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Support vector machines with

disease-gene-centric network penalty for high

dimensional microarray data

YANNI ZHUT, WEI PAN*T, AND XIAOTONG SHEN?

With the availability of gene pathways or networks and
accumulating knowledge on genes with variants predisposing
to diseases (disease genes), we propose a disease-gene-centric
support vector machine (DGC-SVM) that directly incorpo-
rates these two sources of prior information into building
microarray-based classifiers for binary classification. DGC-
SVM aims to detect genes clustering together and around
some key disease genes in a gene network. Toward this end,
we propose a penalty over suitably defined groups of genes.
A hierarchy is imposed on an undirected gene network to
facilitate the definition of such gene groups. Our proposed
DGC-SVM utilizes the hinge loss penalized by a sum of the
Lo-norm over each group. The simulation studies show that
DGC-SVM not only detects more disease genes along path-
ways than the existing standard-SVM and SVM with an L;-
penalty (L1-SVM), but also captures disease genes that po-
tentially affect the outcome only weakly. Two real data ap-
plications demonstrate that DGC-SVM improves gene selec-
tion while retaining predictive performance of the standard-
SVM and L1-SVM. The proposed method has the potential
to be an effective classification tool that encourages gene
selection along paths to or clustering around known disease
genes for microarray data.

KEYWORDS AND PHRASES: DAG, Gene expression, Gene
network, Grouped penalty, Hierarchy, Penalization.

1. INTRODUCTION

Genes interact with each other through their RNA
and protein expression products. For example, the rate at
which transcription factor genes are transcribed into RNA
molecules may govern the transcriptional rate of their reg-
ulatory target genes, which as a result become either up- or
down- regulated. A gene network is a collection of effective
interactions, describing the multiple ways through which one
gene affects all the others to which it is connected. A gene
network reveals genetic dynamics underlying the aggregate
function that the network maintains.
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High-throughput genomic advances have generated vari-
ous databases providing gene network information, such as
the Biomolecular Interaction Network Database (BIND) [1],
the Human Protein Reference Database (HPRD) [15],
and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [11]. In recent years, genetic studies have uncovered
hundreds of genes with variants that predispose to common
diseases, such as cancer, Parkinson’s disease, and diabetes.
For example, gene T'P53 is among the most well-known ones,
which, as a tumor suppressor, is central to many anti-cancer
mechanisms. Gene TP53 encodes tumor protein pi3, the
so-called “the guardian of the genome,” which mediates the
cellular response to DNA damage and is involved in other
important biological processes, e.g., cell cycle. Among its
other functions, p53 activates other genes to fix the damage
if p53 determines that the DNA can be repaired. Otherwise,
pd3 prevents the cell from dividing and signals its death.
Most mutations that deactivate TP53 destroy protein p53’s
ability to regulate other genes properly and thus leads to in-
creasing risk of tumor development ([4, 17]). Hence, not just
a single gene, but a subnetwork of TP53 and its interacting
partners, are involved in the disease progression.

With the availability of various repositories of gene net-
works and the accumulating knowledge on genes linked to
diseases, one question naturally arises: how to integrate the
two sources of prior information into a model to detect genes
involved in disease-related biological processes. A network-
based approach is based on such a coherent view and makes
use of the network information in building statistical mod-
els. Employing a network-based perspective not only sheds
insight within the network modules ([2, 6, 8, 12]) but also
permits identification of disease genes that have only weak
effects. Such genes often play a central role in discriminative
subnetworks by interconnecting groups of genes involved
in various biological processes. [8] pointed out that several
well-known cancer genes, such as TP53, KRAS, and HRAS,
were ignored by gene-expression-alone analysis but success-
fully detected by using network information. However, their
network-based approach involves a random search over sub-
networks, leading to possibly instable and suboptimal final
results.

Since its invention ([7, 18]), the support vector machine
(SVM) has been acclaimed as a useful regularization method
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due to its excellent empirical performance, especially for
high dimensional data ([5, 10]), its possible extensions to ac-
commodate various penalty functions, and resulting model
sparsity if a suitable penalty (e.g. Li-norm) is employed.
For binary classification, the standard L2-norm SVM (STD-
SVM) has good predictive performance, but is incapable of
performing variable selection. The L1-SVM ([19, 23]) pro-
duces sparse models for data with p >> n. [25] developed a
grouped variable selection scheme for factors by the use of an
F,-norm SVM such that all features derived from the same
factor (i.e. categorical predictor) are included or excluded
simultaneously. Note that their grouping scheme was based
on non-overlapping groups. [22] generalized grouped variable
selection and introduced the composite absolute penalties
(CAP) family. CAP achieves both grouped selection for non-
overlapping groups and hierarchical selection for overlapping
groups. Extending the idea of grouping to gene networks,
[24] proposed a network-based SVM (NG-SVM), treating
any two neighboring genes in a network as one group, and
explicitly incorporating the network information into build-
ing classifiers. Both the simulation studies and real data
applications showed that NG-SVM enjoyed advantages in
gene selection and predictive performance compared with
the popular STD-SVM and L1-SVM. However, a potential
problem of NG-SVM resides in its tendency of selecting iso-
lated genes or gene pairs, i.e., genes largely disconnected to
each other in the network, which is not desirable given that
some disease genes cluster together and form subnetworks.

In this paper, we incorporate the information of both a
gene network and some crucial disease genes into the SVM
framework by exploiting two ways of grouping genes for
penalty construction. By considering an undirected network
to be anchored on certain crucial disease gene(s), i.e., genes
known to be central to a disease, a hierarchical structure is
imposed on the network (with the anchoring crucial genes at
the top) to facilitate the definition of various gene groups.
By summing up an L.,-norm over each group, we obtain
the penalty for DGC-SVM. Ideally, by DGC-SVM, identi-
fication of one gene triggers the inclusion of disease genes
along the connected paths towards the top crucial gene(s). In
particular, we intend to capture disease genes, even if their
direct effects on the outcome are weak, which are important
in regulating functional activities of other genes along the
pathways or within the subnetworks involved in the disease.

2. METHODS

2.1 Orienting an undirected network

Given an undirected network GG, we convert it into a di-
rected acyclic graph (DAG) G. Suppose that G originates
from only one disease gene g and consists of a total of p
genes. Genes (including ¢) in network G are indexed by
{1,2,...,p}. We have the expression levels of the p genes and
binary outcomes for N samples, {(z;, )}, with z; € R?
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and y; € {1,—1}. The expression of each gene is normal-
ized to have mean 0 and standard deviation 1 across sam-
ples. We define a directed edge by an ordered pair of ends
(a,b) indicating that a is upstream to b, or equivalently, b is
downstream to a. Since genetic interrelationships occur only
between pairs of distinct genes, network G contains no loop,
defined as a directed edge with identical ends. In addition,
no two directed edges adjoin the same pair of genes. Gene g
is the top (center) gene of network G. The distance between
two genes a and b is the minimum number of directed edges
traversed from a to b. Genes closer to the network origin,
gene g, are said to be at an upper level than those farther
apart. Genes with the same distance from the origin are at
the same level. For example, the distance between gene g
and any of its direct neighbors is 1. The distance between
any two genes at the same level is 0. Thus, DAG G is de-
fined from the undirected network G. G assigns directions
from upper-level to lower-level genes but ignores edges con-
necting genes at the same level. Upper-level genes are called
nodes whereas genes with no downstream genes are named
as leaves. DAG G captures the upper-lower interrelation-
ships but ignoring the lateral ones.

In presence of multiple center genes ¢; . .. g1, DAG G can
be defined as follows: (1) Derive DAGs G| ... G, each cor-
responding to one center gene in gy ...gr; (2) G = UL G,
if Gy ...G, share no common nodes; (3) if the DAGs have
common nodes, pick up any of them, align all the associ-
ated DAGs at the level where that common node is seated,
treat that node in each associated DAG as being located
at the same level (named as level,), and merge the associ-
ated DAGs by recognizing only the upper-lower interrela-
tionships but ignoring the lateral ones. Then, identify the
common nodes of the merged DAG and the remaining un-
touched DAGs, repeat step (3) until no common nodes ex-
ist. Note that each node in the merged DAG has the same
downstream genes no matter which center the node is de-
rived from. The above process may result in different DAGs
if the combination of the associated DAGs occurs at differ-
ent common nodes, introducing certain arbitrariness.

2.2 Pathway grouping

To achieve our goal of detecting collectives of genes in-
volved in disease along pathways or within subnetworks, we
propose a penalty on suitably defined groups of genes. We
experiment two ways of grouping: pathway (PW) grouping
and partial tree (PT) grouping. We first describe the PW
grouping. It forms groups along linear paths as an attempt
to encourage linear pathway selection.

A path in G is a connected sequence of directed edges
and the length of the path is the number of directed edges
traversed. Note that a path connects genes from upper-
to lower-levels without any two consecutive genes from the
same level. Since a path can be determined by the sequence
of the nodes along the path, a path is simply specified by



Figure 1. Left: a simple network originating from gene 1.
Right: DAG derived from the simple network.

its node sequence. We define a single node as a trivial path.
Define a complete path of leaf k in G, & (k=1,...,K), as

&n=1{j:
down to leaf k}.

Gene j appears on the path from top gene g

Suppose & contains a total of ny genes, including leaf k
and gene g. Then we have ny groups gﬁ’“’ t=1,...,n)
by grouping the genes in & under the “lower nested within
upper” rule, that is, node/leaf at a lower level must appear
in all the groups that contain any node at its upper-level.
For example, in the network displayed in Fig. 1, if gene 1 is
considered to be at the top, then genes 1,...,12 are nodes
and genes 13,...,26 are leaves. The complete path of leaf
gene 16, &6, is {1,2,6,16}. Groups derived from &4 or leaf
gene 16 are {2,6,16}, {6,16}, {16}, and & itself. Note that
multiple distinct complete paths may exist between leaf k
and gene g, for example, {g,a,c, k} and {g,b,c, k}. In this
case, group {c¢, k} and group {k} are defined twice respec-
tively. When forming groups, we count each distinct group
only once. Therefore, groups formed from {g,a,c,k} and
{g,b, ¢, k} include 6 groups: {g,a,c, k}, {g,b,¢,k}, {a,c, k},
{b,c,k}, {c,k}, and {k}. Thus, we impose a grouping struc-
ture G containing distinct groups of G, that is, every group
in G appears only once:

G=", . ., G .

1 K
gv(v,l)v"'v '?QT(LK))7
while a gene may appear in multiple groups, which is per-
mitted in our formulation and computation.

Corresponding to G, we construct our penalty as

(iz IIﬁgtu»-)loo) .

k=1t=1

(1)

The hinge loss penalized by (1) leads to our proposed DGC-
SVM with PW grouping (DGC-SVM-PW), which is devel-
oped as an attempt to encourage selecting genes along the
pathway (pathway selection):

K ng
gun{z 1—y; (z B+ﬁo)]++>\(ZZH%MH&)},
0.8 | S k=1t=1

where the subscript “+” denotes the positive part, i.e.,
zy = mazx{z,0}, X is a tuning parameter, and ||/8g(k) loo =
t
max . {|8s|/ws} with ws as a weight function for gene
“ t
s. For example, w, can be v/dg with dg as the number of di-

rect neighbors of gene s, or dg, or simply 1 for all genes. The
solution to (2) can be obtained through linear programming;:

K ng
(3) min &+ g®
Bo Bo Bt,B~ ’{M (’C)} Z /; ;
subject to
(4) yi (B — By + i (ﬂ+ B7) 21-6&,
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segt(k), k=1,....K, t=1,...,ng.
In the above parametrization in (4), Mgw =

ax, g {Bs|/ws}, and B; = B — By, in which 8
and B, denote the positive and negative parts of 3. Note
that, by our construction, some genes fall within multiple

groups Qt(k), which is permitted by linear programming.

2.3 Partial tree grouping

The PT grouping is devised to achieve hierarchical selec-
tion, that is, selecting a lower-level gene ensures the selection
of its upper-level gene(s). In addition, selecting any gene in
the DAG guarantees the inclusion of at least one center gene,
which is desirable in view of the biological importance of any
center gene. The DGC-SVM with PT grouping (DGC-SVM-
PT) groups each node/leaf with all its downstream genes.
Since a leaf has no downstream genes, the group derived
from the leaf contains only one element, the leaf itself. For
the above G, we have p groups in total, K of which contain
only single elements derived from K leaves, and the rest
p — K of which are formed as

G, = {node ¢ and all its downstream genes,
g=1,...,p— K}.

For example, the simple network in Fig. 1 derives 26 groups,
including G; with all the 26 genes as well as 14 single-
leaf groups. Here we impose a grouping structure as G =
(Gi1,...,Gp). The formulation of DGC-SVM-PT is the same
as its PW grouping counterpart in (2)—(4).

The DGC-SVM-PT is a direct application of the CAP
family of [22] in the context of SVM. It has the hierarchical
property that if any node/leaf at a lower-level is included
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in the model, nodes at its upper-level will also be included.
This property is important to our goal of capturing disease
genes along pathways or within subnetworks, which offers
the possibility to detect genes that have weak direct effect on
the outcome but are critical in regulating multiple biological
processes through connecting various functional groups of
disease-relevant genes. In addition, this property guarantees
the identification of a center gene of the network if any gene
in the network is selected.

2.4 Choice of weight

DGC-SVM involves a weight function w. The choice of
the weight depends on the goal of shrinkage, and governs
variable selection and predictive performance.

A main motivation behind the proposed penalties is the
grouping effect of the L.,-norm. Because of the singular-
ity of the penalty max(|al,|b]) at |a|] = |b], by [9], the
penalty encourages the shrinkage towards |a| = |b|, which
can be achieved when the penalization parameter A is large
enough. For linear regression, this so-called grouping effect
has been theoretically established by [3] and [14] for two-
gene groups, and by [21] for a more general case with more
than two genes in a group. Now consider network G and
its grouping structure G derived from G. For simplicity, we
assume that G contains only two-gene and one-gene groups.
For these two-gene groups, the weighted penalty encourages
1), |/wj, = |Bj,|/w;, where 3;, and (3;, belong to the same
group. Here we examine three weight functions specifically:
ws = 1, wy = V/ds, and ws = d, where d, is the degree of
gene s, i.e., the number of direct neighbors of gene s. The
185, if wy = 1, Ll — 1l

VA Vi

if wy = ds. The same reason-

new method encourages |3}, | =

iwa:\/@,and@J#lzfj%l
ing also applies to grloups with more than two genes. There-
fore, larger weights (from ws = 1, w, = V/ds, to ws = dy)
favor genes with more direct neighbors to have larger co-
efficient estimates; in other words, larger weights relax the
shrinkage effect for those “hub” genes that are connected to
many genes and are known to be biologically more impor-
tant. Because of this property, the choice of a large weight,
as a simple strategy, enables us to alleviate the bias in the
coefficient estimates from penalization and possibly improve
predictive performance. The weight can be considered as a
tuning parameter and estimated by cross-validation or an
independent tuning data set although we will not pursue it
further here. Since the proposed penalty is linear, linear pro-
gramming is applicable to solve the associated optimization
problem. We implemented the proposed method through a
linear programming routine 1psolve in R.

3. SIMULATION

We numerically evaluated the new methods, DGC-SVM-
PW and DGC-SVM-PT, in two simulation studies over a
simple network and a more complex one. The DAG for a
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simple network is essentially a hierarchical tree where any
two genes are connected by a unique path. In contrast, there
exist multiple paths adjoining the same pair of genes in the
complicated network. The grouping structure in either case
is unique. We compare the performance of DGC-SVMs with
that of STD-SVM, L1-SVM, and NG-SVM. All methods
were implemented by the R package lpsolve except STD-
SVM, which was obtained by the R package e1071 (with
linear kernel).

3.1 A simple network

We applied the DGC-SVM to the simple network de-
picted in Fig. 1, where any two genes in its DAG are con-
nected by a unique path. The simulation data sets were gen-
erated following the set-ups of [13]:

e Generate the expression level of center gene 1, X; ~
N(0,1).

e Assume node s and each of its downstream genes fol-
low a bivariate normal distribution with means 0 and
unit variances with correlation 0.7. Thus, the expres-
sion level of each downstream gene is distributed as
N(0.7X5,0.51).

e Generate outcome Y from a logistic regression model:
Logit (Pr(Y = 11X)) = XT3+ o, Bo = 2, where X is
a vector of the expression levels of all the genes, and
is the corresponding coefficient vector.

We considered three sets of informative genes. The effect
of each informative gene on the outcome was equal to that
of its upstream node divided by the square-root of the up-
stream node’s degree. All the other genes were noninfor-
mative, which had no effect on the outcome. Three sets of
true coefficients 8 = (081, B2, . . ., O26) were specified in three
scenarios:

1. PT setting: one of the tree branches of the hierarchical
tree or DAG (gene 1, 2, 5, 6, 14, 15, and 16) was infor-
mative

= (5,51/V3,0,0,82/V3, B2/V3, 9.0 ,Bs/ V2,

ﬂﬁ/\/g’[gG/\/gan"aO)'
——

10
2. PW setting: pathway {1,3,7,17} was informative.

B = (5Oﬁl/f00063/f0 ,0,87/V2,

0,...,0).
—

9
3. PW setting: pathway {1,2,5,14} was informative.
(5/31/\/_0052/\/_0 055/\/_0 ;0).
— v

In each scenario, we simulated 50, 50 and 10,000 observa-
tions for each training, tuning and test dataset. For each
tuning parameter value, we obtained a classifier from the
training data, applied it to the tuning data, and identified
A that yielded the minimal misclassification error over the



Table 1. Simulation results (averaged over 100 runs) for a simple network with p = 26 genes; 7, 4, and 4 informative genes
were in the three scenarios respectively

Scenario  Method Test Error (SE)  # False Negative (SE) Model Size (SE)
1 STD 0.129 (0.003) 0.00 (0.00) 26.00 (0.00)
L1 0.122 (0.003) 2.81 (0.14) 7.19 (0.36)
NG (w = 1) 0.145 (0.004) 0.26 (0.05) 14.73 (0.47)
NG (w=+Vd)  0.123 (0.004) 0.10 (0.04) 15.32 (0.50)
NG (w = d) 0.108 (0.003) 0.12 (0.05) 14.47 (0.56)
PW (w=1) 0.152 (0.003) 0.84 (0.07) 15.57 (0.65)
PW (w=+d)  0.136 (0.003) 0.93 (0.08) 16.90 (0.61)
PW (w = d) 0.126 (0.003) 1.60 (0.13) 14.44 (0.61)
PT (w=1) 0.107 (0.003) 1.94 (0.14) 9.42 (0.53)
PT (w=+d)  0.107 (0.004) 2.51 (0.13) 8.65 (0.53)
PT (w = d) 0.110 (0.004) 3.08 (0.13) 7.39 (0.44)
2 STD 0.147 (0.003) 0.00 (0.00) 26.00 (0.00)
L1 0.118 (0.004) 0.99 (0.07) 6.56 (0.33)
NG (w = 1) 0.162 (0.004) 0.16 (0.05) 17.83 (0.52)
NG (w=+Vd)  0.138 (0.003) 0.01 (0.01) 17.33 (0.52)
NG (w = d) 0.125 (0.003) 0.04 (0.02) 16.09 (0.57)
PW (w=1) 0.174 (0.003) 0.32 (0.05) 18.93 (0.48)
PW (w=+d)  0.163 (0.003) 0.42 (0.06) 16.31 (0.48)
PW (w = d) 0.144 (0.003) 0.43 (0.06) 14.94 (0.47)
PT (w=1) 0.111 (0.003) 0.72 (0.08) 7.74 (0.49)
PT (w=+d)  0.109 (0.003) 1.05 (0.08) 6.64 (0.52)
PT (w = d) 0.113 (0.003) 1.32 (0.07) 6.07 (0.40)
3 STD 0.143 (0.002) 0.00 (0.00) 26.00 (0.00)
L1 0.120 (0.003) 0.96 (0.07) 6.67 (0.34)
NG (w=1) 0.149 (0.003) 0.09 (0.04) 16.04 (0.53)
NG (w=+Vd)  0.127 (0.003) 0.02 (0.01) 15.50 (0.51)
NG (w = d) 0.117 (0.003) 0.06 (0.03) 13.25 (0.52)
PW (w=1) 0.165 (0.002) 0.33 (0.05) 17.98 (0.55)
PW (w=+d)  0.147 (0.003) 0.34 (0.05) 16.96 (0.49)
PW (w = d) 0.141 (0.003) 0.41 (0.06) 15.39 (0.51)
PT (w=1) 0.106 (0.003) 0.59 (0.07) 8.07 (0.53)
PT (w=+d)  0.110 (0.003) 1.10 (0.08) 5.84 (0.34)
PT (w = d) 0.113 (0.003) 1.28 (0.07) 5.71 (0.27)

tuning set. Then we used the classifier corresponding to A
to compute the misclassification error on the test data. The
entire process was repeated 100 times (i.e., 100 independent
runs). The means of the test misclassification errors, false
negatives (the number of informative genes whose coeffi-
cients were estimated to be zero), model sizes (the number
of genes whose coefficients were estimated to be nonzero),
and their corresponding standard errors (sd/+/run) are re-
ported in Table 1.

Evidently, DGC-SVM-PT generated models as sparse as
that obtained from L1-SVM, and gave the most accurate
prediction among all the other methods. In addition, the
center gene, gene 1, was detected in each run by DGC-SVM-
PT. NG-SVM and DGC-SVM-PW yielded fewer false neg-
atives due to the larger models produced by each method.
The weight function w = d improved the classification ac-
curacy, slightly shrank the model size, and kept almost the
same false negatives for NG-SVM and DGC-SVM-PW com-
pared with the other two weight functions. In contrast,

w = 1 worked better for DGC-SVM-PT. It reduced the
false negatives while produced models of comparable pre-
dictive performance to that with w = v/d or w = 1. There-
fore, DGC-SVM-PT with w = 1 was the winner. In addi-
tion, it also improved reproducibility. The most frequently-
recovered pathways from each method (L1-SVM, NG-SVM
w = Vd, DGC-SVM-PW w = Vd, and DGC-SVM-PT
w = \/8) are displayed in Fig. 2. Both DGC-SVM-PT and
L1-SVM missed the leaves under each scenario. However,
both identified the majority parts of the true pathways.
Compared with all the other methods, DGC-SVM-PT de-
tected the same pathway with a much higher frequency.
Therefore, the identified pathways by this method were more
reproducible.

3.2 A complicated network

Next, we explored the complicated network originating
from gene 1 as displayed in Fig. 3. For this network, there
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Figure 2. Most frequently recovered pathways. Rows from top to bottom: L1-SVM, NG-SVM, DGC-SVM-PW, and
DGC-SVM-PT. Columns from left to right: scenario 1 (51) {1,2,5,6,14, 15,16}, scenario 2 (S2) {1,3,7,17}, and scenario 3
(53) {1,2,5,14}. Frequencies of the recovered pathways are included in parentheses.

exists one pair of genes connected by more than one path.
Therefore, the DAG derived from the complicated network
does not form a tree. For example, gene 32 has both gene 23
and gene 3 at its upstream. In addition, genes at the same
level are connected, such as genes 22 and 23, and genes 33
and 34. By definition, genes with no downstream genes are
considered as leaves. Even though gene 22 is connected with
gene 23, gene 22 is considered as a leaf because gene 23 is at
the same level as gene 22. Likewise, genes 33 and 34 are both
treated as leaves. Therefore, unlike the simple network, the
DAG defined by the complicated network contains directed
edges characterizing upper-lower relationships but ignores
undirected edges describing lateral connections. Genes 1, 2,
and 3 are assumed to be disease genes that affect the out-
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come weakly but importantly. Our goal is to identify disease
genes, including those that play a critical role in mediating
other genes in multiple biological processes even if their di-
rect effects on the outcome are weak.

The simulated data were generated similarly as for the
simple network. Here we considered two scenarios: (1) genes
1, 2, and 3 had weak effects (51 = B2 = (3 = 0.1), and
leaf gene 32 had a strong effect (32 = 10); (2) the three
disease genes had the same effect as in scenario (1) whereas
leaf gene 34 had a strong effect (834 = 10).

Table 2 suggests that L1-SVM generated sparse models
yielding the most accurate prediction under both scenarios.
However, on average, it missed about 2.5 out of 4 informa-
tive genes and identified only around 0.5 out of 3 disease



Table 2. Simulation results (averaged over 100 runs) for a complicated network with p = 13 genes. Four informative genes
were in each scenario

Scenario Method Test Error (SE) # False Negative (SE) Model Size (SE) # Disease Genes (SE)

1 STD 0.131 (0.002) 0.00 (0.00) 13.00 (0.00) 3.00 (0.00)
L1 0.089 (0.003) 2.59 (0.07) 3.04 (0.25) 0.41 (0.07)
NG (w = 1) 0.214 (0.005) 0.00 (0.00) 13.00 (0.00) 3.00 (0.00)
NG (w = /d) 0.210 (0.004) 0.00 (0.00) 13.00 (0.00) 3.00 (0.00)
NG (w = d) 0.216 (0.005) 0.00 (0.00) 13.00 (0.00) 3.00 (0.00)
PW (w=1) 0.109 (0.003) 1.10 (0.14) 9.58 (0.36) 1.90 (0.14)
PW (w = Vd) 0.115 (0.003) 0.86 (0.12) 9.70 (0.34) 2.14 (0.12)
PW (w = d) 0.117 (0.003) 0.46 (0.09) 10.65 (0.25) 2.54 (0.09)
PT (w=1) 0.146 (0.004) 0.00 (0.00) 10.79 (0.20) 3.00 (0.00)
PT (w = Vd) 0.145 (0.004) 0.00 (0.00) 10.86 (0.18) 3.00 (0.00)
PT (w = d) 0.145 (0.004) 0.00 (0.00) 10.62 (0.18) 3.00 (0.00)

2 STD 0.137 (0.003) 0.00 (0.00) 13.00 (0.00) 3.00 (0.00)
L1 0.095 (0.003) 2.46 (0.08) 3.75 (0.29) 0.54 (0.08)
NG (w =1) 0.217 (0.005) 0.00 (0.00) 13.00 (0.00) 3.00 (0.00)
NG (w = v/d) 0.213 (0.004) 0.00 (0.00) 13.00 (0.00) 3.00 (0.00)
NG (w = d) 0.215 (0.004) 0.00 (0.00) 13.00 (0.00) 3.00 (0.00)
PW (w = 1) 0.101 (0.004) 2.12 (0.13) 5.52 (0.44) 0.88 (0.13)
PW (w = Vd) 0.099 (0.003) 1.56 (0.14) 6.79 (0.44) 1.44 (0.14)
PW (w = d) 0.107 (0.004) 1.16 (0.13) 8.03 (0.40) 1.84 (0.13)
PT (w =1) 0.151 (0.004) 0.00 (0.00) 9.62 (0.25) 3.00 (0.00)
PT (w = Vd) 0.150 (0.004) 0.00 (0.00) 9.97 (0.23) 3.00 (0.00)
PT (w = d) 0.152 (0.005) 0.00 (0.00) 9.98 (0.22) 3.00 (0.00)

Figure 3. Left: a complicated network originating from gene
1. Right: DAG defined from the network.

genes. In contrast, NG-SVM yielded models that contained
every gene. Even though DGC-SVMs led to larger test er-
rors than L1-SVM, they detected most of the informative
and disease genes. In particular, DGC-SVM-PT detected all
the informative and disease genes, where the results are in-
sensitive to the choice of weight. Figure 4 displays the path-
ways most frequently identified by each method (w = Vd
when a weight was involved) except the standard SVM in
each scenario. It is evident that L1-SVM captured the gene
that exerted the largest influence on the response with the
highest frequency (genes 32 and 34 in scenarios 1 and 2 re-
spectively). NG-SVM involved all genes and hence that did
not distinguish the informative from noise genes. After a
close examination, we find that the DGC-SVM-PT selected

all the informative genes as well as all the three disease
genes in each run even though the three disease genes af-
fected the response weakly. Although this method generated
larger models with less accurate prediction compared with
L1-SVM, it exactly achieved our goal of identifying all the
disease genes along a pathway, including those with only
weak effects.

4. APPLICATIONS TO MICROARRAY DATA

To evaluate their performance in the real world, we ap-
plied the proposed DGC-SVMs to two microarray data
sets related to breast cancer metastasis [8, 20] and Parkin-
son’s disease [16] (Gene Expression Omnibus: GSE6613;
http://www.lncbi.nlm.nih.gov/geo/).

4.1 Breast cancer metastasis

The breast cancer metastasis (BC) data set contains ex-
pression levels of 8,141 genes from 286 patients, 106 of whom
developed metastasis within a 5-year follow-up after surgery.
The data set includes three tumor suppressor genes, TP53,
BRCA1, and BRCA2, which are known for preventing un-
controlled cell proliferation, and for playing a critical role
in repairing the chromosomal damage. The malfunction of
these genes leads to an increased risk of breast cancer. To-
gether with the expression data set, the protein-protein in-
teraction (PPI) network previously used by [8] was adopted
as our prior biological information, which was obtained by
assembling a pooled data set comprising 57,235 interactions
among 11,203 proteins and curation of the literature. We
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Figure 4. Most frequently recovered pathways. Rows from
top to bottom: L1-SVM, NG-SVM, DGC-SVM-PW, and
DGC-SVM-PT. Columns from left to right: scenario 1 (51)
{1,2,3,32}, and scenario 2 (S2) {1,2,3,34}. Frequencies of
the recovered pathways are included in parentheses.

considered a subnetwork consisting of the direct neighbors
of the three tumor suppressor genes, denoted as BC-1nb-net,
where expression levels of a total of 294 genes that belong
to BC-1nb-net were available. In our analysis, due to their
prominent roles, TP53, BRCA1, and BRCA2 were consid-
ered as center genes of BC-1nb-net.

For evaluation, we randomly split the data into training,
tuning, and testing set with 95, 95 and 96 observations re-
spectively. The expression level of each gene was normalized
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Figure 5. PD-net: subnetworks grown from the 12 PD disease
genes (UBB, UBE1, CASP9, CASP3, APAF1, CYCS,
PARK2, GPR37, SEPT5, SNCAIP, SNCA, and TH); 181
genes in total. PD genes are in red.

to have mean 0 and standard deviation 1 across samples.
Given any value from a prespecified set of wide-ranging val-
ues for the tuning parameter A\, we computed the classifier
f)\ on the training set and applied j':A to tuning set. The
value of A yielding the minimal misclassification error on
the tuning data was chosen as A\. Then we applied the clas-
sifier f; on the test set for evaluation. We compared the per-
formance of DGC-SVM with that of STD-SVM, L1-SVM,
and NG-SVM in terms of misclassification error, selection of
mutant genes (genes with available mutation frequencies),
and model sparsity, averaged over 50 runs. Since genes with
large mutation frequencies are more likely to malfunction,
disturbing the aggregate activity of the network, a method
that can detect more such mutant genes may be considered
to perform better. The mutation frequencies of 227 genes
are available [8]. Among the 294 genes in BC-1nb-net, 40



Table 3. BC-1nb-net: 294 genes including 40 cancer genes (CA) and 7 cancer genes with mutation frequencies larger than
0.10 (CA-LMF); misclassification error, number of selected CA; number of selected CA-LMF, number of selected genes, and
their standard errors (SE in parentheses) obtained by averaging over 50 runs

Method Error (SE) # CA-LMF # CA # Genes
STD 0.396 (0.006)  7.00 (0.00)  40.00 (0.00) 294.00 (0.00)
Ll 0.384 (0.007)  0.46 (0.10) 3.92 (0.46)  26.48 (3.01)
G(w=1) 0.385 (0.008)  0.58 (0.10) 3.82 (0.45)  29.38 (2.91)
G (w=+/d) 0.388(0.006) 0.64 (0.11) 4.90 (0.60)  31.82 (2.95)
G (w=4d) 0.404 (0.006)  0.86 (0.11) 6.42 (0.58)  36.88 (2.45)
PW (w=1) 0.380 (0.007)  0.78 (0.15) 4.86 (0.55)  42.32 (4.27)
W (w=+d) 0.382 (0.006) 0.62 (0.12) 4.48 (0.62)  30.50 (3.64)
PW (w=d)  0.396 (0.006) 0.86 (0.12)  3.96 (0.49)  23.80 (2.89)
T (w=1) 0.373 (0.006)  1.76 (0.16)  14.90 (1.09)  88.18 (6.31)
T (w=+/d) 0.395(0.006) 1.84(0.18) 12.52 (0.61)  63.88 (2.12)
PT (w = d) 0.396 (0.005)  1.58 (0.16)  7.20 (0.60)  31.76 (2.64)

genes had mutation frequencies (denoted as cancer genes),
7 of which (ABL1, JAK2, p53, PTEN, p1/ARF, PTCH, and
RB) had a mutation frequency larger than 0.10 (denoted as
cancer genes with large mutation frequency).

As indicated in Table 3, all the methods had similar pre-
dictive accuracies even though DGC-SVM-PT with w = 1
performed slightly better. However, an improvement in de-
tecting clinically relevant genes was seen evidently by incor-
porating the prior network information. Compared with L1-
SVM, NG-SVM with w = d detected almost twice as many
frequently mutant cancer genes and more than 1.5 times
cancer genes with models less than 1.5 times larger. DGC-
SVM-PW with w = d generated a more sparse model with 3
genes less than L1-SVM while detected the same number of
cancer genes and almost twice as many frequently mutant
cancer genes as L1-SVM. The advantage of DGC-SVM-PT
with w = d in gene selection was evident. It captured al-
most 3.5 times as many frequently mutant cancer genes and
almost twice cancer genes by a model only 1.2 times larger
than L1-SVM. The proposed DGC-SVM prevailed the other
methods in identifying clinically important genes.

4.2 Parkinson’s disease

The Parkinson’s disease (PD) data set includes disease
status and expression levels of 22,283 genes from 105
patients with 50 cases and 55 controls [16]. The gene
network information was obtained from two sources:
(1) the network in [13], which combines 33 KEGG reg-
ulatory pathways and contains 1,523 genes and 6,865
edges; (2) the Parkinson’s disease KEGG pathway (PD-
KEGG, http://www.genome.ad.jp/kegg/pathway/hsa/
hsa05020.html), which uncovers the interactions of 27
PD disease genes as of November 2008. A total of 12 out
of the 27 PD disease genes are contained in the network
of [13]: UBB, UBFE1, CASP9, CASP3, APAF1, CYCS,
PARK2, GPR37, SEPT5, SNCAIP, SNCA, and TH. We
focused our analysis on a subnetwork expanded from the
12 disease genes with the network of [13], denoted as

Figure 6. DAG transformed from PD-net: 12 PD disease
genes (UBB, UBE1, CASP9, CASP3, APAF1, CYCS,
PARK2, GPR37, SEPT5, SNCAIP, SNCA, and TH); 181
genes in total. PD genes are in red.

PD-net (Fig. 5), which consists of four components: (1) the
6th-order-neighbor-subnetwork of UBB (A direct neighbor
of UBB is defined as a 1st-order-neighbor; a direct neighbor
of a 1st-order-neighbor of UBB as a 2nd-order-neighbor;
and so on.); (2) the 3rd-order-neighbor-subnetwork of
CASPY; (3) the isolated four-gene-subnetwork includ-
ing PARK2, GPR37, SEPT5, and SNCAIP; and (4)
the isolated two-gene-subnetwork including SNCA and
TH. A total of 181 genes belong to PD-net. Note that
PARK2/GPR37/SEPT5/SNCAIP and SNCA/TH form
two islands respectively. The DAG of PD-net (Fig. 6) was
obtained by merging the DAG of UBB and that of CASP9
at the common node SMAD7. Note the two islands in
Fig. 6.

The data set was randomly split into training, tuning, and
test sets with 40, 20, and 45 observations respectively. The
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Table 4. Parkinson’s disease: misclassification error, number
of selected disease genes, number of selected genes, and their
standard errors (SE in parentheses) obtained by averaging
over 50 runs

Method Error (SE) # Disease Genes  # Genes
STD 0.448 (0.011) 12.00 (0.00) 181.00 (0.00)
L1 0.490 (0.008) 1.50 (0.19) 16.86 (1.58)
Final - 5 70

NG (w =1) 0.500 (0.011) 3.32 (0.39) 15.58 (1.72)
Final - 8 83

NG (w =+/d) 0.501 (0.009) 0.66 (0.19) 12.00 (1.34)
Final - 12 102

NG (w=d)  0.493 (0.008) 0.00 (0.00) 14.10 (1.44)
Final - 5 133
PW (w=1) 0.481 (0.010) 4.80 (0.43) 13.10 (1.52)
Final - 9 97
PW (w = +/d) 0.493 (0.009) 3.26 (0.41) 13.22 (1.70)
Final - 9 103
PW (w=4d) 0.493 (0.007) 1.52 (0.28) 14.70 (1.88)
Final - 7 97

PT (w=1) 0.407 (0.011) 4.56 (0.41) 42.34 (4.64)
Final - 6 108

PT (w=+/d) 0.445 (0.013) 2.40 (0.18) 45.04 (3.80)
Final - 6 113

PT (w=d) 0.456 (0.011) 2.42 (0.15) 55.56 (4.08)
Final - 5 117

expression level of each gene was normalized to have mean 0
and standard deviation 1 across samples. The performance
of each method was evaluated on the test set by the mis-
classification error, the selection of PD genes, and model
sparsity averaged over 50 runs. Again five methods were
compared: STD-SVM, L1-SVM, NG-SVM, DGC-SVM-PW
(w=1,w = Vd, or w = d), and DGC-SVM-PT (w = 1,
w = /d, or w = d). To obtain the final model for each
method, we used a new tuning data set by combining, in
each run, the previous tuning and test data, leading to a
sample size as large as 65. Here \ was identified on the new
tuning set from a wide range of prespecified values. Over 50
runs, the misclassification errors were averaged correspond-
ing to each tuning parameter value. The value A leading to
the minimal average error was used to fit the final model to
all the data (105 observations). Note that the misclassifica-
tion error from the final model was likely to be biased due to
reuse of the data for training/tuning and test; the purpose
of fitting the final model was to yield a set of selected genes.

As indicated in Table 4, the methods that incorporate
the prior gene network information improved gene selection
while maintaining predictive accuracy comparable to that
of the STD-SVM and L1-SVM. L1-SVM generated models
with an average of 16.86 genes including 1.50 PD genes.
NG-SVM with w = 1 detected more than twice as many
PD genes with models having 1.28 less genes than L1-SVM.
The improvement in gene selection of DGC-SVM-PW with
w = 1 was more significant. It produced models with 3.76
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Figure 7. L1-SVM final model: selected PD genes (UBB,
UBE1, CASP9, CASP3, and SNCA) in red; missed PD genes
(APAF1, CYCS, PARK2, GPR37, SEPT5, SNCAIP, and TH)

in green; other selected genes in yellow; unselected genes in
white; 181 genes in total.

less genes while detected more than three times as many
PD genes as L1-SVM. Both the methods had a predictive
accuracy at a comparable level to that of L1-SVM. DGC-
SVM-PT with w = 1 improved both prediction accuracy
and gene selection. It reduced the misclassification error by
17% and also selected three times as many PD genes with a
model size not so much larger than that of L1-SVM. Overall,
DGC-SVM-PT with w = 1 outperformed the other meth-
ods.

The selected genes of the final model obtained from each
method (L1-SVM, NG-SVM with w = 1, DGC-SVM-PW
with w = 1, and DGC-SVM-PT with w = 1) are displayed
in the networks in Figs 7-10. L1-SVM generated the spars-
est final model and missed the most PD genes. NG-SVM
neglected around a half of the nodes and a half of the leaves.
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Figure 8. NG-SVM with w = 1 final model: selected PD
genes (UBB, UBE1, CASP9, APAF1, CYCS, SEPT5, SNCA,
and TH) in red; missed PD genes (CASP3, PARK2, GPR37,

and SNCAIP) in green; other selected genes in yellow;
unselected genes in white; 181 genes in total.

According to DGC-SVM-PT, nodes located at higher level
are more likely to have nonzero estimates. The majority of
nodes were detected and also both center genes of the two
islands were included by this method. DGC-SVM-PW iden-
tified the most PD genes among the four final models even
though it neglected most part of the subnetwork derived
from UBB.

5. DISCUSSION AND CONCLUSION

The availability of various repositories of gene networks
and the accumulating knowledge on genes central to diseases
make it possible to use these two sources of prior biological
information to construct microarray-based classifiers. Em-
ploying such a network-based perspective not only sheds
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Figure 9. DGC-SVM-PW with w = 1 final model: selected
PD genes (CASP9, CASP3, SNCA, CYCS, APAF1, TH,
PARK2, SEPT5, and SNCAIP) in red; missed PD genes

(UBB, UBEL, and GPR37,) in green; other selected genes in
yellow; unselected genes in white; 181 genes in total.

insight on deciphering the complexity within the network
modules but also offers the possibility of detecting genes that
play a critical role in mediating multiple biological processes
but have weak direct effects on the outcome by themselves.
Such genes are often ignored by expression analysis without
the network information as pointed out by [8].

This paper proposes a penalty that encourages gene selec-
tion along pathways or within subnetworks. The identifica-
tion of any gene leads to the search for disease genes along
gene pathways or within subnetworks all the way toward
genes central to the disease. The penalty enhances investiga-
tion of relationships within collectives of genes that contain
both the selected genes and the central genes. By convert-
ing the undirected gene network into DAG, we imposed an
upper-lower hierarchy on the gene network depending on
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Figure 10. DGC-SVM-PT with w = 1 final model: selected
PD genes (UBB, UBE1, PARK2, CASP3, SNCA, and
CASP9) in red; missed PD genes (APAF1, CYCS, GPR37,
SEPT5, SNCAIP, and TH) in green; other selected genes in
yellow; unselected genes in white; 181 genes in total.

each gene’s distance to the assumed network center, typi-
cally gene(s) central to the disease. The DAG facilitated the
definition of gene groups according to one of two different
ways of grouping, one based on grouping genes along lin-
ear pathways, and a second on grouping genes with all their
downstream genes. The penalty term was constructed from
the L,,-norm being applied to each group. Combined with
the hinge loss, we obtained our proposed method: DGC-
SVM-PW and DGC-SVM-PT. The former attempts to re-
alize selection along linear pathways in the network. The
latter ensures the selection of an upper-level gene if any of
its downstream genes is selected, thus realizing hierarchical
selection. Due to this property, genes that have more down-
stream genes and are closer to the center are very likely to
be detected. In addition, selection of any gene guarantees
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the inclusion of at least one central gene. According to the
simulation studies, DGC-SVM detected more disease genes
even if they potentially affected the outcome only weakly.
Two real data applications showed that the new method
prevailed STD-SVM and L1-SVM in capturing clinically rel-
evant genes while making either more accurate or compara-
ble prediction on the outcome. We conclude that DGC-SVM
has the potential to be an effective classification tool for mi-
croarray data.

Even though its strength in improving gene selection has
been established, DGC-SVM has some weaknesses. First,
specification of the center of a network is somewhat arbi-
trary. As a matter of fact, different specifications result in
different grouping structures and thus different penalties.
Second, how to define DAG in presence of multiple center
genes requires further investigation. We suggested an ap-
proach that is admittedly somewhat arbitrary. Third, DGC-
SVM-PW is computationally intensive for a large network
since a large number of groups are generated. Fourth, use of
the weight function may improve gene selection at the ex-
pense of reduced predictive accuracy or vice versa; it is not
guaranteed to better both at the same time. A further inves-
tigation is necessary to develop a simpler and more effective
way to incorporate a prior gene network.
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