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Stepwise multiple quantile regression estimation

using non-crossing constraints”

Yicuao WuT¥ AND YUFENG Liut

Quantile regression is an important statistical tool for sta-
tistical modeling. It has been widely used in various fields in-
cluding econometrics, medicine, and bioinformatics. Despite
its popularity in practice, individually estimated quantile re-
gression functions often cross each other and consequently
violate the basic properties of quantiles. In this paper we
propose a new method for estimating multiple quantile re-
gression functions without crossing. Both linear and kernel
quantile regression models are considered. Several numeri-
cal examples are presented to illustrate competitive perfor-
mance of the proposed method.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62J05,
62G08; secondary 62H12.

KEYWORDS AND PHRASES: Constraints, non-crossing, quan-
tile regression, RKHS, variable selection.

1. INTRODUCTION

Quantile regression is a very useful statistical tool for
estimating conditional quantile regression functions. It has
been intensively studied after its introduction by Koenker
and Bassett (1978). Examples include Koenker and Hallock
(2001), Yu, Lu and Stander (2003). Its wide applications
vary from medicine (Cole and Green 1992, Heagerty and
Pepe 1999), to survival analysis (Yang 1999, Koenker and
Geling 2001), and to economics (Hendricks and Koenker
1992, Koenker and Hallock 2001). We refer the readers to
a recent book on this subject by Koenker (2005) to get a
more complete review on quantile regression.

In many situations, it is useful to estimate multiple quan-
tile regression functions. Despite the flexibility of individual
estimation of these curves, an embarrassing phenomenon of
quantile crossing may occur. Such a kind of quantile cross-
ing violates the basic principle of distribution functions so
that their associated inverse functions should be monotone
increasing. Although this phenomenon typically only occurs
in outlying regions of the input space when the observations
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are scarce, it is nevertheless an undesirable phenomenon
for utilization and interpretation of these quantile regres-
sion functions. He (1997) proposed the location-scale shift
model to impose monotonicity across the quantile functions.
However, as noted by Neocleousa and Portnoy (2007), even
for linear regression quantiles, corresponding models can be
much more general. Thus, a more general development of
non-crossing regression quantiles is needed. For kernel quan-
tile regression, Takeuchi, Le, Sears and Smola (2006) pro-
posed to impose non-crossing constraints on the data points.
Although the approach can help to reduce the chance of
crossing, the dimension of the optimization problem for si-
multaneous multiple quantile estimation can be large for
certain applications.

In this paper, we propose a new method to estimate
multiple quantile regression functions without crossing. Our
estimation scheme is in a stepwise fashion to ensure non-
crossing of the regression functions. In particular, with the
current quantile regression function at a particular given
level, we add constraints in the estimation procedure to en-
sure the next quantile regression function does not cross the
current one. The procedure continues till quantile regression
functions at all desired levels are obtained.

Both linear and kernel quantile regression models are con-
sidered. Our numerical examples show that the non-crossing
constraints can not only help to obtain more interpretable
quantile functions, but also help to improve the estimation
accuracy of the resulting regression functions.

The remainder of this article is organized as follows. In
Section 2, we give a brief review of quantile regression. In
Section 3, we illustrate our proposed non-crossing estima-
tion scheme for multiple quantile regression functions in a
stepwise fashion. An extension for the setting of regular-
ization is given in Section 4. Several simulated examples in
different settings are presented in Section 5, followed by a
real data example in Section 6. Some discussion is given in
Section 7.

2. QUANTILE REGRESSION

Suppose have a set of training data
(x1,y1),---,(Tn,yn) with the input ; € X C RP
and the output y; € R. We would like to recover the 1007%
quantile of the conditional distribution of Y given X = «
for 7 € (0,1).

we
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Figure 1. Plot of the check function for three different values
of T.

The conditional 7-th quantile function f,(x) is defined
such that P(Y < f(X)|X = «) = 7. By tilting the abso-
lute loss function, Koenker and Bassett (1978) introduced
the check function which is defined by

) ={ T

An illustrating plot with several different values of 7 is given
in Fig. 1. Note that the check function generalizes the ab-
solute loss used in least absolute deviation regression from
7 = 0.5 to any value in (0, 1).

In their seminal paper, Koenker and Bassett (1978)
demonstrated that the 7-th conditional quantile function
can be estimated by solving the following minimization
problem

ifr>0
otherwise.

(1) 'r?g;ZpT — fr(@)).

To avoid over-fitting and improve generalization ability,
as in Koenker, Ng, and Portnoy (1994), one can consider
the penalized version of (1) in the following regularization
framework

(2) meirjl__ZpT = fr(zi)) + AJ(f7),
where A > 0 is the regularization parameter and J(f;) de-
notes the roughness penalty of the function f, ().
Computation of (1) can be carried out by standard linear
programming (LP). For the regularized version (2), the opti-
mization tool depends on the choice of the penalty function
J(f;). For instance, when we use the L; penalty as in the
LASSO (Tibshirani, 1996), we can implement it using LP as
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for (1). In the context of least absolute deviation regression
(a special case of quantile regression with 7 = 0.5), a simi-
lar consideration was given in Wang, Li, and Jiang (2007).
When we use the Lo penalty as in the ridge regression, (2)
can be solved using quadratic programming (QP).

To further improve the computation efficiency and facili-
tate the choice of the tuning parameter A in (2), Li and Zhu
(2008) and Li et al. (2007) developed entire solution paths
of linear and kernel regularized quantile regression with re-
spect to A for any fixed 7 € (0,1) respectively. The path
algorithm helps to speed up the computation and simplifies
the tuning parameter selection.

Despite the success of quantile regression for estimating
individual conditional quantile regression functions, prob-
lems may occur when multiple quantile functions are needed
at the same time. In particular, the separately estimated
multiple quantile functions may cross each other. In Sec-
tion 3, we propose to estimate multiple quantile functions
using non-crossing constraints. Our proposed method can
not only help to obtain non-crossing quantile functions, but
also help to improve the estimation accuracy of the resulting
functions.

3. MULTIPLE NON-CROSSING QUANTILE
REGRESSION ESTIMATION

Of particular interest is to estimate simultaneous quan-
tile functions. Out goal is to estimate multiple non-crossing
quantile functions with different values of 7. For simplic-
ity, we first focus on linear quantile functions. An extension
to nonlinear functions using kernel methods is discussed in
Section 4.

Suppose we want to estimate quantile functions simul-
taneously at 0 < 71 < T < < 7k < 1. Then
we need to estimate K sets of coeflicients b, and B, =
(Biks Boky -+ Bpr)T for k = 1,2,...,K. The theoretical

quantile functions fj () = b + B+ « should satisfy that

3 fu(@) < fir(x)
fork=1,2,...,K —1and Vz € X.

To incorporate this constraint into our estimation scheme
to ensure non-crossing, we assume that each predictor vari-
able has a bounded support and without loss of generality
consider X; € [0,1], for j = 1,2,...,p. Here our predictor
vector is X = (X1, Xa,...,X,)T. In this case (3) is auto-
matically satisfied if the constraint is satisfied at all vertices,
ie.,
) fe(@) < frra(2)

fork=1,2,...,K —1 and V& € {0, 1}".

3.1 Naive constrained estimation

Our estimation scheme is in a stepwise fashion. Specifi-
cally, given the current quantile function, we estimate the



next quantile function so that it does not cross with the ex-
isting quantile. Naturally, there are several different ways to
proceed with the estimation depending on the direction of
the stepwise procedure.

Complete Up CU(k):

Denote our current estimated coefficients for the 1007-
th quantile function by by, and Bk Our non-crossing quan-
tile regression solves the following optimization problem to
estimate the coefficients for the 1007;41-th quantile func-
tion:

()

n

. T

min E Prisa (yl - bk+1 - ﬁk—!—lmi)
br+1,Bk+1 =1

- - T
st. b+ B+ 00 < bry1 + B{Hm,Vw e {0,1}?,
where §( is some pre-specified small positive number intro-
duced to ensure strict inequality in (4) and can be chosen
as the numerical precision level. In our numerical study, we
set 0y = 1074

Complete Down CD(k):
Similar to the complete up version, we can estimate by_1
and B,_; based on by and B, by solving

(6) min me_l(yi — b1 — Br_1xi)
1

br—1,8r_1 =

st b1+ B @ < b+ Bfw — 6 for V& € {0, 1}7.

The number of constraints in optimization problems (5)
and (6) is 2P, which can be large for moderate p. For more
efficient implementation in practice, we need to reduce the
number of constraints.

3.2 Improved constrained estimation

To improve the naive constrained estimation scheme, we
note that most of the 2P vertex constraints are redundant.
Thus, we can greatly reduce the number of constraints. Here
we propose a more efficient iterative method.

Simplified Up SU(k):
Without loss of generality, we consider the estimation of

bry1 and B, based on by, and Bk First solve the regular
quantile function estimation

n

min Zp7k+l(yi —by1 — ﬁ{+1wi)

brti,
k+1:8k41 P

and denote the current solution by by41 and B, +1- The ver-
tex that most likely violates the non-crossing constraints is
given by & = (%1, &a, ..., %p)T with &; = (1 —sign(B11); —
Bkj))/2, j=1,2,...,p. Set C = {z&}. If the constraint is

. AT ~ -7
violated at &, i.e., by + B, T > bpy1 + By, 1T, we solve the

following optimization problem

n

. T
min E Pri41 (yi - bk+1 - ﬁk+1mi)
br+1,8k41 i1

(7)

st by + By + 0o < brsr + BL 1z, Y € C,
and denote its solution by by 1 and ,Bkﬂ. Define & to be the
vertex that most likely violates the non-crossing constraint.
If & does violate the non-crossing constraint, we add it to the
set C, i.e., C = CU& and solve (7) with the updated set C.
We continue the iteration until the non-crossing constraints
are satisfied.

A similar scheme can be carried out for estimating by_1
and B;_, based on by, and Bk and is called Simplified Down
SD(k) accordingly.

3.3 Why from the middle

An important issue is the choice of the starting quan-
tile function without any constraint. Our proposal is to
start from the middle, that is the quantile function with
7 = 0.5. To further demonstrate this choice, we note that the
asymptotic variance of quantile estimator is proportional to
7(1—7)/f(F~%(7)), where f(-) and F(-) are the pdf and cdf
of the error distribution respectively. For the normal distri-
bution, we can show that 7(1—7)/f(F (7)) is minimized at
7 = 0.5. Thus, the estimated quantile function with 7 = 0.5
is relatively more accurate than other estimated quantiles.
It is reasonable to begin with 7 = 0.5 and use constraints to
estimate other non-crossing quantiles.

3.4 Full estimation scheme

Assume that, out of 71,79,...
that is closest to 7 = 0.5.

Scheme 1:

Use the standard quantile regression to estimate by, and
By, and denote them by l;,(;)) and ,@,(;)) Use SU to sequentially
estimate b, and B, one after another for k =ko+1,..., K
and use SD to sequentially estimate by and 3, one after
another for £ = kg — 1,...,1. These estimates are denoted
by i)ﬁj) and ,[A")'f:) fork=1,2,...,. K.

One may use the solution obtained by Scheme 1 as the
final solution. Alternatively, one can use the solutions in
Scheme 1 and perform additional updating. According to
our limited numerical experience, Scheme 1 can be improved
using the following scheme.

Scheme 2(U):
2(2U) _ 5(1) ~(2U)  ~(1) . L1 2(20)
Set by’ =07’ and B; ~ = B, . Beginning with b,
. (2U
and ,85 ), we apply SU sequentially to get updated esti-
- - (2U
mates b;fU) and ﬁ,i ) fork=2,..., K.

, and Tx, Tk, is the one
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Scheme 2(D):

“ R D “ “
Set 52 = b and 827 = 3%, Beginning with 52”)
. (2D
and ,@; ), we apply SD sequentially to get updated esti-

andB,(fD) fork=K-1,...,1.

Our final estimates are given by averaging, i.e., by =
2D 2U

(b +b2U>/2 and By = (B, + By )2 for k =

1,2,.... K.

) b

mates l;,(fD)

NON-CROSSING KERNEL QUANTILE
FUNCTIONS

Our stepwise scheme presented in Section 3 can be di-
rectly extended to the regularized version (2). Essentially,
we need to add non-crossing constraints to the optimization
problem (2) as in the linear case. In this section, we discuss
nonlinear quantile estimation using the kernel trick.

For any given positive definite kernel function K(-,-) on
X, kernel quantile regression can be carried out by solving

DR B

where a is a vector of length n with the i-th element «;,
and K is a matrix of n x n with the ij-th element (x;, ;).

(8) mln )+ xaTKa,

(x;, @
bal, ’ J

The estimated quantile function is then given by fT(a:) =

b+ &K ().

For our stepwise non-crossing procedure, we first assume
that the estimated fitting for the 1007-th quantile is given
by fr, () = by +>°1 ;& K (2, ;). The corresponding non-
crossing version is to solve

9)

min
br+1, QX (k1)

+ Z ka+1
I;k + Z (Séij
j=1

< gy + Z Q1) K
j=1

)\aa+1)Ka(;§+1)

— bpy1 — Za(k+1)J (xi,x5))
j=1

s.t. (lii,ibj) + do

((L’i,w]‘) for i = 1,2,...,n

where o 1) is a n-dimensional vector with its i-th element
a(k41)i- Our iterative schemes described in Section 3 can be
then applied to the proposed kernel quantile regression.

It is worth noting that the constraints used in the kernel
formulation (9) are different from the linear formulation.
In the linear case, we use vertices of the standard input
d-dimensional cube to form the constraints. This is not di-
rectly applicable to the kernel case. In fact, it is difficult
to enforce non-crossing for the kernel case in the entire in-
put space. In our formulation (9), we simplify the require-
ment and enforce non-crossing over the domain spanned by
features (K (z;,x1),..., K(xz;,x,))T, i =1,2,...,n. In the
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literature, Takeuchi et al. (2006) also proposed to use non-
crossing constraints on the data points for kernel quantile
regression. They aim to solve for one optimization prob-
lem to obtain multiple quantile functions. When both the
number of quantile functions desired and the dimension of
covariates are large, the optimization problem can be com-
putationally intensive. Our stepwise procedure is computa-
tionally simpler since it solves multiple smaller optimization
problems.

5. SIMULATION STUDIES

In this section, we use simulation studies to illustrate im-
provement of our new non-crossing multiple quantile esti-
mation by comparing it to the naive individual estimates,
the method proposed by He (1997), and the method of
Takeuchi et al. (2006). We generate training samples of
size n. An identically distributed test set is generated to
report numerical summaries to compare different meth-
ods.

For kernel learning, we generate an independent and
identically distributed sample of size n to tune the reg-
ularization parameter. The Gaussian kernel K(x1,x2) =
exp(— || 1 — x2 ||3 /o?) is used to achieve the nonlinear
quantile estimation.

Five different examples are presented in this section. Ex-
amples 1 and 2 are devoted to show quantile crossing for
linear and nonlinear cases, respectively. We use two differ-
ent linear models (Examples 3 and 4) to compare the perfor-
mance of our new non-crossing multiple quantile estimation,
the naive individual estimation, and He (1997)’s method.
Example 3 has independent and identically distributed er-
rors while Example 4 involves a location-scale model. Ex-
ample 5 presents a nonlinear example with independent and
identically distributed errors.

Example 1. We use a simple linear example to demonstrate
that naive individual estimates may suffer from quantile
crossing which the new proposed method can avoid. With
p = 1, the univariate predictor X is generated from the stan-
dard uniform distribution, i.e., X ~ Uniform]0, 1]. Response
Y is generated by the simplest linear model Y = X +¢, where
e ~ N(0,1) is independent of the one dimensional predictor
variable X. The sample size is fixed at n = 100. Quantile
functions are estimated at 7 = 0.05,0.1,...,0.95. The naive
individually estimated quantile functions are plotted in the
left panel of Fig. 2 while our non-crossing estimates are given
on the right panel. We can clearly see that the naive indi-
vidual estimates suffer from quantile crossing. However by
enforcing our non-crossing constraint, our new estimates do
not cross each other.

Example 2. A nonlinear example is presented to demon-
strate quantile crossing for the naive individual estimates.
The predictor X is univariate and uniformly distributed
over [0,1]. Conditional on X, the response is generated by
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Figure 2. Comparison of naive individually estimated quantile functions and the new non-crossing quantile estimates for
Example 1: the left panel plots the naive individually estimated quantile functions; the right panel shows the new non-crossing
quantile estimates.

individual conditional quantile

individual conditional quantile

Figure 3. Comparison of naive individually estimated conditional quantile functions and our non-crossing estimates for
Example 2: the left panel plots the individually estimated conditional quantile functions; the right panel shows our
non-crossing estimates.

Y = sin(27rX) + 0.5¢ with independent standard normal
random error €. The sample size is fixed at n = 100. Nonlin-
ear quantile function is estimated using the Gaussian kernel
K(z1,29) = e~(@1=22)°/9” with o2 = 0.4 for simplicity. An
independent and identically distributed tuning set of size n
is generated to select the tuning parameter A for both our
non-crossing quantile estimation and the naive individual

estimation. Conditional quantile functions are estimated at
7=10.05,0.1,0.15,...,0.95.

Figure 3 plots estimated quantile functions for 7 =
0.1,0.2,...,0.9. Similar as Example 1, quantile crossing is
observed for this nonlinear example using naive estima-
tion. However by enforcing the non-crossing constraint, we
at least guarantee that our estimated conditional quantile
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Table 1. Average of the differences between test errors and Bayes errors over 200 repetitions for different T's and different
estimation methods in Example 3. M1 corresponds to the standard quantile regression. M2, M3, and M4 represent our
Scheme 1, Scheme 2(U), and Scheme 2(D), respectively. M5 corresponds to our final estimator by averaging. He97 refers to
He (1997)’s method. Note that each table entry of error difference is enlarged by a factor of 1000. Numbers in parentheses are
the corresponding standard errors

T M1 M2 M3 M4 M5 He97
0.05 | 17.87 (0.78) | 10.62 (0.51) 10.62 (0.51) 10.44 (0.48) 10.46 (0.49) | 22.39 (1.32)
0.10 | 18.67 (0.81) | 12.66 (0.58) 15.78 (0.72) 12.21 (0.53) 13.36 (0.60) | 24.69 (1.39)
0.15 | 18.58 (0.85) | 13.81 (0.65) 17.59 (0.84) 13.41 (0.58) 14.45 (0.65) | 24.84 (1.36)
0.20 | 17.81 (0.85) | 14.36 (0.68) 17.75 (0.83) 13.82 (0.60) 14.49 (0.65) | 23.64 (1.25)
0.25 | 18.49 (0.83) | 15.88 (0.74) 17.78 (0.79) 14.74 (0.63) 14.88 (0.65) | 22.75 (1.15)
0.30 | 19.31 (0.93) | 16.79 (0.77) 18.02 (0.84) 15.42 (0.66) 15.23 (0.67) | 21.76 (1.07)
0.35 | 18.81 (0.82) | 17.62 (0.76) 17.67 (0.84) 15.73 (0.63) 15.26 (0.65) | 20.81 (0.97)
0.40 | 19.15 (0.84) | 17.82 (0.77) 17.64 (0.84) 15.84 (0.64) 15.34 (0.66) | 20.00 (0.90)
0.45 | 18.90 (0.83) | 18.59 (0.80) 17.34 (0.84) 16.20 (0.67) 15.35 (0.66) | 19.62 (0.89)
0.50 | 18.59 (0.82) | 18.59 (0.82) 16.42 (0.82) 16.10 (0.72) 14.79 (0.67) | 18.59 (0.82)
0.55 | 17.93 (0.83) | 17.82 (0.82) 15.80 (0.81) 16.08 (0.75) 14.51 (0.69) | 18.86 (0.83)
0.60 | 17.78 (0.79) | 16.89 (0.77) 15.21 (0.76) 16.70 (0.75) 14.56 (0.68) | 18.84 (0.82)
0.65 | 17.85 (0.78) | 16.30 (0.74) 14.67 (0.70) 16.97 (0.74) 14.48 (0.66) | 19.02 (0.83)
0.70 | 18.02 (0.79) | 15.51 (0.71)  14.44 (0.68) 16.64 (0.70) 14.25 (0.63) | 19.77 (0.85)
0.75 | 17.84 (0.76) | 14.62 (0.66) 13.71 (0.58) 16.92 (0.72) 14.13 (0.59) | 20.58 (0.90)
0.80 | 17.22 (0.72) | 14.18 (0.62) 13.62 (0.58) 16.35 (0.71) 13.94 (0.60) | 22.11 (0.98)
0.85 | 16.82 (0.69) | 13.19 (0.56) 12.94 (0.51) 16.16 (0.69) 13.69 (0.56) | 22.85 (1.03)
0.90 | 16.89 (0.71) | 12.03 (0.48) 11.92 (0.45) 14.75 (0.60) 12.77 (0.50) | 23.08 (1.01)
0.95 | 16.24 (0.67) | 10.48 (0.42) 10.35 (0.40) 10.48 (0.42) 10.33 (0.41) | 21.38 (0.92)
time | .152 (.005) | 33.697 (.734) | .149 (.001)

functions do not cross except potentially near the boundary
at two end points 0 and 1 due to the fact that we do not
have observations near the boundary in our training sam-
ple.

Example 3. We set p = 5 and n = 100 and consider the
linear model

(10) Y=X1+Xo+ -+ X5+¢,

where X; ~ N(0,1) for j =1,2,...,5 and ¢ ~ N(0,1) are
independent of each other. Conditional quantile functions
are to be estimated at 7 = 0.05,0.1,...,0.95. we generate
an independent and identically distributed test set of size
100n. For each set of quantile estimates f, (+), we evaluate
the test error as follows

100n

ZPT

where (g;,&;) denotes a general pair of observations in the
test set for ¢ = 1,2,...,100n.

For model (10), the Bayes prediction error is given by
ERBayes,r = Eepr(e — @71(7)) for any 0 < 7 < 1. Here
®(-) denotes the cumulative distribution function of the
standard normal distribution and ®~!(-) denotes its in-
verse function. We calculate ER ggyes,- by Monte Carlo sim-
ulation based on a sample of 10° independent and iden-
tically distributed e from the standard normal distribu-
tion.

(11)

Test Error( ka frk (z:))/(100n),
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In Table 1, we report the average of the difference be-
tween the Test Error( ka) and the Bayes error ERpayes, 7,
over 200 repetitions for different 71’s and different condi-
tional quantile estimation methods. Numbers in parenthe-
ses are the corresponding standard errors. Here we enlarge
by a factor of 1000 in Table 1. Note that the difference be-
tween the Test Error( ka) and the Bayes error ERpayes,r,
indicates the relative performance each conditional quantile
estimate fr, (-) does comparing to the best theoretical er-
ror. Here we denote the naive individual estimation by M1.
Intermediate estimates of our non-crossing estimation are
denoted by M2, M3, and M4 for Scheme 1, Scheme 2(U),
and Scheme 2(D), respectively, as explained in Section 3.
Our final non-crossing estimate is denoted by M5. Column
He97 corresponds to the method of He (1997). From Ta-
ble 1, we can easily observe the improvement of our non-
crossing estimates over the naive individual estimation. The
last row in Table 1 reports the average CPU times (in sec-
onds, with standard error in parentheses) for each method
to estimate conditional quantile functions at all different
7’s. Because our estimation scheme consists of several dif-
ferent intermediate steps, we report the computation time
altogether. It shows that our estimation scheme costs more
time to achieve non-crossing and better estimation accu-
racy.

To further visualize the improvement, we plot in the left
panel of Fig. 4 the average of the difference between the
Test Error( ka) and the Bayes error ERpgyes,, over 200
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Figure 4. Plots of the average differences and the scaled average differences of the test errors and the Bayes errors over 200
repetitions for different T's and different methods in Example 3 on the left and right panels respectively.

repetitions for different 74’s and different conditional quan-
tile estimation methods. Using the naive individual estima-
tion as the baseline, we divide the average difference of each
method by the average difference of the naive individual
estimation and plot the ratio in the right panel of Fig. 4.
It clearly demonstrates that the improvement of our non-
crossing estimation because the curve corresponding to our
non-crossing estimation falls way below the curve for the
naive individual estimation. From Fig. 4, we can see that our
non-crossing estimation improves around 20% for most 7’s in
the middle and even more for other very small or very large
7’s. As a remark, we note that in this example, the method
of He (1997) appears to be worse than other methods.

Example 4. Different from the previous example, we now
consider data from a location scale family with p = 5. Each
predictor is uniformly distributed, X; ~ Uniform|0,1] for
j=1,2,...,5, and independent of each other. The response
is generated from the model

5
Y = X; 4 (0.5X1 +0.5)e

j=1

(12)

with independent noise ¢ ~ N(0,1). Training samples are
of size n = 100. An independent and identically distributed
test set of size 100n is generated to calculate the test error
to report performance.

Note that the true conditional quantile function of
model (12) is given by f,(z) = (1 + 0.5071(7))z; +
To + o3 + 14 + x5 + 0.5 (7). In this example, we ap-
proximate the Bayes error by ETI/{BW@SJ = lei(i" o (Ti —
fr(2;))/(100n). Results over 200 repetitions are sum-
marized in Table 2 and Fig. 5 in the same for-
mat as in Example 3. Consistent improvements are ob-

served for our non-crossing estimation scheme and sim-
ilar message can be delivered as in the previous exam-
ple.

Example 5. In this example, we consider a nonlinear model
Y = 4sin(n X)) +4(Xs — 0.5)% + ¢

with X7 ~ Uniform[0,1], Xo ~ Uniform[0,1], and € ~
N(0,1) being independent of each other. We generate in-
dependent identically distributed tuning and testing sets of
size n and 10n, respectively. The tuning set is used to select
the tuning parameter and the testing set is used to eval-
uate performance. The Bayes Error is estimated using the
test data as in Example 3. We apply the Gaussian kernel
K(x1,x2) = exp(— || &1 — @2 ||3 /o?). The effect of the ker-
nel parameter o2 is also investigated.

Figure 6 plots the average differences between the test er-
ror and the Bayes error over 200 repetitions for different o2,
where different panels correspond to different 7 values. This
plot shows that the selection of o2 does affect the perfor-
mance of our method. We minimize the sum of the average
test errors at different 7’s to select the best o. The results
indicate that o2 = 0.4 works well for these methods in this
example. In practice, one can use cross validation or other
tuning procedures to select 2.

Results with o2 = 0.4 are reported in Fig. 7 and Table 3.
The results indicate that our proposed method works better
than the individual quantile estimation as well as the simul-
taneous estimation method by Takeuchi et al. (2006). As a
remark, we note that the computing time for our method
is longer than that of Takeuchi et al. (2006) for this exam-
ple. One possible explanation is that the dimension of this
problem is relatively low.
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Figure 5. Plots of average differences and the scaled average differences of the test error and the Bayes error over 200
repetitions for different 7's and different methods in Example 4 on the left and right panels respectively.

Table 2. Table of the average of the test error and the Bayes error over 200 repetitions for different T's and different
estimation methods in Example 4. M1 corresponds to the standard quantile regression. M2, M3, and M4 represent our
Scheme 1, Scheme 2(U), and Scheme 2(D), respectively. M5 corresponds to our final estimator by averaging. He97 refers to
He (1997)'s method. Note that each table entry of error difference is enlarged by a factor of 1000. Numbers in parentheses are
the corresponding standard errors

T M1 M2 M3 M4 M5 He97

0.05 | 12.48 (0.56) | 7.62 (0.40) 7.62 (0.40) 7.51 (0.39)  7.50 (0.39) | 15.76 (0.90)
0.10 | 12.76 (0.58) | 8.51 (0.43) 10.67 (0.52)  8.42 (0.42)  8.89 (0.45) | 17.26 (0.98)
0.15 | 13.02 (0.61) | 9.93 (0.49) 11.96 (0.57)  9.59 (0.45)  9.78 (0.47) | 17.63 (0.95)
0.20 | 12.58 (0.62) | 10.29 (0.49) 12.62 (0.59)  9.68 (0.44)  9.91 (0.47) | 16.82 (0.88)
0.25 | 13.29 (0.63) | 11.46 (0.50) 13.04 (0.60) 10.91 (0.43) 10.48 (0.47) | 16.37 (0.84)
0.30 | 13.55 (0.63) | 12.25 (0.52) 13.15 (0.60) 11.50 (0.45) 10.71 (0.45) | 15.70 (0.76)
0.35 | 13.55 (0.56) | 13.07 (0.54) 12.81 (0.57) 12.22 (0.47) 10.93 (0.45) | 15.50 (0.71)
0.40 | 14.42 (0.61) | 13.53 (0.60) 13.35 (0.58) 12.57 (0.49) 11.36 (0.47) | 14.96 (0.69)
0.45 | 14.54 (0.61) | 14.44 (0.61) 13.48 (0.58) 13.19 (0.53) 11.68 (0.47) | 15.15 (0.65)
0.50 | 14.57 (0.60) | 14.57 (0.60) 13.50 (0.58) 13.45 (0.54) 11.83 (0.49) | 14.57 (0.60)
0.55 | 13.69 (0.57) | 13.90 (0.57) 12.90 (0.56) 13.22 (0.54) 11.46 (0.48) | 14.59 (0.59)
0.60 | 14.19 (0.58) | 13.54 (0.56) 12.62 (0.53) 13.58 (0.56) 11.56 (0.47) | 14.72 (0.61)
0.65 | 14.28 (0.60) | 12.95 (0.53) 12.17 (0.53) 13.83 (0.56) 11.51 (0.48) | 14.88 (0.61)
0.70 | 13.96 (0.57) | 12.57 (0.53) 11.95 (0.53) 13.55 (0.56) 11.36 (0.48) | 15.36 (0.62)
0.75 | 13.58 (0.57) | 11.78 (0.51) 11.39 (0.50) 13.49 (0.59) 11.15 (0.47) | 15.60 (0.64)
0.80 | 13.13 (0.57) | 10.83 (0.48) 10.48 (0.48) 12.65 (0.54) 10.50 (0.47) | 16.17 (0.69)
0.85 | 12.16 (0.53) | 9.47 (0.45)  9.35 (0.45) 11.37 (0.48)  9.54 (0.42) | 16.18 (0.71)
0.90 | 11.51 (0.49) | 8.42 (0.38)  8.30 (0.38) 10.17 (0.43)  8.71 (0.39) | 15.97 (0.74)
0.95 | 11.22 (0.47) | 7.23 (0.33)  7.14 (0.34)  7.23 (0.33)  7.10 (0.33) | 14.84 (0.69)
time [ .128 (.003) | 28.660 (.739) | .149 (.001)

6. APPLICATION TO THE BASEBALL
DATASET

In this section, we apply our stepwise approach to ana-
lyze one real data set, the Annual Salary of Baseball Players
Data provided by He et al. (1998). This data set is based
on n = 263 North American major league baseball play-
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ers for the 1986 season. As in He et al. (1998), we use the
number of home runs in the latest year (performance mea-
sure) and the number of years played (seniority measure)
as predictor variables. The response variable is the annual
salary of each player (measured in thousands of dollars).
We first standardize each predictor variable to have a mean
zero and variance of one. For our stepwise non-crossing non-
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Figure 6. Plots of average differences between the test error and the Bayes error over 200 repetitions for different o and
different methods in Example 5. Different panels correspond to different T.

parametric kernel regression with restriction, we choose the
Gaussian kernel with the data width parameter o to be the
median pairwise Euclidean distance of the new standard-
ized predictor variables. Our limited experience shows that
this choice of o works reasonably well. This choice was also
previously used by Brown et al. (2000) and Wu and Liu
(2007). To select the regularization parameter A\, we use
the 10-fold cross validation in each step of our stepwise
non-crossing nonparametric kernel regression with restric-
tion.

We estimate the conditional quantile functions at 7 =
0.05,0.1,...,0.95. After the estimation is performed, we plot
the estimated nonparametric quantile function at 7 = 0.5 on
the top left panel of Fig. 8. The plot is on the original data
scale by applying the inverse linear transformation of the
standardization step. To compare with the standard quan-

tile regression, we plot the difference between the new quan-
tile function and the original individually estimated quantile
function at 7 = 0.5 on the top right panel of Fig. 8. Fur-
thermore, for each k, we plot the difference of the estimated
conditional quantile function at 757 and 7, in the origi-
nal scale. Two examples with & = 8 and 11 are displayed
on the bottom role of Fig. 8. Note that although the dif-
ferences are not guaranteed to be nonnegative, the minimal
difference is typically positive or close to zero if it is nega-
tive.

7. DISCUSSION

In this paper, we consider the estimation problem of mul-
tiple non-crossing quantile regression functions. A stepwise
procedure is introduced to ensure non-crossing. Our nu-
merical results indicate that our non-crossing method not
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Figure 7. Plot of the average difference of the test error and the Bayes error over 200 repetitions for different T's and different
methods in Example 5. Here N1 denotes the individual estimate. N2 is our first round estimate beginning from zero. N3 and
N4 are our second round estimates. N5 is our final estimates by averaging N3 and N4. N6 is the simultaneous estimates by
Takeuchi et al. (2006).

Table 3. Table of the average difference of the test error and the Bayes error over 200 repetitions for different T's and different
estimation methods in Example 5. Here N1 denotes the individual estimate. N2 is our first round estimate beginning from
zero. N3 and N4 are our second round estimates. N5 is our final estimates by averaging N3 and N4. N6 is the simultaneous
estimates proposed by Takeuchi et al. (2006). Note that each table entry of error difference is enlarged by a factor of 1000

T N1 N2 N3 N4 N5 N6
0.05 | 19.23 (0.89) | 17.13 (0.79) 17.13 (0.79) 17.14 (0.79) 17.12 (0.79) | 18.91(0.87)
0.10 | 20.21 (0.88) | 18.44 (0.83) 20.39 (0.89) 18.45 (0.83) 19.00 (0.84) | 19.83(0.88)
0.15 | 22.49 (1.05) | 20.28 (0.95) 23.64 (1.03) 20.42 (0.97) 21.25 (0.98) | 21.34(1.05)
0.20 | 24.49 (1.13) | 22.74 (1.04) 25.57 (1.11) 22.82 (1.04) 23.33 (1.05) | 23.17(1.12)
0.25 | 25.49 (1.16) | 24.40 (1.07) 26.79 (1.15) 24.40 (1.06) 24.81 (1.08) | 24.44(1.11)
0.30 | 25.88 (1.13) | 24.75 (1.05) 26.75 (1.17) 24.72 (1.06) 24.96 (1.09) | 25.06(1.09)
0.35 | 26.31 (1.17) | 25.35 (1.11) 26.47 (1.16) 25.30 (1.11) 25.15 (1.12) | 25.59(1.14)
0.40 | 25.41 (1.12) | 24.52 (1.08) 25.49 (1.10) 24.56 (1.08) 24.40 (1.08) | 25.17(1.09)
0.45 | 24.56 (1.14) | 24.11 (1.08) 24.64 (1.12) 23.89 (1.07) 23.61 (1.07) | 24.30(1.12)
0.50 | 23.37 (1.06) | 23.37 (1.06) 23.65 (1.05) 22.69 (1.01) 22.57 (1.01) | 23.66(1.05)
0.55 | 23.10 (0.99) | 23.07 (1.00) 23.20 (0.99) 22.24 (0.95) 22.02 (0.95) | 22.96(0.98)
0.60 | 22.58 (1.01) | 22.73 (1.01) 22.88 (1.02) 21.99 (0.98) 21.80 (0.98) | 22.64(1.03)
0.65 | 21.92 (1.07) | 21.55 (0.99) 21.69 (1.02) 21.21 (1.02) 20.83 (1.00) | 21.64(1.04)
0.70 | 20.96 (1.00) | 21.10 (0.96) 21.19 (0.98) 20.46 (0.98) 20.16 (0.95) | 20.48(0.98)
0.75 | 20.65 (1.00) | 21.00 (0.96) 20.93 (0.97) 20.73 (1.01) 20.18 (0.95) | 20.09(0.99)
0.80 | 20.37 (1.00) | 20.23 (0.96) 20.29 (0.95) 21.14 (1.02) 20.04 (0.95) | 19.65(0.97)
0.85 | 21.21 (1.06) | 20.13 (0.99) 20.23 (0.99) 21.91 (1.07) 20.54 (1.01) | 20.46(1.03)
0.90 | 20.34 (0.93) | 19.44 (0.88) 19.39 (0.87) 20.88 (0.92) 19.73 (0.88) | 20.22(0.91)
0.95 | 21.95 (0.90) | 19.93 (0.78) 19.75 (0.76) 19.93 (0.78) 19.80 (0.76) | 21.00(0.78)
time | 205.14 (8.14) | 630.14 (24.40) | 380.76 (12.68)
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Figure 8. Plots for the Baseball data example. Top-left panel: estimated quantile function with = 0.5 using non-crossing

constraints; top-right panel: difference function between estimated quantile functions (T = 0.5) and the estimate without

using non-crossing constraints; bottom-left panel: the difference between the quantile functions of 9 and 7g; bottom-right
panel: the difference between the quantile functions of T15 and T11.

only helps to provide more meaningful results, it also im-
proves the estimation accuracy of the resulting regression
functions.

As in other regularization problems, the choice of the
regularization parameter \ is very important for the per-
formance of quantile regression. It is often for one to select
a finite set of representative values for A and then use a
separate validation data set or certain model selection cri-
terion to select a value for A. In this article, we have used
separate validation sets for simulation and cross validation
for the real data analysis. As an alternative, one can use
certain model selection criterion to choose A. Two com-
monly used criteria are the Schwarz information criterion
(Schwarz 1978, Koenker et al. 1994) (SIC) and the gener-
alized approximate cross-validation criterion (Yuan 2006)

(GACV). These criteria are well studied for unconstrained
quantile regression and require further developments for our
constrained methods.

Received 31 March 2009
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