Xp are i.i.d. generated from
N(0, 1). The error variance σ2 = 1. The true coeffi-
cient vector β = (β1, . . . , βp)T contains 10 non-zero co-
efficients, (3, 3, 3, 3, 1.5, 1.5, 1.5, 2, 2, 2), and the rest are
zero coefficients. We let the locations of the non-zero
coefficients be equally spaced. In particular, β1, β101,
β201 and β301 are 3, β401, β501 and β601 are 1.5, and
β701, β801 and β901 are 2.

(b) Example 2 is the same as Example 1, except that there
is moderate correlation among important covariates. In
particular, we assume corr(Xi, Xj) = 0.5|i−j| if both Xi

and Xj are important, and is 0 otherwise.
(c) Example 3 has the same setting as Example 1, ex-

cept that all the covariates are moderately corre-
lated: the pairwise correlation between Xi and Xj is
corr(Xi, Xj) = ρ|i−j|. Here ρ = 0.5. We consider
n = 100 and two different error variances: σ2 = 1 and
σ2 = 4.

(d) Example 4 is the same as Example 3, except that the
covariates are highly correlated with ρ = 0.9.
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Table 1. Simulation results for Example 1 (p = 1000, σ2 = 1, independent covariates)

Method Test Error Selection Error I Selection Error II Time
n = 100 n = 500 n = 100 n = 500 n = 100 n = 500 n = 100 n = 500

FIRST 2.46 (0.57) 1.17 (0.06) 0 0 6.24 5.17 14.0 14.6
aFIRST 2.31 (0.60) 1.15 (0.07) 0 0 5.87 3.99 12.4 11.2
eFIRST 2.30 (0.58) 1.16 (0.07) 0 0 5.28 5.37 72.2 75.7

FIRST+OLS 1.38 (0.28) 1.02 (0.04) 0 0 3.20 0.09 14.0 14.6
aFIRST+OLS 1.20 (0.15) 1.02 (0.04) 0 0 0.32 0.04 12.4 11.2
eFIRST+OLS 1.42 (0.22) 1.07 (0.05) 0 0 1.44 0.01 72.2 75.7

LASSO (LARS) 2.59 (0.83) 1.15 (0.05) 0 0 55.03 41.01 1.5 48.4
ENET (LARS) 3.28 (0.90) 1.76 (0.68) 0 0 63.54 24.31 428.8 755.6

LASSO (CDA) 2.57 (0.81) 1.16 (0.05) 0 0 92.01 86.07 0.4 1.1
ENET (CDA) 2.92 (0.95) 1.20 (0.08) 0 0 129.1 67.53 2.7 6.0

Table 2. Simulation results for Example 2 (moderate correlation among important covariates)

Method Test Error Selection Error I Selection Error II Time
n = 100 n = 500 n = 100 n = 500 n = 100 n = 500 n = 100 n = 500

FIRST 13.47 (6.88) 1.39 (0.11) 0.86 0 28.61 13.43 414.2 423.3
aFIRST 13.34 (6.58) 1.37 (0.10) 1.54 0 15.24 14.75 401.8 401.2
eFIRST 2.80 (0.82) 1.32 (0.10) 0 0 14.41 10.83 417.0 426.3

FIRST+OLS 4.24 (2.74) 1.08 (0.07) 0.96 0 8.16 0.05 414.2 423.4
aFIRST+OLS 6.14 (3.81) 1.08 (0.07) 0 0 6.15 0.02 401.9 401.2
eFIRST+OLS 1.40 (0.25) 1.08 (0.07) 0.01 0 0.58 0.17 417.0 426.3

LASSO (LARS) 1.82 (0.40) 1.14 (0.08) 0 0 26.78 32.99 1.7 47.7
ENET (LARS) 1.95 (0.45) 1.45 (0.49) 0 0 24.14 195.12 454.9 739.6

LASSO (CDA) 1.82 (0.40) 1.14 (0.08) 0 0 26.92 21.70 0.6 1.4
ENET (CDA) 1.82 (0.41) 1.14 (0.08) 0 0 36.02 28.36 3.7 7.4

3.2 Experiments and results

We compare ten different methods with regard to their
prediction error, variable selection performance, and com-
putation time. For prediction performance, we report the
mean squared error evaluated on the test set. For variable
selection, we report two types of selection errors: selection
error I defined as the number of non-zero coefficients which
are estimated as zero, and selection error II defined as the
number of zero coefficients which are not estimated as zero.
The computation cost is reported as the average time (in
seconds) to obtain the final coefficients, including the tun-
ing process.

Table 1 summarizes the simulation results for the simple
independent case, while Table 2 assumes there is moderate
correlation among important covariates. We observe that
all the FIRST methods give quite competitive performance
compared with the LASSO and the ENET in these exam-
ples. In summary, the adaptive FIRST followed by the OLS
is best for Example 1 in terms of the test error, selection
error I and selection error II; the elastic FIRST followed
by the OLS is best for Example 2. This is not so surprising
since the ENET methods are specially designed for handling
correlated covariates. One may wonder why the FIRST fol-
lowed by the OLS has a smaller selection error when the
OLS simply re-estimates the regression coefficients after se-

lection by FIRST. One possible reason is that these two pro-
cedures select tuning parameters differently as well as stop
at different times. Since a follow-up the OLS step generally
improves quality of estimates of regression coefficients by
reducing bias significantly, the FIRST followed by the OLS
has a better prediction power prompting it to stop sooner
without including some of the unimportant variables other-
wise selected by the FIRST. A similar explanation applies to
the comparison between the adaptive FIRST and the adap-
tive FIRST followed by the OLS. Interestingly, the LASSO
solution obtained by the CDA and that by the LARS give
very similar test errors, but the selection performance of
the LASSO by the CDA is much worse. It is noted that
the LASSO by the CDA tends to retain a large number of
redundant variables in the final model.

With regard to the computation cost, the LASSO by the
CDA is the fastest. One may note another anomaly that
the computing time for the adaptive FIRST and the adap-
tive FIRST followed by the OLS in Tables 1 and 2 actually
decreased when the sample size increased from n = 100 to
n = 500. It may be noted that the role of n in comput-
ing time is limited only to the standardization step and the
first step, while the dimension p plays a far more impor-
tant role. Since in our examples n is much smaller than p,
there may not be any significant impact of a larger value
of n on computing time compared to computational burden
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Table 3. Simulation results for Example 3 (p = 1000, n = 100, correlated covariates with ρ = 0.5)

Method Test Error Selection Error I Selection Error II Time

σ2 = 1 σ2 = 4 σ2 = 1 σ2 = 4 σ2 = 1 σ2 = 4 σ2 = 1 σ2 = 4

FIRST 2.85 (1.17) 9.58 (4.43) 0 0.09 32.69 34.11 460.7 477.4
aFIRST 2.48 (1.12) 8.55 (4.45) 0 0.14 14.17 12.49 440.1 462.2
eFIRST 2.67 (1.12) 9.20 (3.85) 0 0.05 29.35 32.74 464.7 481.1

FIRST+OLS 1.73 (0.67) 7.94 (3.28) 0 0.22 6.82 14.34 460.7 477.4
aFIRST+OLS 1.40 (0.24) 5.94 (2.34) 0 0 0.49 1.87 440.1 462.2
eFIRST+OLS 1.61 (0.54) 7.20 (2.61) 0.01 0.14 4.97 12.35 464.7 481.1

LASSO (LARS) 2.95 (1.12) 10.81 (3.68) 0 0.08 52.8 51.28 2.6 2.8
ENET (LARS) 3.03 (1.17) 10.84 (3.71) 0 0.07 49.87 52.21 624.2 630.1

LASSO (CDA) 2.96 (1.14) 10.84 (3.71) 0 0.08 79.86 60.8 0.9 1.0
ENET (CDA) 2.96 (1.14) 10.84 (3.71) 0 0.08 79.86 60.8 5.4 5.5

Table 4. Simulation results for Example 4 (p = 1000, n = 100, dependent covariate with ρ = 0.9)

Method Test Error Selection Error I Selection Error II Time

σ2 = 1 σ2 = 4 σ2 = 1 σ2 = 4 σ2 = 1 σ2 = 4 σ2 = 1 σ2 = 4

FIRST 7.97 (5.15) 13.53 (4.98) 1.76 2.58 31.30 31.84 464.0 439.1
aFIRST 8.18 (5.47) 13.18 (5.38) 2.36 3.07 18.33 14.98 448.8 424.1
eFIRST 5.47 (3.08) 11.42 (3.49) 0.55 1.47 27.38 31.05 470.1 444.0

FIRST+OLS 4.08 (2.87) 10.51 (3.94) 1.56 2.74 13.56 15.26 464.0 439.1
aFIRST+OLS 4.73 (3.76) 9.99 (3.95) 0 0 5.84 7.08 448.8 424.1
eFIRST+OLS 2.07 (1.02) 7.83 (2.30) 0.38 1.49 13.36 15.09 470.1 440.0

LASSO (LARS) 2.60 (0.73) 9.27 (2.01) 0 0.54 49.14 48.88 3.8 3.3
ENET (LARS) 2.66 (0.75) 9.32 (2.07) 0 0.56 50.08 48.06 625.4 557.8

LASSO (CDA) 2.61 (0.73) 9.28 (2.00) 0 0.54 50.24 49.79 1.0 0.9
ENET (CDA) 2.61 (0.73) 9.29 (2.01) 0 0.54 50.24 50.19 5.8 5.9

in subsequent steps, in each of which O(p) calculations are
needed. Moreover, as our iterative procedures are dependent
on stopping times and relatively sooner convergence is ex-
pected for a more accurate procedure associated with higher
sample size, it is possible to observe shorter computing time
for larger sample size. Finally, computing time can vary up
to some extent randomly depending on the number of jobs
running on the server where all our programs ran. We also
notice that as n increases from 100 to 500, the computation
time of both the LASSO and the ENET given by the LARS
algorithm seriously deteriorates, while other algorithms are
not so significantly affected by the sample size. As expected
by us, the performance of all the methods get better when
the sample size increases and get worse when the number of
redundant predictors increases.

Tables 3 and 4 respectively consider the scenarios where
all the covariates are either moderately or highly correlated.
We notice that the aFIRST+OLS works best when the co-
variates are moderately correlated, while the eFIRST+OLS
is best in the high correlation case. The LASSO and the
ENET results given by the CDA are among the fastest, but
their selection error II is worse than other methods. Over-
all speaking, the FIRST algorithms generally lead to much
leaner models with a better prediction performance than the
LASSO.

4. REAL EXAMPLE

We consider the gene expression data and approaches
used in [13]. There are totally 31,099 probe sets and 120
observations in this dataset. For high dimensional data like
this, it is a common practice to use pre-screening to make the
computation more manageable. Two stages of pre-screening
were applied in our analysis. In the first pre-screening, we
removed 3,815 probe sets whose maximum expression val-
ues are not greater than the 25th percentile of the entire
probe set. In the second stage, we selected 3,000 probe sets
with the largest variances among the remaining 27,283 probe
sets. Then in our analysis, we used these 3,000 probe sets
the predictors. Since these 3,000 predictors are very likely to
be correlated with each other, we implemented the elastic
FIRST and the elastic FIRST followed by the OLS, with
ε = 0.001 and M = 200. The ENET was also implemented
respectively by the LARS and the CDA. We randomly select
100 training data and 20 test data. Five-fold cross valida-
tion is conducted with 100 training data in R 2.72. The
test error, the number of non-zero estimates, and computa-
tion time are shown in Table 5. We observe that the elastic
FIRST (eFIRST) gives the smallest test error, the ENET by
the CDA is the second best, and the ENET by the LARS
is the worst. In terms of the model size, the eFIRST fol-
lowed by the OLS gives the most sparse model of size 7, the
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Table 5. Real example results

Method Test Error Selected Genes Time (min.)

eFIRST 0.00828 36 52.94
eFIRST+OLS 0.01057 7 52.94
ENET (LARS) 0.01216 31 1098.32
ENET (CDA) 0.00866 2095 3.22

eFIRST and the ENET produce similar model sizes 36 and
31, while the ENET by the CDA gives the largest model of
size 2,095. With regard to computation time, the ENET by
the LARS struggles with the problem and take almost 20
times longer than that of the elastic FIRST, and the ENET
by the CDA is again the fastest.

5. DISCUSSION

We propose a new class of variable selection approaches
for high dimensional sparse regression models and the re-
cursive algorithms for computational reduction. Basically,
the FIRST is a combination of one dimensional LASSO and
forward selection. The FIRST takes an advantage of the
closed-form solutions for the one-dimensional LASSO and
forward selection of fitting residuals repeatedly. Further-
more, we extend the FIRST to the adaptive FIRST and the
elastic FIRST by applying the same concepts to the adap-
tive LASSO and the ENET. We also consider an ordinary
least square after applying the FIRST, the adaptive FIRST
and the elastic FIRST. We finally derive a recursive algo-
rithm from the relations between the successive least square
estimates and residuals, which leads to substantial savings
in computing time. Throughout the simulation study and
a real data example, we show that our algorithms generally
show very competitive performance in model prediction and
selection accuracy when compared with the LASSO and the
ENET. Our algorithms have reasonable computational cost,
which make the methods useful for analyzing high dimen-
sional sparse data especially if the sample size is also large.
As a future work, we will study how to tune parameters
more efficiently so that additional savings in computation
can be achieved.
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