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Two oracle inequalities for regularized boosting
classifiers

Ingo Steinwart

We derive two oracle inequalities for regularized boosting
algorithms for classification. The first oracle inequality gen-
eralizes and refines a result from Blanchard et al. (2003),
while the second oracle inequality leads to faster learning
rates than those of Blanchard et al. (2003) whenever the
set of weak learners does not perfectly approximate the tar-
get function. The techniques leading to the second oracle
inequality are based on the well-known approach of adding
some artificial noise to the labeling process.
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1. INTRODUCTION

One often employed method of finding a classifier with
the help of empirical data D := ((x1, y1), . . . , (xn, yn)) ∈
(X × Y )n is that of regularized boosting, see e.g., [13]. In
this approach, a family (hi)i∈I of weak classifiers hi : X → R

is given, and, with the help of D, a weighted combination
fw∗ :=

∑
i∈I w∗

i hi is constructed. Here w∗ := (w∗
i )i∈I is a

real-valued family that satisfies

λ
∑
i∈I

|w∗
i | +

1
n

n∑
i=1

L(yi, fw∗(xi))(1)

< inf
w

(
λ

∑
i∈I

|wi| +
1
n

n∑
i=1

L(yi, fw(xi))
)

+ ε

for some regularization parameter λ > 0, some convex loss
function L, e.g. the logistic loss for classification, and some
numeric tolerance ε ≥ 0. The family of weak classifiers may,
e.g., be the output of some classification algorithms such
as neural nets, decision trees, or support vector machines.
In this case, boosting may be viewed as an alternative to
the often used parameter selection step required by these
algorithms. However, the family of weak classifiers may also
be a family of particular simple functions such as decision
stumps that are not output of a previous classification algo-
rithm. We refer to [13] for more information in this regard.
Moreover, recall that the regularization term was motivated
by the fact the early boosting methods such as AdaBoost

may overfit in the presence of label noise, see, e.g., again
[13] and the references therein. Another approach to resolve
this potential overfitting is early stopping, which has been
discussed by [21, 3].

In recent years boosting algorithms have been success-
fully applied in various application areas, such as opti-
cal character recognition, natural language processing, face
recognition, cancer detection, and text classification. We re-
fer again to the survey [13] for more applications and cor-
responding references. In this regard we note that a partic-
ularly nice feature of boosting algorithms is that basically
no assumptions on the family of weak classifiers need to
be made. In particular, the input space X is not required
to be a subset of R

d, which opens, like for support vector
machines, the possibility to deal with non standard data for-
mats. For support vector machines, however, this flexibility
is only possible, if a reasonable kernel on X is available,
which, at least in some circumstances, may be not the case.
In contrast to this, the boosting algorithm (1) does not need
such requirements on its base function class determined by
the family of weak learners, and hence it may be applicable
in potentially more situations. Last but not least, the opti-
mization problem (1) is convex in w, and hence regularized
boosting offers computational properties similar to those of
support vector machines. We refer yet another time to [13]
for a detailed list of references. Finally, some more informa-
tion on boosting, which complements [13], can be found in
[10].

For boosting methods based on optimization problems
related to (1), the articles [12, 6, 2, 21] establish both uni-
versal consistency and learning rates, where [6] considers
an algorithm that, up to a discretization and some minor
technical details, resembles (1). So far, however, consistency
and learning rates for the original approach described by (1)
have not been established. The first goal of this work is to
close this gap by establishing an oracle inequality for regu-
larized boosting based on (1). From this oracle inequality,
we then derive universal consistency and learning rates un-
der natural assumptions on the family (hi)i∈I and the data-
generating distribution P, where the learning rates match
those of [6] for the discretized version of (1). As already ob-
served in [6], these learning rates become better for the logis-
tic loss, if the posterior probability η of P is bounded away
from the levels 0 and 1, i.e., if there is noise in each label.
As a consequence, [6] suggested to add some artificial noise
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to the labels. Our second goal of this work is to establish an
oracle inequality for this approach. Here it turns out that, if
the family of weak classifiers approximates the target func-
tion in an optimal way, see Lemma 2.3 for a precise state-
ment of optimality, then this new oracle inequality leads to
the same learning rates as our first oracle inequality does.
In the absence of such perfect approximation, however, the
new oracle inequality always leads to faster learning rates.
Note that this better behavior is of particular interest, if the
used weak classifiers are the output of a classification algo-
rithm, since in this case perfect approximation can almost
never be guaranteed.

The rest of this work is organized as follows. In Section 2
we introduce all necessary concepts, present our two oracle
inequalities, and discuss some of their consequences includ-
ing consistency and learning rates. Section 3 contains all
proofs.

2. MAIN RESULTS

In the first part of this section, we introduce all necessary
notions for presenting our main results. Our first oracle in-
equality is then presented and discussed in Subsection 2.2,
while the second oracle inequality is considered in Subsec-
tion 2.3.

2.1 Preliminaries

In the following we write Y := {−1, 1}. Moreover, X
always denotes a complete measurable space and P a distri-
bution on X × Y . We call a measurable L : Y ×R → [0,∞)
a loss, and if there exists a ϕ : R → [0,∞) such that

L(y, t) = ϕ(yt), y ∈ Y, t ∈ R,

we say that L is a margin-based loss. In this case, we call ϕ
the representing function of L. Various loss functions used
in classification algorithms are margin-based, here we only
mention the hinge loss, the (truncated) least squares loss,
the logistic loss represented by ϕ(t) := ln(1 + exp(−t)) for
all t ∈ R, and the AdaBoost loss represented by ϕ(t) :=
exp(−t) for all t ∈ R. For some simple properties of these
losses we refer to [2] and [17, Chapter 2.3]. Moreover, we
need the classification loss Lclass : Y × R → [0,∞) defined
by

Lclass(y, t) := 1(−∞,0](y sign t), y ∈ Y, t ∈ R,

where sign 0 := 1 and 1A denotes the indicator function of
a set A. Clearly, Lclass, which is used to define the learning
goal of binary classification, is not margin-based.

In the following, we say that a loss L is (strictly) convex
or continuous, if and only if L(y, · ) : R → [0,∞) is (strictly)
convex or continuous for all y ∈ Y , respectively. While all
the margin-based losses considered above are both convex

and continuous, Lclass does not satisfy either of these prop-
erties. Furthermore, we say that a loss L is locally Lipschitz-
continuous if for all a ≥ 0 there exists a constant ca ≥ 0 such
that ∣∣L(y, t) − L(y, t′)

∣∣ ≤ ca |t − t′|

for all y ∈ Y and t, t′ ∈ [−a, a]. Moreover, for a ≥ 0, the
smallest such constant ca is denoted by |L|a,1. Finally, if we
have |L|1 := supa≥0 |L|a,1 < ∞, we call L Lipschitz contin-
uous. For margin-based losses, we refer to [17, Lemma 2.25]
for some simple connections between these notions. In par-
ticular, recall that convex, margin-based losses are always
locally Lipschitz-continuous. Finally, we say that a margin-
based loss L is k-times continuously differentiable, if its rep-
resenting function ϕ is k-times continuously differentiable.

Given a loss function L and a function f : X → R, we
often write L ◦ f for the function X × Y → [0,∞) defined
by

L ◦ f(x, y) := L(y, f(x)), y ∈ Y, x ∈ X.

Now let P be a distribution on X×Y . For a loss L : Y ×R →
[0,∞) we then define the L-risk of a measurable function
f : X → R by

RL,P(f)

:=
∫

X×Y

L
(
y, f(x)

)
dP(x, y)

=
∫

X

η(x)L
(
1, f(x)

)
+

(
1 − η(x)

)
L

(
−1, f(x)

)
dPX(x),

where PX denotes the marginal distribution of P, and
η(x) := P(y = 1|x), x ∈ X, the posterior probability of
P. Note that these definitions yield RL,P(f) = EPL◦f , and
depending on the situation we will use either of these no-
tations. Finally, if P is the empirical measure of a sample
set D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n of length n, we
usually write RL,D(f) := RL,P(f). Analogously, we denote
the empirical expectation with respect to D by ED.

Throughout this work the smallest possible L-risk

R∗
L,P := inf

{
RL,P(f)

∣∣ f : X → R measurable
}

is called the Bayes risk with respect to P and L. Fur-
thermore, a measurable function f∗

L,P : X → R with
RL,P(f∗

L,P) = R∗
L,P is called a Bayes decision function.1 For

example, it is well-known that f∗
Lclass,P

(x) = sign(2η(x)−1),
x ∈ X, is the Bayes decision function for the classification
loss. We usually call f∗

Lclass,P
the Bayes classifier.

In the following, we call a Banach space E that consists
of functions f : X → R a Banach function space (BFS)
over X, and we always denote the closed unit ball of E by

1Note, that unlike some other authors we demand that Bayes decision
functions are real-valued, rather than extended real-valued. However,
in Subsection 2.2, we will also briefly deal with extended real-valued
minimizers.
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BE . Clearly, reproducing kernel Hilbert spaces (RKHSs) are
Banach function spaces. In order to introduce another type
of BFSs we need the notation

‖(wi)i∈I‖�1(I) :=
∑
i∈I

|wi|,

where I is an at most countable and non-empty set, and
(wi)i∈I ⊂ R is an R-valued family over I. Clearly, the space

�1(I) :=
{
(wi)i∈I : ‖(wi)i∈I‖�1(I) < ∞

}
is a separable Banach space. With the help of this space,
the following lemma, whose proof can be found in Section 3,
introduces the type of BFSs we are most interested in.

Lemma 2.1. Let I be an at most countable and non-empty
set, and (hi)i∈I be a family of bounded functions hi : X → R

with ‖hi‖∞ ≤ 1 for all i ∈ I. We define

E :=
{

f : X → R
∣∣∃(wi)i∈I ∈ �1(I) with f =

∑
i∈I

wihi

}
,

where we note that the uniform boundedness of the family
(hi)i∈I ensures that the sum above converges absolutely for
every x ∈ X. Furthermore, for f ∈ E, we write

‖f‖E := inf
{∑

i∈I

|wi| : (wi)i∈I ∈ �1(I) with f =
∑
i∈I

wihi

}
.

Then (E, ‖ · ‖E) is a separable Banach function space that
consists of bounded functions and we have

‖f‖∞ ≤ ‖f‖E , f ∈ E.

Finally, if all hi, i ∈ I, are measurable, then E consists of
measurable functions.

Bounds on the generalization performance of regularized
empirical risk minimizers often include a complexity mea-
sure of the underlying function class. Since in this work we
will use average empirical entropy numbers as a complexity
measure, let us briefly recall the definition of entropy num-
bers. To this end, let (T, d) be a metric space and m ≥ 1
be an integer. Then the m-th (dyadic) entropy number of
(T, d) is defined by

em(T, d) = inf
{

ε > 0 : ∃s1, . . . , s2m−1 ∈ T such that

T ⊂
2m−1⋃
j=1

Bd(sj , ε)
}

,

where we use the convention inf ∅ := ∞. Moreover, if (T, d)
is a subspace of a normed space (E, ‖ · ‖) and the metric d
is given by d(x, x′) = ‖x − x′‖, x, x′ ∈ T , we write

em(T, ‖ · ‖) := em(T, E) := em(T, d).

Finally, if S : E → F is a bounded, linear operator between
the normed spaces E and F , we write

em(S) := em(SBE , ‖ · ‖F ).

Entropy numbers are closely related to the well-known cov-
ering numbers; in fact, both concepts are inverse to each
other modulo constants. We refer to, e.g., [17, Lemma 6.21
& Exercise 6.8] for precise statements and to [8] and [17,
Appendix A.5.6] for several properties of entropy numbers.
In the following, we are only interested in entropy numbers
that are computed with respect to the norm of an empirical
L2-space. To be more precise, let Z be a non-empty set and
D ∈ Zn be a finite Z-valued sequence of length n ≥ 1. For
Z → R, we then define

‖f‖2
L2(D) :=

1
n

n∑
i=1

|f(zi)|2 = ED|f |2,

and denote the corresponding Hilbert space of equivalence
classes by L2(D). Note that if E is the BFS introduced in
Lemma 2.1 and DX ∈ Xn, then em(id : E → L2(DX))
equals the m-th entropy number of the absolute convex hull
of the family (hi)i∈I , where id : E → L2(DX) denotes the
identity map that assigns to every f ∈ E the corresponding
equivalence class in L2(DX). By results from, e.g., [9, 7, 11,
15] the latter can be estimated from the entropy numbers of
the family (hi)i∈I .

2.2 An oracle inequality for regularized
boosting algorithms

In this subsection, we establish our first oracle inequality
for regularized boosting algorithms and discuss some of its
consequences.

Let us begin by formally introducing these learning meth-
ods.

Definition 2.2. Let E be a Banach function space over X
and L : Y × R → [0,∞) be a convex loss function. Given a
λ > 0 and an ε ≥ 0, we call a learning method that assigns
to every D ∈ (X × Y )n a function fD,λ : X → R such

(2) λ‖fD,λ‖E +RL,D(fD,λ) < inf
f∈E

(
λ‖f‖E +RL,D(f)

)
+ ε

an ε-approximate regularized boosting algorithm (ε-ARBA)
with respect to E and L.

Let us briefly check that the definition above matches
our notion of regularized boosting algorithms from the in-
troduction. To this end, we fix the BFS E introduced in
Lemma 2.1. For an w := (wi)i∈I ∈ �1(I), we further de-
fine fw :=

∑
i∈I wihi. By the definition of ‖ · ‖E we then

immediately obtain

λ‖fw‖E + RL,D(fw) ≤ λ
∑
i∈I

|wi| + RL,D(fw)
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for all w ∈ �1(I). Conversely, given an f ∈ E and an ε > 0,
there exists an w ∈ �1(I) with f = fw and ‖w‖�1(I) ≤
‖f‖E + ε, and hence we find

λ
∑
i∈I

|wi| + RL,D(f) ≤ λ‖fw‖E + RL,D(f) + ε.

From these two inequalities it is straightforward to check
that (2) is equivalent to (1). However, our definition of ε-
ARBAs is not restricted to the BFS of Lemma 2.1. Indeed, if
E is a separable RKHS, we obtain a support vector machine
(SVM) whose regularization term is not squared. Recall that
such SVMs have been recently investigated in [5, 16].

If the BFS E considered in (2) is separable and consists
of bounded measurable functions, it is easy to show by an
almost literal repetition of the proof of [17, Lemma 6.23]
that there exists a measurable version in the sense of [17,
Definition 6.2] that satisfies (2). In the following, we always
implicitly assume that we consider such a measurable ver-
sion.

We also need infinite sample versions of ε-ARBAs. To
introduce these, we fix a distribution P on X×Y and assume
that the BFS E over X consists of bounded measurable
functions. Then every fP,λ ∈ E satisfying

(3) λ‖fP,λ‖E + RL,P(fP,λ) < inf
f∈E

(
λ‖f‖E + RL,P(f)

)
+ ε

is called an infinite sample version of the ε-ARBA with re-
spect to E and L. Finally, we define the corresponding ap-
proximation error function A : [0,∞) → [0,∞) by

A(λ) := inf
f∈E

(
λ‖f‖E + RL,P(f)

)
−R∗

L,P, λ ≥ 0.

The following lemma collects some useful properties of the
approximation error function. Here we note that the impli-
cation from (5) to A(λ) ≤ cλ for all λ ≥ 0 was already
observed in [6].

Lemma 2.3. L : Y × R → [0,∞) be a convex loss, E be
a BFS over X that consists of bounded measurable func-
tions, and P be a distribution on X × Y . Assume that E
is sufficiently rich in the sense of inff∈E RL,P(f) = R∗

L,P.
Then the approximation error function A : [0,∞) → [0,∞)
is increasing, concave, and continuous. Moreover, we have
A(0) = 0 and

A(κ)
κ

≤ A(λ)
λ

, 0 < λ ≤ κ,(4)

A(λ) ≤ RL,P(0) −R∗
L,P, λ ≥ 0.

In addition, A( · ) is subadditive in the sense of

A(λ + κ) ≤ A(λ) + A(κ), λ, κ ≥ 0.

Moreover, for a constant c ≥ 0, we have A(λ) ≤ cλ for all
λ ≥ 0 if and only if we have

(5) inf
f∈cBE

RL,P(f) = R∗
L,P.

Finally, if there exists an h : [0, 1] → [0,∞) such that
limλ→0+ h(λ) = 0 and A(λ) ≤ λh(λ) for all λ ∈ [0, 1], then
we have A(λ) = 0 for all λ ≥ 0, and RL,P(0) = R∗

L,P.

Before we can present our first oracle inequality, we finally
need to assume a variance bound. To formulate the latter,
we fix a convex, margin-based loss L with L �= 0 and a dis-
tribution P on X × Y . We define ϕ(−∞) := limt→−∞ ϕ(t)
and ϕ(∞) := limt→∞ ϕ(t), where ϕ is the representing func-
tion of L, and extend L to Y × [−∞,∞] in the same way.
By the convexity of L it is then easy to show that there
exists a measurable function f∗

L,P : X → [−∞,∞] such that
RL,P(f∗

L,P) = R∗
L,P. Moreover, we can choose f∗

L,P such that
f∗

L,P(x) = ±∞ if and only if P(y = 1|x) ∈ {0, 1}. Let us fix
such an f∗

L,P. Then, we say that L satisfies a variance bound
for P, if there exists a constant c ≥ 1 such that

(6) EP

(
L◦f −L◦f∗

L,P)2 ≤ c ‖L◦f‖∞
(
EPL◦f −L◦f∗

L,P)

for all bounded measurable functions f : X → R. We refer
to [2] and [6] for various examples of margin-based losses,
including the logistic loss for classification and the AdaBoost
loss, that satisfy (6). In particular, recall [6, Lemma 19],
which provides an easy sufficient condition for (6) to hold.

With these preparations we can now present our first
main result that establishes an oracle inequality for approx-
imate regularized boosting algorithms.

Theorem 2.4. Let E be a separable Banach function space
over X that consists of bounded measurable functions and
whose norm satisfies ‖ · ‖∞ ≤ ‖ · ‖E. Moreover, let P be a
distribution on X × Y and L be a margin-based loss that is
convex and Lipschitz continuous with |L|1 ≤ 1. In addition,
assume that its representing function ϕ satisfies ϕ(0) ≤ 1.
We further assume that P and L satisfy the variance bound
(6). We fix an n ≥ 1 and further assume that there exist
constants a ≥ 1 and p ∈ (0, 1) such that

EDX∼Pn
X

em

(
id : E → L2(DX)

)
≤ am− 1

2p

for all m ≥ 1, where Pn
X denotes the product measure of

the marginal distribution PX on Xn. Then there exists a
constant K ≥ 1 only depending on p and c such that, for all
λ ∈ (0, 1] and τ ≥ 1 satisfying λn ≥ Kτ and λ1+pn ≥ a2pK,
every λ/2-ARBA with respect to E and L satisfies

Pn
(
D : λ‖fD,λ‖E +RL,P(fD,λ)−R∗

L,P ≥ 2A(λ)+λ
)
≤ e−τ ,

where Pn denotes the product measure of P on (X × Y )n.

Note that it is possible to derive a formula for the con-
stant K from the proof of Theorem 2.4. However, the for-
mula has a relatively complicated structure, and in addition,
we conjecture, that the resulting values for K are overly pes-
simistic. Consequently, we omit the details for the sake of
simplicity.
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One simple way to ensure the average empirical entropy
number assumption of Theorem 2.4 is to assume a uniform
empirical entropy number assumption. Recall that the lat-
ter type of assumption has been widely used in the litera-
ture. For example, for RKHSs, the smoothness of the cor-
responding kernel can ensure such an entropy bound, see,
e.g., [17, Theorem 6.26]. Moreover, for the BFSs considered
in Lemma 2.1, [2, 6] bound these entropy numbers in terms
of the VC-dimension of the family (hi)i∈I . Finally note that
although these approaches are easy to use, they may, how-
ever, be sometimes not tight. We refer to [17, Theorem 7.34]
for an example in this direction.

Let us now briefly illustrate the consequences of the
above oracle inequality for ε-ARBAs that uses the BFS of
Lemma 2.1. To this end, we fix a sequence (λn) ⊂ (0, 1]
such that λ1+p

n n ≥ a2pK for all sufficiently large n ≥ 1. For
example, we can choose λn := n− 1

1+p ln(n + 1) if we do not
have good estimates for the values of a and K. If the BFS E
is rich in the sense of inff∈E RL,P(f) = R∗

L,P for all distri-
butions P on X × Y , then the λn-ARBA is universally con-
sistent with respect to the risk RL,P. Moreover, if L is clas-
sification calibrated in the sense of [2], i.e. ϕ′(0) < 0, then
the λn-ARBA is also universally classification consistent. Fi-
nally, note that [17, Theorem 5.31], see also [6, Lemma 16],
shows that the richness assumption above is satisfied if E
is dense in L1(μ) for all distributions μ on X, and by [17,
Theorem 5.36] one can show that for many loss functions the
converse implication is also true. In particular, the logistic
loss for classification is such a loss.

Let us now assume that there exist constants c > 0 and
β ∈ (0, 1] such that A(λ) ≤ cλβ for all λ > 0. The sequence
(λn) considered above then yields the learning rate n− β

1+p

for the RL,P-risks of the ARBA. Recall that [2] showed that
this leads to the learning rate n− β

2+2p for the classification
risk. Moreover, if the distribution P satisfies Tsybakov’s
noise assumption [19], that is, if there exist constants c > 0
and q ∈ (0,∞] with

PX

(
{x ∈ X : |2η(x) − 1| < t}

)
≤ (c t)q, t ≥ 0,

this classification learning rate can be typically improved
to the rate n− β(q+1)

(1+p)(q+2) . We refer to [2] and [17, Chapter 3
& Chapter 8] for details. In any case, these learning rates
coincide with the learning rates established in [6] for certain
discretized versions of ARBAs, where we refer to [6, page
884] for the necessary translation of VC-dimension bounds
to entropy number bounds. Finally, [6, Corollary 9] shows
that these learning rates are asymptotically optimal if E
is built from decision stumps, the logistic loss is used, and
the function f∗

L,P : X → [−∞,∞] is of bounded variation.
Note that the latter implies that the posterior probability
η : X → [0, 1] is bounded away from zero and one and that
β = 1. In order to artificially enforce the former, [6] suggests
to add a coin flipping noise to the labels. In the following
subsection, we will establish an oracle inequality for this
approach, which, for β < 1, leads to improved learning rates.

2.3 Oracle inequalities for two-sided losses

As mentioned at the end of the previous subsection, our
goal in this subsection is to establish an oracle inequality
that addresses the idea of adding a coin flipping noise to
the labeling process. The key technique to establish this or-
acle inequality is to translate this additive noise into a loss
function that enjoys additional properties. With the help of
these properties we can then refine our analysis in the case
β < 1.

Let us begin by introducing some more notions. Following
[17], we say that a loss L can be clipped at M > 0 if, for all
(y, t) ∈ Y × R, we have

L(y, �t ) ≤ L(y, t),

where �t denotes the clipped value of t at ±M , that is

(7) �t :=

⎧⎪⎨
⎪⎩
−M if t < −M

t if t ∈ [−M, M ]
M if t > M.

Moreover, we say that L can be clipped if it can be clipped
at some M > 0. Informally speaking, losses that can be
clipped, allow us to restrict our consideration to prediction
values between −M and M . With the help of [17, Lemma
2.23] it is easy to check that a margin based loss L can be
clipped if and only if its representing function ϕ has a global
minimum. If ϕ is continuous, we can then choose M to be
the smallest value at which this global minimum is attained.

The following lemma gives a simple criterion when a con-
vex, margin-based loss has a Bayes decision function for all
distributions P on X × Y .

Lemma 2.5. Let L be a convex, margin-based loss. Then L
can be clipped, if and only if there exists a Bayes decision
function f∗

L,P : X → R for all distributions P on X × Y .
In this case, there always exists a Bayes decision function
f∗

L,P : X → [−M, M ], where M > 0 is a real number at
which L can be clipped.

Obviously, neither the logistic loss nor AdaBoost loss can
be clipped, and it is well-known, that they fail to have a
Bayes decision function for exactly the distributions P that
have a noise-free region for the labeling process, i.e.,

(8) PX({x : η(x) = 0 or η(x) = 1}) > 0.

On the other hand, if we have a convex, margin-based loss
L it is not hard to see that there exists a Bayes decision
function f∗

L,P for all distributions P on X × Y that do not
satisfy (8), i.e., for distributions that are noisy everywhere.
In addition, this Bayes decision function is PX -almost surely
determined if L is strictly convex. For example, for the lo-
gistic loss, we have

f∗
L,P(x) = ln

η(x)
1 − η(x)

, x ∈ X,
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and for the AdaBoost loss we have f∗
L,P(x) = 1

2 ln η(x)
1−η(x) ,

x ∈ X. Clearly, if η(x) approaches 0 or 1, these Bayes deci-
sion functions become unbounded as we have already used at
the end of Subsection 2.2. Since by [17, Corollary 3.62] every
reasonable learning algorithm based on these loss functions
has to approximate f∗

L,P, we see that such algorithms have
to approximate potentially unbounded functions. In order
to avoid such a behavior, a commonly used trick, see e.g.,
[20, page 2280] and [6, page 873], is to add some noise to
the labeling process. More precisely, if P is a distribution on
X × Y with marginal distribution PX and posterior proba-
bility η, and 0 < δ < 1/2, we can define a new distribution
P(δ) on X × Y by P(δ)

X := PX and

η(δ)(x) := (1 − δ)η(x) + δ
(
1 − η(x)

)
, x ∈ X.

In other words, P(δ) is constructed by adding some noise
of order δ to the posterior probability η of P. Now note
that we have 1/2 < η(δ)(x) < η(x), if η(x) > 1/2, and
η(x) < η(δ)(x) < 1/2, if η(x) < 1/2. Consequently, the
Bayes classifiers of both distributions P and P(δ) coincide.
Moreover, it is easy to see that δ ≤ η(δ)(x) ≤ 1− δ, i.e., P(δ)

is noisy everywhere. In particular, all convex and margin-
based losses have a Bayes decision function for P(δ).

Our next goal is to encode the above construction into a
loss function. To this end, we need the following definition.

Definition 2.6. Let L be a loss function and 0 < δ < 1/2.
Then the δ-two-sided version Lδ : Y × R → [0,∞) of L is
defined by

Lδ(y, t) := (1 − δ)L(y, t) + δL(−y, t), y ∈ Y, t ∈ R.

Note that, for every distribution P on X × Y and every
measurable f : X → R, a straightforward calculation, see
(17) and (18), shows

(9) RLδ,P(f) = RL,P(δ)(f).

In other words, adding some noise to the posterior probabil-
ities is, in terms of the learning goals described by the risk
functionals, equivalent to using the two-sided version of a
loss function. However, in terms of algorithmic design, there
may be a substantial difference in both approaches. Indeed,
a straightforward implementation of using P(δ) would indi-
vidually flip each label yi of the training set with probability
δ whereas an algorithm based on Lδ pretends to see yi with
probability (1 − δ) and −yi with probability δ, simultane-
ously.

Before we present our oracle inequality for algorithms
based on Lδ we need a few more preparations. Let us begin
with the following lemma that collects some simple, yet use-
ful properties of two-sided versions of margin based losses.

Lemma 2.7. Let L be a convex, margin-based loss and δ a
real number with 0 < δ < 1/2. Then the following statements
are true for the δ-two-sided version Lδ of L:

i) Lδ is Lipschitz continuous, or strictly convex if and only
if L is.

ii) Lδ can be clipped at

(10) Mδ := inf
{
t ∈ R : Lδ(1, t) ≤ Lδ(1, s) ∀s ∈ R

}
.

iii) For every probability measure P on X × Y there exists
a Bayes decision function f∗

Lδ,P : X → [−Mδ, Mδ]. In
addition, if L is strictly convex, f∗

Lδ,P is uniquely deter-
mined and we have

f∗
Lδ,P = f∗

L,P(δ) .

With the help of the lemma above we can now introduce
the learning methods we consider in this subsection.

Definition 2.8. Let E be a Banach function space over X,
L : Y ×R → [0,∞) be a convex, margin-based loss function,
and Lδ its δ-two-sided version for some 0 < δ < 1/2. Given
a λ > 0 and an ε ≥ 0, we call a learning method that assigns
to every D ∈ (X × Y )n a function fD,λ : X → R such

(11) λ‖fD,λ‖E +RL,D(
�
fD,λ) < inf

f∈E

(
λ‖f‖E +RL,D(f)

)
+ε

a clipped ε-approximate regularized boosting algorithm (ε-
CARBA) with respect to E and L. Here, the clipping oper-
ation �· is with respect to Mδ defined in (10).

CARBAs are a particular example of more general,
clipped regularized empirical risk minimizers introduced in
[17, Chapter 7.4]. We refer to this chapter for a discussion
of these learning methods including the existence of mea-
surable versions.

Before we can establish an oracle inequality for CARBAs
we finally need to present a variance bound for two-sided
losses. This is done in the following proposition, which ex-
tends [6, Lemma 19].

Proposition 2.9. Let L be a strictly convex, twice contin-
uously differentiable, classification calibrated, and margin-
based loss. We fix a δ with 0 < δ < 1/2 and define Mδ by
(10). We further write

C̃L(δ) :=

sup
t∈[−Mδ,Mδ]

2ϕ′(t)ϕ′(−t)(ϕ′(t) + ϕ′(−t))
ϕ′(−t)ϕ′′(t) + ϕ′(t)ϕ′′(−t)

− ϕ(t) − ϕ(−t)

and CL(δ) := max{0, C̃L(δ)}. Then for all distributions P
on X × Y and all measurable functions f : X → [−Mδ, Mδ]
we have

EP

(
Lδ ◦ f − L ◦ f∗

Lδ,P

)2

≤
(
ϕ(Mδ) + ϕ(−Mδ) + CL(δ)

)
EP

(
Lδ ◦ f − L ◦ f∗

Lδ,P

)
.

Note that the strict convexity and differentiability of ϕ is
actually only needed on the interval [−Mδ, Mδ], if the Bayes
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decision function f∗
Lδ,P is uniquely determined. Moreover,

the same is true for the following theorem, which presents
the already announced oracle inequality for CARBAs.

Theorem 2.10. Let E be a separable Banach function space
over X that consists of bounded measurable functions and
whose norm satisfies ‖ · ‖∞ ≤ ‖ · ‖E. Moreover, let P be a
distribution on X × Y and L be a margin-based loss that is
strictly convex, twice continuously differentiable, classifica-
tion calibrated and Lipschitz continuous with |L|1 ≤ 1. In
addition, assume that its representing function ϕ satisfies
ϕ(0) ≤ 1. We fix an n ≥ 1 and further assume that there
exist constants a ≥ ϕ(−Mδ) and p ∈ (0, 1) such that

(12) EDX∼Pn
X

em

(
id : E → L2(DX)

)
≤ am− 1

2p

for all m ≥ 1. Then there exists a constant K ≥ 1 only
depending on L, δ, and p such that, for all λ ∈ (0, 1], ε ≥ 0,
and τ > 0, every ε-CARBA with respect to E and L satisfies
with probability Pn not less than 1 − e−τ

λ‖�fD,λ‖E + RLδ,P(fD,λ) −R∗
Lδ,P

< 15A(λ) + K
( a2p

λ2pn

) 1
1−p

+ K
τ

n
+

30A(λ)
λn

+ 3ε,

where the approximation error function is with respect Lδ.

Let us now briefly compare the consequences of Theo-
rem 2.10 with those of Theorem 2.4. To this end, we again
consider a BFS E defined by Lemma 2.1. Obviously, The-
orem 2.10 yields consistency of λn-CARBAs if we fix a se-
quence (λn) ⊂ (0, 1] with λn → 0, λ2p

n n → ∞, and λnn ≥ 1
for all n ≥ 1. Moreover, if we assume that there exist con-
stants c ≥ 0 and β ∈ (0, 1] such that A(λ) ≤ cλβ for all
λ > 0, then [17, Lemma A.1.7] shows that λn := n−ρ, where2

ρ := min
{

1,
1

β(1 − p) + 2p

}
,

asymptotically minimizes the right-hand side of the oracle
inequality of Theorem 2.10. Obviously, this yields the learn-
ing rate n−ρβ with respect to the risk RLδ,P, and by (9),
this rate can be immediately translated into a learning rate
for binary classification. Analogously to the learning rates
derived from Theorem 2.4, these learning rates can be fur-
ther improved if P, or equivalently P(δ), satisfies a Tsybakov
noise assumption.

Formally, the learning rates n−ρβ are faster than those
derived from Theorem 2.4, whenever β < 1, while for β = 1
both learning rates coincide. However, strictly speaking we
cannot compare both learning rates since they are based on
assumptions on different approximation error functions. In
this direction we note that the decision stumps considered
2Note that this choice of λn obviously requires knowledge on β, which,
in general, is not available. However, since Lδ can be clipped, the
adaptive training/validation approach of [17, Chapter 7.4] can be easily
modified to CARBAs.

by [6] only yield β = 1 for the logistic loss L if x �→ ln η(x)
1−η(x)

has bounded variation. In particular, η(x) must be bounded
away from both 0 and 1. On the other hand, it is easy to
check that the approximation error function for a two-sided
version Lδ of L satisfies A(λ) ≤ cλ for a constant c ≥ 0 and
all λ > 0, if x �→ η(x) has bounded variation. In particular,
it is not necessary that η(x) is bounded away from zero
and one, i.e., the faster learning rate of Theorem 2.10 holds
under weaker assumptions on P. We conjecture, that this
relationship between the two approximation error functions
holds in most situations.

Finally, let us briefly consider a concrete situation in
which Theorem 2.10 yields asymptotically optimal rates
for β < 1. To this end, we pick a margin based, strictly
convex, twice continuously differentiable, classification cali-
brated and Lipschitz continuous loss L represented by some
ϕ : R → [0,∞). In addition, we assume that ϕ(t) ≤ (1− t)2

for all t ∈ R and ϕ(t) = (1 − t)2 for all t ∈ [−1, 1]. If Lls

denotes the least squares loss, it is then easy to check that
R∗

L,P = R∗
Lls,P

and RL,P(f) ≤ RLls,P(f) for all distribu-
tions P on X × Y and all f : X → R. Furthermore, let
X be the open unit ball of R

d and W s(X) be the Sobolev
space of order s over X, where we assume that s > d/2.
By Sobolev’s embedding theorem, see [1, Theorem 7.34],
this space consists of bounded continuous functions and
the embedding id : W s(X) → Cb(X) is continuous, where
Cb(X) denotes the space of bounded continuous functions
f : X → R. Let us fix a countable and dense family (hi)i∈I

in the sphere {f ∈ W s(X) : ‖f‖W s(X) = 1}. Then we have
‖hi‖∞ ≤ ‖ id : W s(X) → Cb(X)‖ for all i ∈ I, and hence
the family (hi)i∈I satisfies the assumptions of Lemma 2.1
modulo a normalization constant. Let E be the correspond-
ing BFS defined in Lemma 2.1. Since the absolute convex
hull of {hi : i ∈ I} is contained in the closed unit ball of
W s(X), we then obtain, see [4] or [17, Appendix A.5.6],
that

em

(
id : E → Cb(X)

)
≤ em

(
id : W s(X) → Cb(X)

)
≤ c1 m−s/d

for all m ≥ 1, where c1 ≥ 1 is some constant. Consequently,
(12) is satisfied for p = d

2s . Let us now assume that there is
a k > 0 with s−d < k < s such that the regression function
f∗

Lls,P
given by x �→ 2η(x) − 1 satisfies f∗

Lls,P
∈ W k(X).

From this it is easy to conclude that f∗
Lls,P(δ) ∈ W k(X). In

addition, our assumptions on L ensure

RLδ,P(f) −R∗
Lδ,P ≤ RLls,P(δ)(f) −R∗

Lls,P(δ)(13)

= ‖f − f∗
Lls,P(δ)‖2

L2(PX)

for all square integrable f : X → R. If PX is absolutely
continuous with respect to the uniform distribution and its
density is bounded away from zero and infinity, the results
in [14], see also [17, Chapter 5.6 and Exercise 5.11], can then
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be used to show that

inf
f∈W s(X)

(
λ‖f‖W s(X) + RLls,P(δ)(f)

)
−R∗

Lls,P(δ) ≤ c2λ
2k

s+k

for all λ > 0, where c2 > 0 is some constant. In addition,
it can be shown that the infimum on the left-hand side is
attained by an fP,λ �= 0 with ‖fP,λ‖W s(X) ≤ λ−1. Given an
ε > 0 there then exists an i ∈ I with∥∥∥ hi − ‖fP,λ‖−1

W s(X)fP,λ

∥∥∥
W s(X)

≤ λε

and, for h	 := ‖fP,λ‖W s(X)hi, we hence conclude that
√
RLδ,P(h	) −R∗

Lδ,P

≤ ‖h	 − f∗
Lls,P(δ)‖L2(PX)

≤ ‖h	 − fP,λ‖L2(PX) + ‖fP,λ − f∗
Lls,P(δ)‖L2(PX)

≤ ε +
√
RLls,P(δ)(fP,λ) −R∗

Lls,P(δ) ,

where in the first estimate we used (13) and in the last
estimate we used ‖fP,λ‖W s(X) ≤ λ−1 and ‖ · ‖L2(PX) ≤
‖ · ‖W s(X). In addition, we have ‖h	‖E ≤ ‖fP,λ‖W s(X), and
therefore we find

λ‖h	‖E + RLδ,P(h	) −R∗
Lδ,P

≤ λ‖fP,λ‖W s(X) +
(

ε +
√

RLls,P(δ)(fP,λ) −R∗
Lls,P(δ)

)2

.

Letting ε → 0, we conclude that A(λ) ≤ c2λ
2k

s+k for all λ > 0,
and hence Theorem 2.10 yields the learning rate n− 2k

2k+d .
Since for f : X → [−1, 1] we have RL,P(f) = RLls,P(f), this
rate is asymptotically optimal.

3. PROOFS

Proof of Lemma 2.1. We obviously have ‖f‖E ≥ 0 for all
f ∈ E, and it is also obvious that ‖f‖E = 0 if and only if f =
0. Now let f, g ∈ E have the representations f =

∑
i∈I wihi

and g =
∑

i∈I vihi, where we note that our assumptions
guarantee that the sums converge pointwise absolutely. We
then find f + g =

∑
i∈I(wi + vi)hi, and hence we conclude

‖f + g‖E ≤
∑
i∈I

|wi + vi| ≤
∑
i∈I

|wi| +
∑
i∈I

|vi|.

Considering the infimum over all representations of f and
g, we then obtain the triangle inequality for ‖ · ‖E . The
homogeneity of ‖ · ‖E , i.e., ‖αf‖E = |α| · ‖f‖E can be shown
analogously.

Let us now show that ‖ · ‖E is complete.3 To this end, we
fix sequence (fj)j≥1 ⊂ E with

∑∞
j=1 ‖fj‖E < ∞. Moreover,

3One could shorten this part of the proof by using the fact the Ψ :
�1(I) → E defined by (wi)i∈I �→

∑
i∈I

wihi is, by definition, a metric

surjection. However, we preferred to present an elementary proof.

for all j ≥ 1, we fix a representation

fj =
∑
i∈I

w
(j)
i hi

such that
∑

i∈I |w
(j)
i | ≤ ‖fj‖E + 2−j . For i0 ∈ I we then

have

(14)
∞∑

j=1

|w(j)
i0

| ≤
∞∑

j=1

∑
i∈I

|w(j)
i | ≤

∞∑
j=1

(
‖fj‖E + 2−j

)
< ∞,

and hence wi0 :=
∑∞

j=1 w
(j)
i0

does exist. Moreover, by ig-
noring the first inequality on the left-hand side of (14), we
further see that (14) yields (wi)i∈I ∈ �1(I). Let us now de-
fine f :=

∑
i∈I wihi ∈ E, where we note that this sum also

converges pointwise absolutely since (wi)i∈I ∈ �1(I) and all
hi are assumed to be bounded functions. Consequently, for
all x ∈ X, we have

f(x) −
n∑

j=1

fj(x) =
∑
i∈I

(
wi −

n∑
j=1

w
(j)
i

)
hi(x)

=
∑
i∈I

∞∑
j=n+1

w
(j)
i hi(x),

and from this we deduce

∥∥∥ f −
n∑

j=1

fj

∥∥∥
E
≤

∑
i∈I

∣∣∣
∞∑

j=n+1

w
(j)
i

∣∣∣ ≤
∞∑

j=n+1

∑
i∈I

∣∣w(j)
i

∣∣

≤
∞∑

j=n+1

(
‖fj‖E + 2−j

)

≤ ε

for all sufficiently large n ∈ N. In other words, we have found
f =

∑∞
j=1 fj , where the convergence is with respect to ‖·‖E .

From this we easily deduce the completeness of ‖ · ‖E .
The separability of E is trivial, and so is the fact that

the measurability of all hi implies the measurability of all
f ∈ E.

Finally, in order to show that E consists of bounded func-
tions, we fix an f ∈ E and a representation f =

∑
i∈I wihi.

We then obtain

‖f‖∞ =
∥∥∥ ∑

i∈I

wihi

∥∥∥
∞

≤
∑
i∈I

|wi|

and by taking the infimum over all representations, we thus
find ‖f‖∞ ≤ ‖f‖E .

3.1 Proofs of the results related to
Theorem 2.4

Proof of Lemma 2.3. Besides the equivalence related to
(5) all assertions follow by a literal repetition of the proof of
[17, Lemma 5.15]. Let us now assume that we have A(λ) ≤
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cλ for a constant c > 0 and all λ > 0. We fix a λ > 0 and an
ε > 0, and define δ := εcλ. There then exists an fλ,ε such
that

λ‖fλ,ε‖E ≤ λ‖fλ,ε‖E + RL,P(fλ,ε) −R∗
L,P ≤ A(λ) + δ

≤ (1 + ε)cλ,

and hence we conclude fλ,ε ∈ (1 + ε)cBE . For fixed ε > 0
and λ → 0 we further conclude RL,P(fλ,ε) → R∗

L,P, and
therefore we find

inf
f∈(1+ε)cBE

RL,P(f) = R∗
L,P

for all ε > 0. By letting ε → 0 we then obtain (5). Con-
versely, if (5) holds, there exists, for all ε > 0, an fε ∈ cBE

such that RL,P(fε) ≤ R∗
L,P + ε. Consequently, we find

A(λ) ≤ λ‖fε‖E + RL,P(fε) −R∗
L,P ≤ cλ + ε

for all λ > 0 and ε > 0. By letting ε → 0, we then obtain
A(λ) ≤ cλ for all λ > 0.

In the following lemmas, we consider ε-approximate reg-
ularized boosting algorithms and their infinite sample coun-
terparts. Before we can formulate these lemmas we need to
introduce one more notation. To this end, we fix a separable
BFS E over X that consists of bounded measurable func-
tions, a loss function L : Y × R → [0,∞), a λ > 0, and an
ε ∈ [0, 1]. Then for all f ∈ E we define gf,λ : X × Y → R

by

gf,λ(x, y) := λ‖f‖E +L(y, f(x))−λ‖fP,λ‖E −L(y, fP,λ(x)),

where fP,λ denotes an arbitrary but fixed function satisfying
(3) for some fixed ε ∈ [0, 1].

The following lemma, which is needed for the proof of
Theorem 2.4, establishes a supremum bound on gf,λ.

Lemma 3.1. Let E be a separable BFS over X that consists
of bounded measurable functions and whose norm satisfies
‖ · ‖∞ ≤ ‖ · ‖E. Moreover, let P be a distribution on X × Y
and L be a convex, Lipschitz continuous, and margin-based
loss whose representing function ϕ : R → [0,∞) satisfies
ϕ(0) ≤ 1, and whose Lipschitz constant satisfies |L|1 ≤ 1.
Then for all 0 < λ ≤ 1 and f ∈ E we have

‖f‖E ≤ A(λ) + EPgf,λ + ε

λ
(15)

‖gf,λ‖∞ ≤ 4 · A(λ) + λ + EPgf,λ + ε

λ
(16)

Proof. Let us fix an f ∈ E. Then we have

λ‖f‖E ≤ λ‖f‖E + RL,P(f) −R∗
L,P

≤ λ‖fP,λ‖E + RL,P(fP,λ) −R∗
L,P + EPgf,λ

≤ A(λ) + EPgf,λ + ε,

and hence (15) follows. In order to show (16), we first
observe that the Lipschitz continuity of ϕ together with
ϕ(0) ≤ 1 implies L(y, t) ≤ 1 + |t| for all y ∈ Y and
t ∈ R. By ‖ · ‖∞ ≤ ‖ · ‖E and (15), we consequently ob-
tain

∥∥ λ‖f‖E + L ◦ f
∥∥
∞

≤ λ‖f‖E + 1 + ‖f‖∞

≤ A(λ) + EPgf,λ + ε + 1 +
A(λ) + EPgf,λ + ε

λ

≤ 2 · A(λ) + λ + EPgf,λ + ε

λ
,

where in the last step we used 0 < λ ≤ 1. Since this in-
equality holds for all f ∈ E, we then obtain the asser-
tion.

The following lemma translates the variance bound (6)
into a bound on EPg2

f,λ.

Lemma 3.2. Let E be a separable BFS over X that con-
sists of bounded measurable functions and whose norm sat-
isfies ‖ · ‖∞ ≤ ‖ · ‖E. Moreover, let P be a distribution
on X × Y and L be a convex, Lipschitz continuous, and
margin-based loss whose representing function ϕ : R →
[0,∞) satisfies ϕ(0) ≤ 1, and whose Lipschitz constant
satisfies |L|1 ≤ 1. Assume that the variance bound (6)
holds. Then for all λ ∈ (0, 1] and all f ∈ 2λ−1BE we
have

EPg2
f,λ ≤ 12 c λ−1

(
A(λ) + λ + EPgf,λ + ε

)2
.

Proof. We fix a λ ∈ (0, 1] and an f ∈ 2λ−1BE . Using the
shorthands E := EP, g := gf,λ, and ‖ · ‖ = ‖ · ‖E , as well as
(a1 + a2 + a3)2 ≤ 3a2

1 + 3a2
2 + 3a2

3 for all a1, a2, a3 ≥ 0, we
then obtain

Eg2 = E
(
λ‖f‖ − λ‖fP,λ‖ + L ◦ f − L ◦ fP,λ

)2

≤ 3λ2‖f‖2 + 3λ2‖fP,λ‖2 + 3E
(
L ◦ f − L ◦ fP,λ

)2

≤ 6E
(
L◦f − L◦f∗

L,P

)2 + 6E
(
L◦f∗

L,P − L◦fP,λ

)2

+ 3λ2‖f‖2 + 3λ2‖fP,λ‖2.

Let us write C := max (‖f‖∞ + 1, ‖fP,λ‖∞ + 1). Then the
assumption (6) implies

E
(
L ◦ f − L ◦ f∗

L,P

)2 + E
(
L ◦ f∗

L,P − L ◦ fP,λ

)2

≤ c C
(
E

(
L ◦ f − L ◦ f∗

L,P

)
+ E

(
L ◦ fP,λ − L ◦ f∗

L,P

))
.

By assumption we further have λ‖f‖ ≤ 2, and since ϕ(0) ≤ 1
and ε ∈ [0, 1] we also have

λ‖fP,λ‖ ≤ λ‖fP,λ‖+RL,P(fP,λ) ≤ RL,P(0) + ε ≤ 1 + ε ≤ 2.
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Combining these estimates, we thus obtain

Eg2 ≤ 6 c C
(
E

(
L ◦ f − L ◦ f∗

L,P

)
+ E

(
L ◦ fP,λ − L ◦ f∗

L,P

))

+ 3λ2‖f‖2 + 3λ2‖fP,λ‖2

≤ 6 c C
(
E

(
L ◦ f − L ◦ f∗

L,P

)
+ E

(
L ◦ fP,λ − L ◦ f∗

L,P

)

+ λ‖f‖ + λ‖fP,λ‖
)

= 6 c C
(
Eg + 2E

(
L ◦ fP,λ − L ◦ f∗

L,P

)
+ 2λ‖fP,λ‖

)

≤ 12 c C
(
A(λ) + λ + Eg + ε

)
.

Let us finally bound the constant C. To that end, observe
that Lemma 3.1 implies

‖f‖∞ + 1 ≤ ‖f‖E + 1 ≤ A(λ) + λ + EPgf,λ + ε

λ

for all f ∈ E. Combining this estimate with our previous
considerations then yields the assertion.

Finally, we need to translate the entropy number bound
assumed in Theorem 2.4 into an entropy number bound on
certain sets of functions of the form gf,λ.

Lemma 3.3. Let E be a separable Banach function space
over X that consists of bounded measurable functions and
whose norm satisfies ‖ · ‖∞ ≤ ‖ · ‖E. Moreover, let P
be a distribution on X × Y and L be a Lipschitz con-
tinuous and margin-based loss whose representing function
ϕ : R → [0,∞) satisfies ϕ(0) ≤ 1, and whose Lipschitz con-
stant satisfies |L|1 ≤ 1. Assume that for a fixed n ≥ 1 there
exist constants a ≥ 1 and p ∈ (0, 1) such that

EDX∼Pn
X

em

(
id : E → L2(DX)

)
≤ am− 1

2p

for all m ≥ 1. For λ ∈ (0, 1] and ε > 0 with ε ≤ A(λ)+λ+ε,
we define

Gε(λ) :=
{
gf,λ : f ∈ 2λ−1BE and EPgf,λ ≤ ε

}
.

Then, for all m ≥ 1, we have

ED∼Pnem

(
Gε(λ), ‖ · ‖L2(D)

)
≤ cp a

A(λ) + λ + ε + ε

λ
m− 1

2p .

Proof. Let us fix a λ ∈ (0, 1] and an ε > 0. For

Λ :=
A(λ) + λ + ε + ε

λ

we then observe by Lemma 3.1 that ‖f‖E ≤ Λ for all f ∈
Gε(λ). Moreover, the assumptions λ ≤ 1, ε ≤ 1, and ε ≤
A(λ) + λ + ε, together with A(λ) ≤ 1, imply Λ ≤ 6λ−1. Let
us now define the auxiliary sets

G := {λ‖f‖E + L ◦ f : f ∈ ΛBE},
R := {λ‖f‖E : f ∈ ΛBE},
H := {L ◦ f : f ∈ ΛBE}.

The translation invariance and additivity of the entropy
numbers, see the arguments on pages 11 & 12 of [8] for
the latter, then yields

ED∼Pne2m−1

(
Gε(λ), ‖ · ‖L2(D)

)
≤ ED∼Pne2m−1

(
G, ‖ · ‖L2(D)

)
≤ ED∼Pn

(
em

(
R, ‖ · ‖L2(D)

)
+ em

(
H, ‖ · ‖L2(D)

))

≤ em

(
[0, 6], | · |

)
+ ΛEDX∼Pn

X
em

(
BE , ‖ · ‖L2(DX)

)
≤ 3 · 2−m + aΛm− 1

2p

≤ c̃paΛ(2m − 1)−
1
2p ,

where c̃p is a constant only depending on p. By the mono-
tonicity of the entropy numbers, we then also find the as-
sertion for even indices, if we increase the constant c̃p by a
factor only depending on p.

Proof of Theorem 2.4. We write

G(λ) := {gf,λ : f ∈ 2λ−1BE}

and define Gε(λ) as in Lemma 3.3. Moreover, we write

Λ(λ, ε) :=
A(λ) + λ + ε + ε

λ

for all λ ∈ (0, 1] and ε > 0 with ε ≤ A(λ) + λ + ε. For
gf,λ ∈ Gε(λ) we then have ‖gf,λ‖∞ ≤ 4Λ(λ, ε) and

EPg2
f,λ ≤ 12cλΛ2(λ, ε)

by Lemmas 3.1 and 3.2. Moreover, Lemma 3.3 shows

ED∼Pnem

(
Gε(λ), ‖ · ‖L2(D)

)
≤ cp a Λ(λ, ε)m− 1

2p .

By symmetrization and [17, Theorem 7.16], which translates
bounds on average entropy numbers into bounds on local
Rademacher averages, we thus find a constant Cp ≥ 2c only
depending on p and c such that

ωP,n(G(λ), ε) := ED∼Pn sup
g∈G(λ)
EPg≤ε

∣∣EPg − EDg
∣∣

= ED∼Pn sup
g∈Gε(λ)

∣∣EPg − EDg
∣∣

≤ Cp Λ(λ, ε)max
{
apλ

1−p
2 n− 1

2 , a
2p

1+p n− 1
1+p

}
.

We now define ε := A(λ) + λ + ε, which implies Λ(λ, ε) =
2ελ−1. For K := 1024C2

p and λ1+pn ≥ a2pK we hence ob-
tain

ωP,n(G(λ), ε) ≤ 2 Cpε max
{
apλ− 1+p

2 n− 1
2 , a

2p
1+p λ−1n− 1

1+p
}

≤ ε

16
.

We further write F := G(λ) and

C ◦ f := λ‖f‖E + L ◦ f.
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For β := 1, b := 4/λ and B := 4 · A(λ)+λ+ε
λ we then see that

the supremum bound (6) of [18, Theorem 3.1] is satisfied.
Moreover, the variance bound (7) of [18, Theorem 3.1] is
satisfied for v := ϑ := 1, w := 3c, and W := 3c(A(λ)+λ+ε).
In addition, λn ≥ Kτ and Cp ≥ 2c imply

√
2τ(bεβ + B)ν(wεϑ + W )

n
=

√
24τcλΛ2(λ, ε)

n

≤
√

96c

K
ε

≤ ε

4

and

2τ
(
bεβ + B

)
n

=
8τΛ(λ, ε)

n
=

8τε

λn
≤ ε

128
.

Using these estimates together with a repetition of the proof
of [18, Theorem 3.1] for a := 1/2 instead of a = 0, we further
see that every ε/2-ARBA satisfies

λ‖fD,λ‖E + RL,P(fD,λ) −R∗
L,P

< λ‖fP,λ‖E + RL,P(fP,λ) −R∗
L,P + ε

with probability Pn not smaller than 1 − e−τ . Since we ob-
viously have λ/2 ≤ ε/2, we then obtain the assertion for
ε → 0.

3.2 Proofs of the results related to
Theorem 2.10

Proof of Lemma 2.5. The assertion immediately follows
by combining [17, Lemma 2.23], [17, Lemma 3.12], and [17,
Lemma 3.64].

For the proof of Lemma 2.7 and Proposition 2.9 we need
some preparations. To this end, we define, as in [17, Chapter
3], the inner risk of a loss function L : Y × R → [0,∞) by

CL,η(t) :=
∫

Y

L(y, t) dQ(y) = ηL(1, t) + (1 − η)L(−1, t),

where Q is a distribution on Y and η := Q({1}). Obviously,
the L-risk of a function f : X → R can then be computed
by

(17) RL,P(f) =
∫

X

CL,η(x)(f(x)) dPX .

Moreover, for 0 < δ < 1/2 we define η(δ) := (1−δ)η+δ(1−η).
A simple calculation then shows

CLδ,η(t) = η(1 − δ)L(1, t) + ηδL(−1, t)(18)
+ (1 − η)(1 − δ)L(−1, t) + (1 − η)δL(1, t)

= η(δ)L(1, t) + (1 − η(δ))L(−1, t)
= CL,η(δ)(t)

for all t ∈ R. Obviously, if we define the minimal inner risk
of a loss L by

C∗
L,η := inf

t∈R

CL,η(t),

then Equation (18) yields C∗
Lδ,η = C∗

L,η(δ) . Furthermore, we
finally need the set

ML,η(0+) :=
{
t ∈ R : CL,η(t) = C∗

L,η

}
,

which contains all global minimizers of t �→ CL,η(t). Note
that we always have C∗

L,η < ∞, and hence the definition of
ML,η(0+) coincides with that on page 53 of [17]. Moreover,
our considerations above show MLδ,η(0+) = ML,η(δ)(0+).
The following lemma collects some useful properties of the
latter set.

Lemma 3.4. Let L �= 0 be a convex, classification cali-
brated, and margin-based loss represented by ϕ : R → [0,∞).
Moreover, we fix a δ ∈ R with 0 < δ < 1/2. Then, for all
η ∈ [δ, 1 − δ], the function

t �→ CL,η(t)

has a global minimum, i.e., ML,η(0+) �= ∅. Writing

Mδ := inf ML,1−δ(0+)

= inf
{
t ∈ R : Lδ(1, t) ≤ Lδ(1, s) for all s ∈ R},

we further have 0 < Mδ < ∞ and

(19) ML,η(0+) ⊂ [−Mδ, Mδ], η ∈ (δ, 1 − δ).

Moreover, if ϕ is strictly convex, ML,η(0+) contains exactly
one element, denoted by t∗η, for all n ∈ [δ, 1−δ]. In this case,

η → t∗η

is a monotonically increasing function on [δ, 1− δ], and the
restriction ϕ|[−Mδ,Mδ] of ϕ to [−Mδ, Mδ] is strictly decreas-
ing.

Proof. The convexity of the representing function ϕ of L
implies limt→−∞ ϕ(t) = ∞ or limt→∞ ϕ(t) = ∞. From this
we conclude that limt→±∞ CL,η(t) = ∞, and hence the con-
vexity of t �→ CL,η(t) shows that this function has a global
minimum.

To show the second assertion, we first observe that Mδ >
0 by the classification calibration of L and [17, Lemma 3.33].
Moreover, [17, Lemma 8.31] yields

supML,η(0+) ≤ inf ML,1−δ(0+) = Mδ

for all η < 1 − δ and

inf ML,η(0+) = − supML,1−η(0+) ≥ − inf ML,1−δ(0+)
= − Mδ

for all η > δ.
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For the proof of the last assertion, we first observe that
the strict convexity of ϕ implies that t �→ CL,η(t) is strictly
convex, and hence this function has indeed a unique global
minimizer. The monotonicity of η → t∗η then follows by an-
other application of [17, Lemma 8.31]. Finally, if ϕ is de-
creasing, the last assertion is trivial. On the other hand, if
ϕ is not decreasing, [17, Lemma 8.37] shows that

t0 := inf{t ∈ R : 0 ∈ ∂ϕ(t)},

where ∂ϕ(t) denotes the subdifferential of ϕ at t, satisfies
0 < t0 < ∞ and 0 ∈ ∂ϕ(t0). Consequently, we have t0 =
inf ML,1(0+), and hence we obtain

Mδ ≤ supML,1−δ(0+) ≤ inf ML,1(0+) = t0

by yet another application of [17, Lemma 8.31]. Moreover,
by the convexity of ϕ, we see that ϕ is strictly decreasing
on (−∞, t0], and hence the last assertion follows.

Proof of Lemma 2.7. i). Trivial.
ii). Since Lδ(1, t) = CL,1−δ(t) and Lδ(−1, t) = CL,δ(t) for

all t ∈ R, we see by Lemma 3.4 that the functions t �→
Lδ(1, t) and t �→ Lδ(−1, t) have global minima at Mδ and
−Mδ, respectively. Using [17, Lemma 2.23], we then obtain
the assertion.

iii). This is an immediate consequence of (18).

Proof of Proposition 2.9. Following Lemma 3.4 we de-
note the unique minimizer of t �→ CL,η(t) by t∗η. By (18)
and η(δ) ∈ [δ, 1 − δ] it is easy to see that t∗

η(δ) is the unique
minimizer of t �→ CLδ,η(t). For η ∈ [0, 1] and t ∈ R we now
define

M(η, t) := η
(
Lδ(1, t) − Lδ(1, t∗η(δ))

)2

+ (1 − η)
(
Lδ(−1, t) − Lδ(−1, t∗η(δ))

)2

E(η, t) := η
(
Lδ(1, t) − Lδ(1, t∗η(δ))

)
+ (1 − η)

(
Lδ(−1, t) − Lδ(−1, t∗η(δ))

)
.

Obviously, it then suffices to show

(20) M(η, t) ≤
(
ϕ(Mδ) + ϕ(−Mδ) + CL(δ)

)
E(η, t)

for all η ∈ [0, 1] and t ∈ [−Mδ, Mδ]. To this end, we further
define

N(η, t) := η
(
ϕ(t) − ϕ(t∗η)

)2 + (1 − η)
(
ϕ(−t) − ϕ(−t∗η)

)2

D(η, t) := η
(
ϕ(t) − ϕ(t∗η)

)
+ (1 − η)

(
ϕ(−t) − ϕ(−t∗η)

)

for η ∈ [δ, 1 − δ] and t ∈ [−Mδ, Mδ]. Since

CL,η(t) = ηϕ(t) + (1 − η)ϕ(−t),

for all t ∈ R, the minimizer t∗η satisfies

(21) ηϕ′(t∗η) = (1 − η)ϕ′(−t∗η)

for all η ∈ [δ, 1 − δ]. As in the proof of [6, Lemma 19], we
thus obtain

(22)
∂D

∂η
(η, t) =

(
ϕ(t) − ϕ(t∗η)

)
−

(
ϕ(−t) − ϕ(−t∗η)

)

and

∂N

∂η
(η, t)

=
(
ϕ(t) − ϕ(t∗η)

)2 −
(
ϕ(−t) − ϕ(−t∗η)

)2

− 2η
(
ϕ(t) − ϕ(t∗η)

)
ϕ′(t∗η)

∂t∗η
∂η

+ 2(1 − η)
(
ϕ(−t) − ϕ(−t∗η)

)
ϕ′(−t∗η)

∂t∗η
∂η

=
((

ϕ(t) − ϕ(t∗η)
)

+
(
ϕ(−t) − ϕ(−t∗η)

)
− 2ηϕ′(t∗η)

∂t∗η
∂η

)

·
(
ϕ(t) − ϕ(t∗η)

)
−

(
ϕ(−t) − ϕ(−t∗η)

)
,

where we used (21) to obtain the second equality. We now
define

Cδ := sup
{
−ϕ(t∗η)−ϕ(−t∗η)− 2ηϕ′(t∗η)

∂t∗η
∂η

: η ∈ [δ, 1− δ]
}

,

and observe by the last assertion of Lemma 3.4 that
∂D
∂η (η, t) ≥ 0 if and only if t ≤ t∗η. By (22) we consequently
find

∂N

∂η
(η, t) ≤

(
ϕ(t) + ϕ(−t) + max{0, Cδ}

)∂D

∂η
(η, t)

for all η ∈ [δ, 1 − δ] and t ∈ [−Mδ, Mδ] satisfying t ≤ t∗η.
Analogously, we obtain the inverse inequality for t ≥ t∗η.
Since N(η, t∗η) = D(η, t∗η) = 0 for all η ∈ [0, 1], the funda-
mental theorem of calculus thus shows

(23) N(η, t) ≤
(
ϕ(t) + ϕ(−t) + max{0, Cδ}

)
D(η, t)

for all η ∈ [δ, 1− δ] and t ∈ [−Mδ, Mδ]. In order to estimate
Cδ, we now observe that

∂t∗η
∂η

= −
ϕ′(t∗η) + ϕ′(−t∗η)

ηϕ′′(t∗η) + (1 − η)ϕ′′(−t∗η)
,

and hence (21) yields

−2ηϕ′(t∗η)
∂t∗η
∂η

=
(
ϕ′(t∗η) + ϕ′(−t∗η)

)
·

ηϕ′(t∗η) + (1 − η)ϕ′(−t∗η)
ηϕ′′(t∗η) + (1 − η)ϕ′′(−t∗η)

=
(
ϕ′(t∗η) + ϕ′(−t∗η)

)
· 2

ϕ′′(t∗η)

ϕ′(t∗η) + ϕ′′(−t∗η)

ϕ′(−t∗η)

.

From this we conclude that Cδ equals

sup
η∈[δ,1−δ]

2ϕ′(t∗η)ϕ′(−t∗η)(ϕ′(t∗η) + ϕ′(−t∗η))
ϕ′(−t∗η)ϕ′′(t∗η) + ϕ′(t∗η)ϕ′′(−t∗η)

−ϕ(t∗η)−ϕ(−t∗η).
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Furthermore, the monotonicity of ϕ on [−Mδ, Mδ], see
Lemma 3.4, yields

(
ϕ(t) − ϕ(t∗η(δ))

)(
ϕ(−t) − ϕ(−t∗η(δ))

)
≤ 0

for all η ∈ [0, 1] and all t ∈ [−Mδ, Mδ], and hence we have

M(η, t)

= η(1 − δ)2
(
ϕ(t) − ϕ(t∗η(δ))

)2

+ ηδ2
(
ϕ(−t) − ϕ(−t∗η(δ))

)2

+ (1 − η)δ2
(
ϕ(t) − ϕ(t∗η(δ))

)2

+ (1 − η)(1 − δ)2
(
ϕ(−t) − ϕ(−t∗η(δ))

)2

+ 2δ(1 − δ)
(
ϕ(t) − ϕ(t∗η(δ))

)(
ϕ(−t) − ϕ(−t∗η(δ))

)
≤ η(1 − δ)

(
ϕ(t) − ϕ(t∗η(δ))

)2

+ ηδ
(
ϕ(−t) − ϕ(−t∗η(δ))

)2

+ (1 − η)δ
(
ϕ(t) − ϕ(t∗η(δ))

)2

+ (1 − η)(1 − δ)
(
ϕ(−t) − ϕ(−t∗η(δ))

)2

= η(δ)
(
ϕ(t) − ϕ(t∗η(δ))

)2 + (1−η(δ))
(
ϕ(−t) − ϕ(−t∗η(δ))

)2

= N(η(δ), t)

where in the inequality we used δ2 ≤ δ and (1− δ)2 ≤ 1− δ.
Moreover, by (18) we have

D(η(δ), t) = CL,η(δ)(t) − C∗
L,η(δ) = CLδ,η(t) − C∗

Lδ,η = E(η, t)

for all η ∈ [0, 1] and t ∈ R. In addition, we have

ϕ(t)+ϕ(−t) = 2CL,1/2(t) ≤ 2CL,1/2(Mδ) = ϕ(Mδ)+ϕ(−Mδ)

for all t ∈ [−Mδ, Mδ] by the convexity and symmetry of
t �→ CL,1/2(t). Combining these considerations with (23) and
both η(δ) ∈ [δ, 1 − δ] and t∗

η(δ) ∈ [−Mδ, Mδ], we then obtain
(20).

Proof of Theorem 2.10. Our goal is to apply [17, The-
orem 7.20]. To this end we define Υ : E → [0,∞) by
Υ(f) := λ‖f‖E , f ∈ E. By Lemma 3.4 we recall that ϕ
is strictly decreasing on the interval [−Mδ, Mδ], and hence
we easily find

Lδ(y, t) ≤ ϕ(−Mδ), y = ±1, t ∈ [−Mδ, Mδ],

i.e., the supremum bound (7.35) in [17] is satisfied for B :=
ϕ(−Mδ). Moreover, Proposition 2.9 shows that the variance
bound (7.36) in [17] is satisfied for ϑ := 1 and

V := ϕ(Mδ) + ϕ(−Mδ) + CL(δ).

In addition, we obviously have V ≥ B2−ϑ. In the following,
we pick a function f0 ∈ E with

λ‖f0‖E + RLδ,P(f0) −R∗
Lδ,P ≤ 2A(λ).

The assumptions on L then yield

‖Lδ ◦ f0‖∞ ≤ 1 + ‖f0‖∞ ≤ 1 +
2A(λ)

λ
.

In the following, we thus set B0 := B + 2A(λ)
λ . Last but not

least, the definitions (7.32)–(7.34) in [17] become

r∗ := inf
f∈E

λ‖f‖E + RLδ,P(
�
f ) −R∗

Lδ,P

Fr := {f ∈ E : λ‖f‖E + RLδ,P(
�
f ) −R∗

Lδ,P ≤ r},

Hr := {Lδ ◦
�
f − Lδ ◦ f∗

Lδ,P : f ∈ Fr},

where the latter two sets are only defined for r > r∗. Now
observe that for f ∈ Fr we have λ‖f‖E ≤ r, and hence we
conclude that Fr ⊂ r

λBE . Since Lδ is Lipschitz continuous
with |Lδ|1 ≤ |L|1 ≤ 1, we thus find

ED∼Pnem(Hr, L2(D)) ≤ EDX∼Pn
X

em(Fr, L2(DX))

≤ 2rλ−1a m− 1
2p .

Moreover, for f ∈ Fr, we have

EP(L ◦ �
f − L ◦ f∗

L,P)2 ≤ V r,

and consequently [17, Theorem 7.16] shows that the
Rademacher average in (7.37) of [17] is bounded by the func-
tion

ϕn(r) := c̃ max
{

apr
1+p
2 λ−pn− 1

2 , (a r)
2p

1+p λ− 2p
1+p n− 1

1+p

}
,

where c̃ ≥ 1 is a constant only depending on L, δ, and
p. Obviously, this function does in general not satisfy the
condition ϕn(4r) ≤ 2ϕn(r), r ≥ r∗, required in [17, Theo-
rem 7.20]. However, it satisfies ϕn(4r) ≤ 4

1+p
2 ϕn(r), r ≥ r∗,

and since 1+p
2 < 1 is all we need for the peeling argu-

ment [17, Theorem 7.7] employed in the proof of [17, The-
orem 7.20], Condition (7.38) in [17] only changes by a con-
stant cp in front of 30ϕn(r). Consequently, Condition (7.38)
reduces to

r > c̃L(δ, p)
( a2p

λ2pn

) 1
1−p

+
77V τ

n
+

10τA(λ)
λn

+ A(λ)

From this we easily obtain the assertion by [17, Theo-
rem 7.20].
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