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From the Support Vector Machine to the

Bounded Constraint Machine

SEO YOUNG PARK AND YUFENG LIU*

The Support Vector Machine (SVM) has been success-
fully applied for classification problems in many different
fields. It was originally proposed using the idea of search-
ing for the maximum separation hyperplane. In this article,
in contrast to the criterion of maximum separation, we ex-
plore alternative searching criteria which result in the new
method, the Bounded Constraint Machine (BCM). Proper-
ties and performance of the BCM are explored. To connect
the BCM with the SVM, we investigate the Balancing Sup-
port Vector Machine (BSVM), which can be viewed as a
bridge from the SVM to the BCM. The BCM is shown to
be an extreme case of the BSVM. Theoretical properties
such as Fisher consistency and asymptotic distributions for
coeflicients are derived, and the entire solution path of the
BSVM is developed. Our numerical results demonstrate how
the BSVM and the BCM work compared to the SVM.

KEYWORDS AND PHRASES: Bayes rule, Classification, Con-
sistency, Robustness, Support vector machine.

1. INTRODUCTION

The Support Vector Machine (SVM) has been popular
due to its success in many applications [6, 19]. It was orig-
inally proposed using the criterion of searching for the op-
timal separating hyperplane. It is now well known that the
SVM can be fit in the loss + penalty framework using the
hinge loss [20]. In this regularization framework, loss mea-
sures goodness of fit and penalty reflects smoothness of the
resulting model.

Despite its success, the SVM has some drawbacks. One
known drawback is that the SVM classifier only depends on
the set of support vectors (SVs), which include training data
points that are correctly classified but relatively close to
the boundary as well as those misclassified training points.
Extreme outliers can have a relatively big impact on the
resulting classifier. In the literature, there have been some
attempts to modify the SVM to gain robustness to outliers
[4, 15, 18, 22]. The idea is to truncate the unbounded hinge
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loss function so that the effect of extreme outliers can be con-
trolled. The corresponding optimization, however, involves
challenging nonconvex minimization. Another drawback is
that the standard SVM was originally designed for binary
classification. Its extension to multicategory classification is
nontrivial. Previous attempts include [5, 10, 19, 21]. Despite
that these extensions seem natural and reasonable, not all
of them are Fisher consistent [13].

Our motivation for this paper is to modify the criterion
of the SVM. Instead of the maximum separation criterion
whose solution only depends on a subset of the training data,
we propose to use an alternative criterion so that all data
points can influence the solution. One main advantage of
using all data points for the classifier is that the resulting
classifier may depend less heavily on a smaller subset and
consequently can be more robust to outliers. More specifi-
cally, we propose the Bounded Constraint Machine (BCM),
which minimizes the sum of the signed distance to the clas-
sification boundary subject to some constraints on the so-
lution. Our focus in this paper is on binary classification.
However, the BCM can be extended for multicategory clas-
sification directly with Fisher consistency.

To further study the relationship between the SVM and
BCM, we investigate another method, the Balancing Sup-
port Vector Machine (BSVM). The BSVM can be viewed as
a modification of the SVM with all training points influenc-
ing the resulting classifier. The BSVM is characterized using
the parameter v with v = 0 corresponding to the SVM and
v = oo corresponding to the BCM. As a result, the BSVM
helps to build a continuous path from the SVM to BCM
by changing the value of v. Along with the effect of v, the
properties of the BSVM including Fisher consistency and
asymptotic behaviors of the coefficients are investigated.

In practice, the performance of these methods may vary
from problem to problem. Therefore, it may be desirable
to treat v data dependent. To improve the computational
efficiency, we establish the entire solution path with respect
to the value of v, so that we can get the solution of the
BSVM for every value of v efficiently.

The rest of the article is organized as follows. Section 2
briefly reviews the standard SVM and proposes the BCM.
In Section 3, we investigate the BSVM and describe its be-
havior using the Lagrange dual problem. The effect of v is
explored and we show how the BSVM builds a connection
from the SVM to the BCM. Section 4 shows Fisher consis-
tency of the BSVM and BCM, as well as some asymptotic
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properties. Section 5 develops the regularized solution path
with respect to v. Numerical results are reported in Sec-
tion 6 and Section 7 gives some discussion. The proofs of
our theorems are included in the Appendix.

2. THE SVM AND THE BCM

In standard binary classification, we want to build a clas-
sifier based on a training sample {(x;,y;)|[i = 1,2,...,n},
where ; € X C R? is a vector of predictors, and y; €
{+1, -1} is its class membership. Typically it is assumed
that the training data are distributed according to an un-
known probability distribution P(z,y). The goal is to find a
decision function f(x) and its associated classifier sign[f ()]
which minimizes the misclassification rate. In this paper,
we focus on linear learning, which seeks a linear classifier
f(z) = b+ x"w. The same idea can be generalized to non-
linear learning through basis expansion or kernel trick.

Many well known classifiers can be formulated in a loss+
penalty framework

(1) manl (yif(xi)) + AJ(f),

i=1

where [(-) is a loss function that measures goodness of fit,
J(f) is a penalty term that assesses generalization of the
model, and A\ is a tuning parameter which balances the
tradeoff between those two [20]. One may formulate the op-
timization as ming C' Y1, I(y; f(2;))+J(f), which is essen-
tially the same as (1) with A playing the same role as 1/C'. In
this paper, we use both notations C' and A for convenience.
Note that the loss function [ here is a function of yf(x),
which shows ‘correctness’ of the classification for a particu-
lar observation @. In particular, with the classification rule
sign[f (x)], positive yf(x) implies correct classification and
negative yf(x) implies wrong classification. Moreover, we
can think of the absolute value of f(x) as our ‘confidence’ in
class label prediction, considering the value of f(x) close to
zero indicates that « is near the decision boundary. Thus,
large value of yf(x) implies classification for x is correct,
and as the value of yf(x) goes to negative infinity, it means
the classification with high confidence was wrong. Hence we
generally want values of yf(x) to be large, and it should
be and usually is reflected in the shape of the loss function
l(yf(x)), which explains why many common loss functions
are nonincreasing in yf(x). Some typical examples include
the hinge loss [20], the logistic loss [11], the exponential loss
[7], and the 1 loss [18].

2.1 The Standard SVM

The SVM is a typical method of form (1). In particular, it
employs the hinge loss function I(yf(x)) = [1—yf(x)]+, and
the penalty term J(f) = 3|lw||%. Note that the value of the
hinge loss I(yf(x)) increases as yf(x) becomes smaller and
it stays at zero when y f(x) > 1. That is, the SVM puts loss
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on the misclassified data points but nothing on the correctly
classified observations once yf(x) becomes greater than 1.
Hence the data points with yf(x) > 1 have no influence on
the SVM solution. To further explain, we express the dual
problem

2) Zaz

n
subject to Zyiai =0;0<q; <CVi=1,...,n
i=1

mln— E Yil)j 0L QL wz,:cj
3,j=1

where (-, -) denotes the inner product. Using the a; obtained
from (2), w can be calculated as > . ; o;y;@;, and b can
be obtained by the KKT conditions. Thus the classification
function can be written as f(x) = Y., auy;(zi, ) + b.
Furthermore, «; > 0 implies y; f(x;) < 1 and actually that
is the only case that (x;,y;) can affect the solution. On the
other hand, when a; = 0, the observation (x;,y;) has no
impact on the solution. A point x; with a; > 0 is a SV,
which is the observation satisfying y; f(x;) < 1.

2.2 The BCM

Due to the design of the SVM, its solution only depends
on the set of SVs. This helps to simplify the solution. How-
ever, if the training dataset is noisy with outliers, the solu-
tion can be deteriorated. To solve the problem, we propose
a different optimization criterion. In particular, we propose
to minimize the sum of signed distances to the boundary
and solve the following problem

CZ?:l yif(xi)
1< f(z;)) <L,Vi=1,...,n

miny J(f) —
subject to

That is, we try to maximize Y ., y; f(2;), while forcing all
the training data to stay between the hyperplanes f(x) =
+1. One can view that the BCM uses the hinge loss of the
SVM with y; f (x;) € [-1, 1]. With the constraints, the BCM
makes use of all training points to obtain the resulting clas-
sifier.

One advantage of the BCM is that it can be extended
to the multicategory case directly. Assume that we have a
k-class problem with y € {1,...,k}. Let f = (f1,..., fx)
be the decision function vector with Z?Zl fj = 0. Then the
multicategory BCM solves the following problem

k n
3) min} 517 = C 3 Sy (i)
j=1 i=1

k
subject ttoj(wi) =0; fi(x;) > —1;
j=1
Vi=1,....n0=1,...k

It can be shown that the multicategory BCM is Fisher con-
sistent. However, we will focus on binary classification in
this paper.



Figure 1. Plot of loss function l(u) = g(u) for the BSVM
with different values of v.

To further understand the connection between the SVM
and BCM, we propose the BSVM in Section 3 and use the
BSVM as a bridge to connect the SVM and BCM.

3. THE BSVM: A BRIDGE BETWEEN THE
SVM AND THE BCM

The SVM only uses the SV set to calculate its solution,
while the BCM utilizes all training points. To connect these
two, we study the BSVM using the following loss function

o) = {

where v is the slope of the loss function when u € (1, 00),
as shown in Fig. 1. Note that v determines how much the
solution will rely on the data points with yf(x) > 1, and
the problem becomes equivalent to the SVM when v = 0.
Here, we would like to acknowledge that the loss g(u) was
previously presented by Ming Yuan in the Statistical Learn-
ing Conference at Snowbird, UT in 2007. We use the BSVM
as a bridge to connect the SVM with the proposed BCM.

Note that when v = oo, the BSVM becomes equivalent
to solving

ifu<1,
otherwise,

1—wu

) v(u—1)

(5) Min (o) J(f)—=CX, yif (i)
subject to  f(x;) <L,Vi=1,...,n

Comparing to the BCM in (3), the only difference is that the
BCM has the constraint f(a;) > —1 but the BSVM with
v = oo does not. Typically this difference does not matter
since the solution of (5) usually satisfies f(x;) > —1. The
only case that the BCM actually works differently from the
BSVM is when a data point moves far away from its own
class, even further than the other class. This rarely happens
in practice. Thus, the BSVM with v = oo can be viewed

as a good approximation of the BCM. Overall, the BSVM
builds a continuum from the standard SVM (v = 0) to the
BCM (v = o0).

3.1 Interpretation of the BSVM

Since the loss g(u) for the BSVM is not a decreasing
function and it imposes big loss values even on the correctly
classified data points as well as misclassified observations, it
might seem counterintuitive. However, the increasing part
with y; f(2;) > 1 may help to bring the decision boundary
towards the correctly classified points, which can be desir-
able in some situations. To understand the behavior of the
BSVM further, we rewrite its primal problem as follows

mln —||wH2 + cZgZ

=1
subject to & > 1 —yif(®:);& > v(yif(xi) — 1),
Vi=1,....n

The corresponding Lagrange primal can be written as
(6)
1 n n
L(w,b,e) = |lw|* +CY &+ Y vl — yif (i) — &

i=1 i=1
n

+ > Gy f(a) —v —&].

i=1

Setting derivatives to zero gives

oL o =
S =w— ) Y%+ ) vyidix; =0
ow ; ;

= - Z%’Yi +UZyi5i =0
i=1 i=1
oL

3_& =C—7i—
and KKT conditions are
(10) Yi(L—yif(xi) — &) =0
(11) (51(’Uylf($l) — U — fz) =0.

Then the corresponding dual problem becomes

575207

(12)
Yo

n
subject to Zyiai =0;-Cv<q;<CVi=1,....n
i=1

mln— E Yil; Qi :Bl,iL']
1,7=1

Once the solution of (12) is obtained, w can be calcu-
lated as Y7 | a;y;&; and b can be determined by KKT con-
ditions. This problem is almost identical to the SVM prob-
lem. The difference is on the constraint. In particular, we
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Figure 3. A graphical illustration of the robustness of the BSVM: the decision boundary of the BSVM stays stable when there
is an extreme outlier, while that of the SVM moves dramatically towards the outlier.

have 0 < a; < C for the SVM, but —Cv < a; < C for the
BSVM. This helps to explain the difference in behaviors be-
tween the SVM and the BSVM. In contrast to the SVM, the
BSVM with v > 0 makes use of all data points to determine
the solution. Points with y; f; < 1 may help to reduce the
effect of outliers and consequently the BSVM classifier can
be more robust against outliers.

3.2 Effect of v

In the separable case, the standard SVM, i.e. the BSVM
with v = 0, finds the decision boundary which maximizes
the distance from the decision boundary to the nearest data
point, i.e., the distance between f(x) = %1 is maximized.
Here, the soft margins f(x) = %1 are the hyperplanes that
bound the data points of each class, so that the observations
are forced to lie outside of the soft margins. The BSVM with
v > 0 maximizes the distance between f(x) = £1 as well,
but the observations are clustered around the hyperplanes
f(x) = £1 without being forced to be outside of the margin
lines. When v = 1, the BSVM minimizes ), [1 — y; f(x:)],
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resulting data points laid inside and outside of f(x) = +1
evenly as shown in the middle panel of the Fig. 2. As the
value of v becomes high, the value of v[y; f(x;) — 1]+, which
is the distance between the hyperplanes f(x) = +1 and
the observations outside of them, becomes larger. Thus the
hyperplanes f(z) = £1 move towards outside to reduce it.
As v goes to infinity, the BSVM reduces to the BCM and
the hyperplanes f(x) = £1 go far enough to bound all data
points. The right panel of the Fig. 2 illustrates the behavior
of the BCM with large v.

Since v decides how much the decision boundary depends
on the correctly classified observations, performance of the
BSVM is affected by the value of v. The BSVM with big
value of v tends to depend on the correctly classified data,
which makes it less sensitive against outliers. The BCM can
be viewed as the most extreme case with v = oco. The toy
example in Fig. 3 illustrates this behavior. When there is no
outlier as shown on the left panel, the SVM and the BSVM
with different values of v perform similarly. However, when
an observation moves far away from its own class, the de-
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Figure 4. A graphical comparison of the SVM vs. BSVM: the decision boundary of the SVM reflects the wavy shaped
structure of the data near the border, while that of the BSVM is flattened by the observations far from the boundary.

cision boundary of the SVM moves towards the outlier, re-
sulting in a data point misclassified. In contrast, the BSVM
with large v is more stable because the effect of the outlier is
greatly reduced by the correctly classified data. Therefore,
correctly classified data in the BSVM help to robustify the
decision boundary so that a small number of outliers can
not cause a drastic change on the decision boundary.

It is worthwhile to point out that the RSVM [22] can also
deliver robust classifiers. It achieves robustness via remov-
ing potential outliers from the set of SVs for the standard
SVM. Consequently, the RSVM gains robustness by using a
smaller but more robust set of observations. In contrast, the
BSVM tries to reduce the impact of outliers by making use
of more data points. Both methods are reasonable, however,
they use different philosophies in using the training data to
obtain robustness.

As a remark, we note that the BSVM may not always
produce better results than that of the SVM. It can be sub-
optimal in a situation as the toy example shown in Fig. 4.
The true boundary is wavy shaped, but the observations far
away from the boundary are aligned in parallel. The SVM
works fairly well, but the decision boundary of the BSVM
becomes flat as the value of the v goes large due to the in-
fluences of the data points far from the boundary. Hence,
choice of v should be made carefully based on the charac-
teristic of the problem.

4. PROPERTIES OF THE BSVM AND
THE BCM

4.1 Fisher consistency

In this section, we discuss Fisher consistency of the
BSVM and the BCM. Fisher consistency, also known as

classification-calibration [2], requires that the population
minimizer of a loss function has the same sign as P(z)—1/2
in the binary case [12]. This is a desirable property for clas-
sification. The following theorem establishes Fisher consis-
tency of the BSVM.

Theorem 1. The minimizer f* of E[g(Y f(X))|X = x] is
sign|[P(x) — 1/2].

For the BCM, we consider the multicategory case due
to its simple extension. In the multicategory case, Fisher
consistency requires that argmax;f; = argmax;P;, where
(@) = (ff(x),..., fi(x)) denotes the minimizer of ex-
pected value of the loss function. The following theorem
shows Fisher consistency for the multicategory BCM.

Theorem 2. The minimizer f* of E[—fy(X)], subject to
Zf fi(®) =0 and fi(x) > —1 for Vi, satisfies the following:

fi(@) =k —11if j = argmaz; Pj(x) and —1 otherwise.

4.2 Asymptotic study of the BSVM

In this section, we study asymptotic distributions of the
coefficients in the BSVM. [9] established Bahadur type rep-
resentation [1, 3] of the classical SVM coefficients to study
their asymptotic behavior. This representation allows us to
see how the margin lines of the SVM and the underlying
probability distribution of observations affects asymptotic
behaviors of the coefficients. This idea can be generalized
to the BSVM with some modifications on the Bahadur rep-
resentation of the coefficients and regularity conditions to
adopt the loss function of the BSVM. We show that the co-
efficients of the BSVM have asymptotic normality, as that
of the standard SVM.

First, we introduce new notations for convenience. Let
B = (Bo,B,) denote (b,w) which is the coefficients in
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the BSVM. Let 2 = (L,20)T = (Lzy,...,z2)T =
(%0, %1,...,24)7 and denote the linear decision function
for given X = x as f(x;8) = 78 = By + 7B, Let
7 =PY =1)>0and 7 = P(Y = —1) > 0, with
7y + 7 = 1. Let hy and h_ be the density functions of
X given Y = 1 and —1, respectively. Denote the objective
function of the BSVM

n

Dn(8) = + 3 gl (s 8)) + 1185

i=1

(13)

The population version of (13) without the penalty term is
denoted by

(14) Q(B) = Elg(YVf(X;8))]

and the minimizers of (13) and (14) are denoted by BA’H
and 3" respectively. Let the indicator function be i(z) =
It.>0y for z € R and denote the (d + 1)-dimensional vector
5(8) = E[=y(1 =Y f(X; 8))Y X +v(Y f(X;8) - )Y X]
and the (d + 1) x (d + 1) matrix H(B) = (1 +v)E[é(1 —
Y f(X; ﬁ))XXTL where § is the Dirac delta function. One
can show that S(3) and H(3) are the gradient and Hessian
matrix of Q(8), respectively.

Now we state the regularity conditions for the asymptotic
results. Here, C, Cs, ... are positive constants which do not
depend on n.

A1 The densities hy and h_ are continuous and have finite
second moments.

A2 There exists B(xg, o), a ball centered at &y with radius
ro > 0 such that 7 hy(z) + 7_h_(x) > C; for every
x € B(xo,10).

A3 For some 1 <i* <d,

Ty {/X(I{xi*gpit} - ”I{xioE;})fEi*M(fB)dw}
- {/X(I{EOG;} - vI{a:,;*<G;})xi*h—(.’B)d.’I}}

or
T+ {/X(I{wwg} - ”I{W<Fi:})xi*h+(w)dw}
< {/X(I{IMG;} - Uf{xﬁ>c;})xi*h—(w)dw}
for Ff, G5, F;.,G;. € [—00,00] such that
. :f +v
/XI{%*SF;}h‘*‘(m)dw = min\< 1, o (¢

f
/X I{Iﬁ SGﬁ}h_(m)dm = min 17 m s
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Lt
/XI{M*ZFi;}th(:c)dm:mm 1, o (

. :—f + v
/){I{zi*zg;}h_(m)dm = min 1, m )

A4 For an orthogonal transformation A;- that maps
B3 /1Bl to the j*-th unit vector e;- for some 1 <
7" < d, there exist rectangles

D ={xe M":l; <(Ajx); <v,l; <v; fori#j*}
and
D™ ={xzeM :l; <(Ajz); <v;,l; <wv; for i # j*}

such that hy (x) > Cs >00on DV, and h_(z) > C5 > 0
on D~, where M+ = {x € X|3 + =78} = 1} and
M~ ={xeX|f +x'8] =—-1}.

Note that A1 is needed to guarantee that S(3) and H(3)
are well-defined and continuous in 3. If Al is met, the
condition that hy(bxg) > 0 or h_(bxzy) > 0 for some xg
implies A2. A3 is the condition to ensure that 3% # 0,
and if 7y = 7_, then it simply means that the mean vec-
tors of the conditional class distributions are different. A4
ensures the positive-definiteness of H(3) around 3*. This
condition is easily satisfied when the supports of hy and h_
are convex. Assuming these regularity conditions, we have
a Bahadur-type representation of B)\,n as shown in Theo-

rem 3. This induces the asymptotic normality of B an (The-
orem 4).

Theorem 3. Suppose A1-A4 are satisfied. Then, for A\ =
o(n_1/2),

VB, —B") = —J=H(B) ~
X D i Ty pxis8e)<1y — vy, p(x187)>11)¥i X + op(1).

Theorem 4. Suppose A1-A4 are satisfied. Then, for A =
0(77,71/2),

VB, —B%) = N(0,H(8")'G(B")H(B")™)

in distribution as n — oo, where

S
G(B) = El(Iy p(x.p<1y + 0 Ly x>0 X X |-

This result can be used for building a confidence bound
for B or f(x;B) for a specific . The proofs are given in the
Appendix.

To illustrate the asymptotic results, we introduce a simple
toy example as follows. Let the one-dimensional explanatory
variable x follows N(1,1) if it belongs to class 1, and other-
wise it follows N(—1,1). Then it can be shown that 55 =0
and 87 = 1, which gives
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Figure 5. Plots of the asymptotic variances in (15).

n)~/
H(p")=(1+v) ( (()2 )7 (()277)_1/2

)

and

L1442 0
G(ﬁ*):< 3(1+0?)

(1+2%) +4/20* - 1)

Thus, by Theorem 3, we have

) |

o a(B)-((2))
where
m(1+0v?) 0

The asymptotic variances of coefficients shown in (15)
depend on v. As shown in Fig. 5, the variances of both co-
efficients decrease as v increases for a while, then increase

in v. Thus in this example the middle range values of v give
smaller asymptotic variances.

1
>= (1+4v)2 ( 0 27 (1 4+ v?) + 2v27(v? - 1)

5. REGULARIZED SOLUTION PATH OF
THE BSVM WITH RESPECT TO v

In this section, we discuss how to obtain the entire so-
lution path efficiently with respect to v. Using this path,
we can compare the performances of the BSVM with dif-
ferent values of v without additional computational burden.
[8] established the entire regularization path for the SVM
for every value of A. In the BSVM procedure, we have two

parameters to choose, A and v, and here we derive an al-
gorithm that fits the BSVM with respect to v for a fixed
A

We first categorize the observations according to their
relative positions to the hyperplane f(x) = +1. In particu-
lar, let € = {i : y;f(x;) = 1}, L = {i : yif(z;) < 1}, and
R = {i:yif(z;) > 1}. From (9)—(11), notice that

(16) Foranyie L, v, =0C,6; =0, thus o; =C
(17) Foranyi € R, v =0,6; =C, thus o; = —Cw
(18) For any i € £, «; can be any number in [—Cuv, (.
For a fixed C, we start with a sufficiently large v which
induces y; f(x;) < 1,Vi=1,...,n, and go down to a smaller
v. As the value of v decreases, the memberships of £, £, and
R change. We say that an event occurred when any point
changes its membership. There are three kinds of events:

E1. A point from £ has just entered €.
E2. A point from R has just entered &.
E3. One or more points from £ have entered either £ or R.

Once an event occurs, the sets £, £, and R will stay stable
for a while until the next event occurs. This is because, for
an observation to pass through &, its «; must change from
C to —Cv or vice versa. Therefore, we denote by v; our
starting point, and let vo > v3 > --- be the values of v at
which each of the events occurs.

Given vy, we next study how to obtain v;41, and establish
paths of «; for v € [y, v141]. Let 7, = «; /v = (v; —vd;) /v for
i=1,...,n and 79 = b/v. We use superscript or subscript {
to denote anything given v = v;. For now, we assume &' # .
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For v; > v > v;41, we have
(19)
v v
fl@)=flx)— —fl(x)+ —f'(x)

(¥ (¥
DT @ T~ Ty @
it
kN ! T ! L
> (5 = mym] @ + (o — 7)) + (@)

L= 1
L) S wele+ (- el
vy J J

ject je&!
+ (10 — 7)) + v—lfl(sc)} )

1
e

=v|C

The last equality in (19) follows from the fact that 7; —

7]4 = C(% U%) for j € £ and Tj —T]l- =0 for j € R!. Thus,
for i € &,
(20)

1 1

v _yif(wi)

=C < — > Z yiyjm x; + Z yiyﬂ?ijz
v R ject je&!
1

+ yi(0 — T(l)) + —.
(%

Writing ; = 7; — 7} for j € {0} U €', we have

1 1 T
(; — U_l> [1 -C Z YiY;T; :BZ:|.

T _
E KjYiY; T T+ Yiko =
jEE!

Let m be the number of points in €. We can rewrite (21)
in a matrix form

1

Kk + roy; = (; - v_z) dy,

where K is the m X m matrix with ij-th entry yiyj:njrxi
for 7,5 € &, and k, y,;, and d; are the m x 1 matrices
with ¢-th entry k;, y;, and 1 — Czjey yly]a:]Tml for i € &,
respectively.

From (8), we have 37,

ZmJyJJrC(——) > v

je&t jecLt

7;9; = 0. Thus,

n

(21) 0="> (7

Jj=1

Using the matrix form, we have

iin=—c(t-1)
v (Y
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(22)

Z Yi-

ject

Combining (21) and (22), we have the linear equations

_ 0 y’lr « _ [ Ko * 702]'6[,1 Yj
(%) = ()= (7%")

Define s; = Afldf, and denote its entries by s; for j € &t
then we have

1 1
K = (— - —) s, forje{0}UE,

(23) i

which implies

L
ol — s
aj:<j J)v—&—sg for j € £

(%
bl
= (= ) vt sh.

Hence, a; and b are piecewise linear in v.
Combining (19) and (23) gives

(24)

(25)

(26)
v
f@) = 2@ 4o (5 - o) T wele
K K jeLt
l T l v l T 1
+ Z $;Yjx; x + by — v_z [Z $;Yjx; T + bo} .
jeE&L jEEL

Writing hl!(x) =
(27)
)= L] -n@)] @rrec (1 - 1)

v vy

des' s y]a: x + b}, we have

Z Yz

jeLt

The path (24)—(27) continues until one of the following
occurs.

P1. One of the observations in £! or R! attains y; f(z;) = 1.

P2. One of the a; for i € £ reaches a boundary (—Cwv or
C).

Note that P1 implies the event E1 or E2, and P2 precedes

E3 or they coincide. Hence, we can obtain v;41 by choosing

the largest v < v; for which any of P1 or P2 occurs. Since

f(x;) = 1/y; = y; when P1 happens, from (27), we have

vys = v[f'(x) — bl ()] + vhl ()
+uC Z yjz) @ —vC Z YT .

jecLt jecLt

(28)

Thus, v for which P1 happens is

nYi — Uzhl(m) - C Z]’E,Cl yjﬂ’»'JTﬂf

(29) YT (@) — B — OXjeviz@




Furthermore, for P2 to happen, either a; = —Cv or a;; =
C should happen. From (24), this implies

1
vS;

30 . —
(30) ! st —Cu —al
or

v (C — sb)

(31) i

Hence, given v;, we compute (29), (30), and (31), then set
the largest v among the ones smaller than v; as v;41. For
v € (vi41, 1), the solutions are calculated by (24), (25), and
(27). We repeat this procedure until v runs all the way down
to zero to obtain the whole solution path for every value of
.

So far we assume £ is nonempty. It is a reasonable as-
sumption since we can force £ to be nonempty, by selecting
a good b. This is possible because b is not uniquely deter-
mined when £ is empty. More specifically, suppose £ = ) for
v € [vg — €,vp], with € > 0. By (8), (16), and (17), we have

n

0= Z(% —06;)Yy; = Czyi - Cvzyiv

i=1 ieL i€eR
for v € [vg — €, vg]. Thus, we have
Dvi=D =0
ieL i€ER

Now consider the objective function. Solving (1) with g(u)
in (4) is equivalent to minimizing

(32) Slwl? +C| Y0 —wir@) + 3 oy ftws) ~ 1)

ieL i€ER
1
= §||w||2 +Cler, —ver — Zylwfw + v Z yixlw
i€l i€ER
N (—zyﬁvzyi)b],
iy iER

where ¢y, and cgr are the number of entries in £ and R, re-
spectively. Note that b in (33) vanishes because — » . . y; +
v) er¥i = 0. Hence, given w, minimizer b could be any
value in the set B, where

@33) B={beR: jlwl* + €Y gl (@) = 5wl
" {2(1 yf @)+ 3 vl ) 1)} }

€L 1ER

that is, b can take any value unless it moves any points from
L to R, or vice versa. Hence, we can take any b satisfying

yif(x;)) <1 forie L
yzf(ccz) > 1 forie R,

which is equivalent to

b<l-—=zlfw foriel,

b>—-1—zlw forieL_

bZI—w;fpw forie Ry

b<-1l—zlw forieR_,
where Ly = LNn{i:y =1}, Lo = Ln{i:y = —1},
Riy=Rn{i:y;=1},and R_ =RN{i:y; = —1}. Letting

i+ = argmaX;er, xlw
i =argminge, Tl w
IR+ = argminger a:iT'w
IR— = argmax;cRr_ a:ZTw,

we have
max{—1— miTLi'w, 1- :ci];ﬂw} <b
< min{1 — wZL+w7 —1-z] w}.

Without loss of generality, we can assume 1 — .

i WS
-1- w;f’;%w. Then take b =1 — xlTHw. This b belongs to
B and we have ir4 € £. Consequently, we choose b that
induces £ # (). Hence the case of empty & is resolved.

In summary, one can get the entire solution path for the

BSVM with respect to v as follows:

Step 1. Start with a sufficiently large vy and let v; = vg.

Step 2. For v;, obtain the solution of the BSVM. If £ is
empty, choose b as either upper or lower bound of (34)
so that £' becomes nonempty.

Step 3. Calculate (29), (30), and (31), then set the mini-
mum of them as v;11, at which the next event happens.

Step 4. For v € (v;41,v;), compute the path using (27).

Step 5. If v < 0, then set v;41 = 0 and obtain the so-
lution of the BSVM for v;41; = 0 and stop. Otherwise,
then set v; = v;41 and go to Step 2.

6. NUMERICAL RESULTS

In this section, numerical studies are carried out to ex-
amine the performance of the BSVM, BCM, and the RSVM
[22]. We note that the RSVM with truncation location at 0
is equivalent to ¢-learning [16].

6.1 Simulation

In two simulated data sets, we generate training, tuning,
and testing sets with sample sizes 100, 100, and 10°, respec-
tively. For each value of v =0,0.1,0.2,0.5,1, 2,5, 10, 50, the
tuning parameter A is chosen by a grid search based on the
tuning error. The misclassification rate is calculated based
on the test set to evaluate the performance. For comparison,
we also include the misclassification rate when both v and
A are tuned. Fach procedure is repeated for 100 times and
the corresponding mean performance is reported.
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Figure 6. Left: Plot of different classification boundaries in Example 1. Right: lllustration of the solution path of w with

respect to v in Example 1.

Table 1. Testing errors of the simulated Example 1

Data contamination rates

Method 0% 5% 10%

BSVM V=0 0.0150(0.0101)  0.0730(0.0156)  0.1289(0.0212)
(with v=0.1 0.0239(0.0165)  0.0747(0.0169)  0.1295(0.0191)
tuning set) v=0.2 0.0247(0.0162)  0.0753(0.0163)  0.1283(0.0183)
v=05 0.0243(0.0147)  0.0729(0.0138)  0.1254(0.0161)

v=1 0.0222(0.0128)  0.0707(0.0130)  0.1224(0.0148)

v=2 0.0186(0.0113)  0.0673(0.0107)  0.1176(0.0107)

v=>5 0.0137(0.0080)  0.0620(0.0087)  0.1112(0.0072)

v =10 0.0107(0.0069)  0.0593(0.0066)  0.1091(0.0069)

v =50 0.0100(0.0073)  0.0586(0.0059)  0.1080(0.0062)

BSVM (both X and v tuned)  0.0107(0.0069)  0.0586(0.0059)  0.1113(0.0075)
BCM 0.0095(0.0066)  0.0576(0.0053)  0.1079(0.0062)
RSVM s=—1 0.0150(0.0103)  0.0649(0.0099)  0.1169(0.0136)
s=0 0.0161(0.0110)  0.0700(0.0136)  0.1225(0.0154)

Bayes Error

0.00

0.05

0.10

Example 1. The data are generated as follows. First,
(x1,22) is sampled from a square {(z1,22) : —V2 < 2, +
Ty < V2,-V2 < x — x5 < \/5} Then, set y = 1 if
x1 + 22 > 0 and y = —1 otherwise. To illustrate the ef-
fect of outliers, we randomly flip the class membership of
0%, 5%, and 10% of data. A typical example of training
data set and the resulting BSVM boundaries are plotted in
left panel of Fig. 6. The corresponding solution paths of w
are provided in the right panel of Fig. 6. Interestingly, the
solution doesn’t change once the value v gets sufficiently
large. Note that performance of the RSVM is pretty good
as well especially when there are outliers, but the BSVM
with larger v works better.

Test error results are summarized in Table 1. Regarding
to the effect of v, a larger v produces better results. This is
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not surprising because of the data structure of this example.
Because the data points are aligned quite parallel to the true
boundary, the observations far from the boundary reflects
the overall structure of the data, resulting in favor to the
BSVM with high v which uses information from those data
far from the boundary. The BSVM with both A and v tuned
gives reasonable performance, which is close to the result of
a large v. As the limit of the BSVM, the BCM gives the best
performance in this example.

Example 2. We generate equal numbers of data points
for class 1 and class —1. For class 1, 40%, 40%, and 20%
of the observations are generated from N((1,0.5)T, o21),
N((-=3,0.5)T,02I), and N((0,1)T, %), respectively, where I
is 2 X 2 identity matrix and ¥ = diag((40)?, (¢/3)?). For



Table 2. Testing errors of the simulated Example 2

Table 3. Testing errors of the real data example in

Standard deviation Section 6.2.
Method c=0.3 c=05 Method Testing errors
BSVM v=0 0.0052(0.0046) 0.0574(0.0177) BSVM v=0 0.0203(0.0170)
(with v=0.1 0.0055(0.0048) 0.0695(0.0212) v=0.1 0.0174(0.0178)
tuning set) v=0.2 0.0060(0.0054) 0.0749(0.0197) v=20.2 0.0145(0.0181)
v=05 0.0083(0.0059) 0.0857(0.0176) v =05 0.0145(0.0181)
v=1 0.0107(0.0060) 0.0954(0.0148) v=1 0.0145(0.0181)
v=2 0.0150(0.0075) 0.1073(0.0163) v=2 0.0145(0.0181)
v=>5 0.0233(0.0100) 0.1164(0.0128) v=25 0.0145(0.0181)
v =10 0.0265(0.0108) 0.1212(0.0131) v =10 0.0145(0.0181)
v =50 0.0288(0.0097) 0.1231(0.0139) v =>50 0.0145(0.0181)
BSVM (both A and v tuned) 0.0060(0.0054) 0.0574(0.0177) BSVM (both A and v tuned) 0.0174(0.0178)
BCM 0.0267(0.0114) 0.1214(0.0174) BCM 0.0145(0.0181)
RSVM s=—1 0.0052(0.0045) 0.0528(0.0126) RSVM s=-1 0.0203(0.0170)
5=0 0.0039(0.0018) 0.0517(0.0121) 5=0 0.0203(0.0170)

Bayes Error

0.000159

0.022104

class 2, 40%, 40%, and 20% of the observations are gen-
erated from N((3,-0.5)T,02%I), N((—1,-0.5)T,02I), and
N((0,—-1)T,X). We use two different values of o, 0.3 and
0.5, and a typical example of the data when ¢ = 0.3 is plot-
ted in Fig. 4. As shown in Table 2, the results are opposite
to Example 1. The smaller values of v yield better results.
This is not surprising considering the nature of this dataset.
Since the information about observations near the boundary
is critical for classification in this dataset, it is better to use
more information about those observations. If we use large
v, the data far from the boundary pull the decision bound-
ary towards them, delivering a flat decision boundary which
does not reflect well the data structure around the bound-
ary. Notice that the standard SVM (BSVM with v = 0),
the BSVM with both A and v tuned, and the RSVM work
reasonably well for this example.

6.2 Real data

In this section, we apply the BSVM and BCM to the
lung cancer data described in [14]. In this data set, there
are 12,625 genes with 17 normal subjects and 188 lung can-
cer patients. We first filter the genes using the ratio of the
sample standard deviation and sample mean of each gene
to obtain 316 genes. Then we standardize the genes so that
each gene has sample mean 0 and sample standard deviation
1. We randomly divide subjects into three groups of train-
ing, tuning, and testing sets with the sample sizes 68, 68,
and 69 respectively, and we build a model for each value of
A using the data in training set. Then A is selected based on
its performance on the tuning set by a grid search. Using the
model with the selected A, the misclassification rate on the
testing set is calculated. This whole procedure is repeated
for 10 times.

The results are reported in Table 3. As shown in the table,
the BSVM with a large v and BCM perform slightly better
than the standard SVM, while the RSVM does not improve

the standard SVM. This may be due to the nature of this
data set. However, the difference is not significantly large.

7. DISCUSSION

In this article, we propose the BCM as an alternative
classifier to the SVM. To connect the BCM with the SVM,
we study the BSVM which builds a continuous path be-
tween them. Moreover, we have shown Fisher consistency
and asymptotic distributions of the solution of the BSVM.
For computational implementation, we derive the entire so-
lution path of the BSVM with respect to v.

We have shown several numerical examples to illustrate
the effect of v. Our results indicate that the choice of v is in-
deed important for the performance of the BSVM. Although
one may treat v as a tuning parameter, it will be more de-
sirable to have a more efficient approach to select v. One
possibility is to derive the GACV curve with respect to v
and choose the value of v which minimizes the GACV.

The BCM has a nice interpretation and performs well
in many situations. However, its linear loss function may
emphasize too much on the correctly classified observations
comparing to wrongly classified observations. Hence, one can
consider to modify the loss function form of the BCM to
reduce the loss imposed on correctly classified data. Further
investigation is necessary.

APPENDIX
Proof of Theorem 1
Let f = f(z), p = P(z), and A(f) = E[g(Y f(X)|X =

x]. First, we show that the minimizer f* of A(f)ison [-1,1].
When f > 1, A(f) = po(f — 1)+ (1 - p)(1+ J) > 2(1 — p) =
A(1). Similarly, When fF< -1, AfH)=p0-H+@1Q-
pv(—f —1) > 2p = A(-1). Thus, f* € [-1,1]. For f €
[=1,1], A(f) = p(1=f)+(1=p)(1+f) = (1-2p) f+1. Hence
f = 1 minimizes A(f) if p > 1/2, and otherwise, f = —1
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minimizes A(f). Therefore, argminy A(f) = sign[p — 1/2].
This completes the proof. O

Proof of Theorem 2

It is easy to see that f; < k—1for [ =1,...,k. Thus,
one can show that the problem reduces to

k
(34) maxy | Pi(@)fi(@)
=1

k
s.t. Zfl(:c)zo;—lSfl(w)gk—LW.
=1

Thus, the solution satisfies fj(z) = k — 1 if j =
argmax; P;(z) and —1 otherwise. O

Proofs of Theorem 3 and Theorem 4

First we give several lemmas that we need to prove the
theorems. We remove the proofs of the lemmas to save space.
Lemma 1 guarantees that there is a finite minimizer of
Q(B). Lemmas 2 and 3 establishes s(3) and H(3), which are
considered first and second derivatives of Q(3), respectively.

Lemma 1. Suppose that A1 and A2 are satisfied. Then
Q(B) — oo as ||B|| — oo and the minimizer 3" exists.

Lemma 2. Suppose that A1 is satisfied. If 3, # 0, then

oQ(B) _ _
forj=0,...,d.
Lemma 3. Suppose that A1 is satisfied. If 3, # 0, then
’QB) _
98,08, O

for j,k=0,...,d.

Lemma 4. Suppose that A1 and A3 are satisfied. Then
8 #o.

The following lemma establishes the lower bound of
H(B").
Lemma 5. Suppose A1, A3, and A4 are met. Then,

BTH(B*)B > (1+v)C4|B?,

where Cy may depend on B3*.

Lemma 6. Assume A1-Aj are satisfied. Then Q(B) has
a unique minimaizer.

With the lemmas in place, we are now ready to prove
Theorems 2 and 3. For 8 = (0y,0,)7 € R define

An(8) =n (q)\,n (ﬂ* + %) - QA,n<ﬂ*)>

296 S. Y. Park and Y. Liu

and
T,(6) = EA,(0).

By Taylor series expansion,

£,(0) = n <Q <B* n %) - Q(ﬁ*))
+ 2 (10417 +2vmp 76,

=20 H@)0 + 5 (10417 +2vnp "6,
where 3 = B* + (t/\/n)@ for some 0 < t < 1. Define
Djk(a) = H(ﬁ* + a)jk + H(ﬂ*)jk for 0 < j,k < d. Be-
cause H(B) is continuous in 3, there exists §; > 0 such
that ||af < 01 implies |Djp(a)] < € for any e > 0
and 0 < j,k < d. Then, for sufficiently large n such that
[I(t/+/1)8] < b1, we have

0" (H(B) - H(B) 6] < 3 10,1161
7,k

t
Dis (50)
<) 105116k
ik
< 261”0H27

resulting
Lot L7 %
50 H(B)6 = 50" H(B")0 +o(1).
Considering A = o(n~1/?), we have
1 T *
I,.(0)= 50 H(B")8 + o(1).

Now, let

n

LEEDY (—wu V(X BTV
oY (X B) - 1)1@-5@-).

Observe that E(W,) = S(8*) = 0 and E(W,W.) =
n * * v w1
i Bl((1=Y f(X 33 87)) +0* (Yif (X35 87)—1)) X X |.

Hence, by central limit theorem, we have
1

\/ﬁWn — N(0,nG(B"))

in distribution.
Now, we define

Rin(0) = g(Yif(Xi; 8" +6/vn)) — g(Yif(Xi;87))
+ (1 -Yif(X;8%))Yif(Xi;60/y/n)
—op(Yif(X58%) = 1)Yif(X4;0/vn),



which gives

—1(0) + WO/ 4 S (Ren(0)

i=1

If we let z = Y f(Xi; 8" + 6//n) and a = Y; f(X;87),
we can write
Rin(0) = g(2) —g(a) + Ha < 1}(z — a) —vl{a > 1}(z — a)
=I{z<1}1-2)+I{z > 1}v(z —1)
—Ha<1}(1—a)—I{a>1}v(a—1)
+I{a<1}(z—a)—I{a>1}v(z —a)
=I{z<1}1—-2)+I{z > 1}v(z —1)
+H{a<1}Hz—-1)—I{a>1}v(z—1)
<1 -Ha<1))(-2)
+ [I{z>1} —I{a>1}uv(z - 1)
(a—2)I{z<1l,a>1}4+v(z—a)I{z>1,a <1}
max{1,v}|z — a|I{|1 —a|] < |z —al|}.

A (0) — ER;.(9)).

<
<

Thus, we have

|Ri . (0)]
< max{1, v} (|f (X 0)/VR) 1y, 1(x1:8%) <1 £ (X:0)|/ v}

resulting

Z E|R; ,(6) — ER; ,,(6)|?

n

= > _[B(Rin(0))° = (ERi.n(6))’]
< 3 BB (0))

=1
< ZE[maX{l,v }‘ NG

X I{IlYif(Xi;ﬁ*)<f(X;9)|/\/ﬁ}]

IN

max{17v2}|o||2E[(1 LIxP)

I{Il Yif (X387 |<y/ 1411 X 12 |9|/\/_}]

Note that A1 implies that E(||X|?) < oo. Thus, for any
€ > 0, there exists Cs such that E[(1+ || X ||*) I x| >cs}] <
€/2. Observe

[ L+ 1X17) {|1—w<xi;a*>|s\/1+|X|2|e|/ﬁ}}
< B0+ IXIP)Tgxcisc)|

+(1+ P11 - Yif (X5 87| < \/1+C216]/v/n)

The second term (1 + )P(]1 — Y f(X;8%) <
V14 C2[|6]|/y/n) goes to zero as n — oo because of Al.
Thus, we have ;| E|R; »(0) —ER; ,,(6)|> — 0 as n — .
Hence, we can write

An(8) =T (0) + W0/ +op(1).

Now, we define n,,(0) = —H(8")"'W,,//n. Using Con-
vexity Lemma in [17], we have

LT H (B )0 + 1 (6),

An(a) = 2

1 x
5(0_7’71)TH(16 )(O_nn)_
where, for each compact set K € R,

sup [rn(6)] — 0

eK
in probability. Since m,, converges in distribution, there ex-
ists a compact set K which contains B, where B, is a closed
ball with center n,, and radius € with probability arbitrarily
close to one. This gives

(35) A, = sup |r,(0)] — 0

0€B.

in probability. Now consider the outside of the ball B.. Writ-
ing @ =mn,, +yu and 0" = n,, + eu with v > € and a unit
vector u, Lemma 6 and convexity of A,, gives

EAn(H) + (1 - %) An(ny,)

v
> A (67)
1
> 5(0* 7nn)TH(ﬁ*)(0* 77]71) nTH(ﬂ*)ann
> %62 + An(n,) — 24,

Thus, we have

€

S(0,(6) = Aum)) = G

2 —2A,,
finally giving

An(0) > Ap(n,) + (%e —2A )

inf
16—n,[>e€

By (35), we can take A, so that %e? — 2A, > 0 with
probability tending to one. Therefore, the minimum of A,
cannot occur at any 6 with ||@ — n,,|| > e. Note that the

minimizer of A, is \/ﬁ([‘)’/\n — 3"). Hence we have
P(|Vn(Brn = B) =Ml > €) = 0

resulting
\/E(B)\,n - /6*) — N,
in probability. This completes the proof.
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